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Abstract. In the context of coverage planning and control, the power of the com-
mon pilot channel signal determines the coverage area of a network cell. It also
impacts the network capacity and thus the quality of service. We consider the
problem of minimizing the total amount of pilot power subject to a full coverage
constraint. Our optimization approach, based on parallel autonomous agents, gives
very good solutions within an acceptable amount of time. The parallel implementa-
tion takes full advantage of GPU hardware in order to achieve impressive speed-up.
We report the results of our experiments for three UMTS networks of different sizes

based on a real network currently deployed in Slovenia.
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1 INTRODUCTION

The coverage problem in third-generation (3G) mobile networks has received a great
deal of attention in the last years. Its complexity demands the confluence of dif-
ferent skills in areas such as propagation of radio signals, telecommunications, and
information systems, among others.

One of the reasons behind the problem complexity relies in the conflicting mea-
sures generally used to compare different proposed solutions. These aspects include
network capacity, quality of service, service coverage, and recently, issues related
with human exposure to electromagnetic fields generated by base station anten-
nas [6]. Public opinion has been extremely sensitive regarding this issue, and thus
many countries have already imposed safety standards to limit the electromagnetic
field levels.

It is clear that, even almost 10 years after the launch of the first commercial
UMTS network, service coverage planning remains a key problem that all mobile
operators have to deal with. Its intricacy arises from the wide range of differ-
ent combinations of configuration parameters and their evaluation-time complex-
ity. One crucial parameter, which is mainly subject of adjustment, is the trans-
mit power of the common pilot channel (CPICH). The CPICH transmit power
is common to many different planning and optimization problems in UMTS net-
works [13].

The CPICH transmits in the downlink of a UMTS cell system. The transmit
power is usually between 5% and 10% of the total power available at the base
station [9]. The capacity of a cell is limited by the amount of available power at the
base station and the interference level at the mobile terminal. The coverage area of
any cell is controlled by changing its pilot power, which consequently modifies the
service area of the network.

From the network perspective, lowering pilot power usage leaves more power
available for increased network capacity. This is especially important if the traffic
and other channels are configured relative to CPICH [9]. Moreover, as the demand
for mobile internet access and data services increases [5], so does the pressure on
existing network infrastructure, making parameter optimization a viable short-term
solution [13].

There are different approaches in the literature tackling the coverage prob-
lem [13, 18]. Some of them even claim to achieve near-optimal solutions [19]. As
a matter of fact, such formulations have proven useful only for small network in-
stances and often fail when challenged with real-world networks.

The idea of using autonomous agents for optimization is not new [4]. It has
proven to be a solid optimization approach for solving different types of problems,
not only within the area of mobile networks [3, 6], but also in other fields [23, 25].
Nevertheless, we have found no reference in the literature of any similar optimization
method for solving the service coverage problem in mobile networks. Moreover, this
is, to the best of our knowledge, the first work to experiment with optimization of
a real UMTS network on a fully-enabled GPU environment.
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Our optimization approach is based on a state-of-the-art mathematical model,
that has been previously used to solve a comparable problem [2]. We tackle the
problem of computational-time complexity when dealing with big problem instances
by implementing a parallel version of our agent-based algorithm entirely on GPU.
This approach minimizes overhead when deploying a larger number of agents working
in parallel over the service area, limited only by the amount of available memory.

We have tested our algorithm on subsets of a real UMTS network deployed
in Slovenia by Telekom Slovenije, d.d. The results show that the solutions found,
and more importantly their quality, are greatly improved when compared to other
common planning techniques.

We begin our discussion by introducing previous work and a description of the
coverage problem, where we formally introduce some of its key elements. We then in-
troduce the parallel-agent approach in detail, as well as the strategies used for result
comparison. Having described the parallel-agent approach, we move on to discuss
the GPU implementation. This is followed by the simulations and experimentation,
performed on three sub-networks of a real mobile network deployed in Slovenia. We
conclude with an overview of the achieved results, from the optimization as well as
the implementation points of view, and discuss future research directions.

2 PREVIOUS WORK

In [19], Siomina and Yuan considered the problem of minimizing the total amount of
pilot power subject to a full coverage constraint. They tackled the problem with an
iterative linear programming approach, reporting very good results for some small-
sized test networks. The authors also noted that bigger problem instances could not
be solved because of hardware constraints on the target platform.

In a different work [1], we tackled the full-coverage problem of the service area
under optimization. Reported experimentation on the same problem instances as
in [19] showed improved quality at the cost of longer running time. Moreover, our
approach was not limited by any hardware restrictions, since it successfully tackled
bigger problem instances, finding high quality solutions even for large networks.
Such solutions were found in a reduced amount of time by increasing the number of
agents deployed during optimization without compromising solution quality.

The algorithm in [1] is the basis for the optimization algorithm presented in this
paper, with some essential improvements, namely:

e the implementation is no longer completely CPU-based,
e it does not use a black-box coverage evaluator and

e the algorithm presented here contains improvements in the agent’s behavior
during optimization, including the introduction of the so-called “special” agents
and fine-tuned step sets.
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3 PROBLEM DESCRIPTION

In the problem of optimization of pilot powers for service coverage, the objective is
to find a set of pilot power settings for all cells in the network, such that the total
pilot power used is minimized, and a given service coverage criterion is fulfilled. We
consider the pilot power minimization problem subject to a full coverage constraint
of the service area.

Because the mathematical model of the problem is not of primary interest here,
we will just outline it, so that all problem elements are formally defined and repre-
sented. For additional information regarding mathematical models of comparable
problems see [13].

3.1 Problem Elements

We start by considering a UMTS network of m cells and use C' to denote the set of
cells, i.e. C = {1,...,m}. A pixel grid of a given resolution represents the service
area for which the signal propagation predictions are known. Let n denote the total
number of pixels in the service area and let S denote the pixel set, i.e. S = {1,...,n}.
We also denote att. s, 0 < att., < 1, as the attenuation factor between a cell ¢ and
a pixel s, which is calculated by performing signal propagation predictions for every
pair of ce€ C'and s € S.

For every ¢ € C, we define p! as the total transmission power available in cell c.
This power is shared among all channels in the cell (i.e. CPICH, other common
channels, and dedicated traffic channels). We define p. as the amount of power
allocated to the pilot signal of cell ¢, where p. may adopt any value from a finite
set of possible pilot power levels, P. = {pl,p2,...,pl'}. Consequently, the received
pilot power of cell ¢ in pixel s is p.att, .

Considering the full coverage constraint, each pixel in the service area should
have at least one cell covering it. We assume that a pixel s is under coverage of
a cell ¢ if its signal-to-interference ratio, SIR, at pixel s is not lower than a given
threshold, 7, i.e.
pcattc,s

SIR(c,s) =
(C/ S) ZiEC pzT atti,s + To

> 7., (1)

where 79 is the thermal noise.

Since we are solving the coverage problem for an interference-limited radio net-
work, as UMTS networks are, we are assuming that all cells in the network operate
at full power (note p! in (1)). In terms of the level of interference present in the
network, this assumption represents the worst case scenario, whereas in terms of the
service coverage solution, it represents a lower bound [16]. The same assumption
has also been used in [2, 19].

Specifically, the interference levels are significantly lower during normal opera-
tion conditions, i.e. when an expectedly normal traffic load is served by the network.
In such case, the coverage of every cell increases in comparison to heavy traffic con-
ditions. The principle behind this behavior is called cell breathing [9]. In a nutshell,
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cell breathing allows cells with high user traffic to offload some of it to neighboring
cells. They do so by adapting the geographic size of their service area. Consequently,
highly loaded cells decrease in coverage size, while neighboring cells increase their
covered service area to compensate.

The optimization problem corresponds to finding the pilot power levels p., for
all cells ¢ € C, such that coverage of at least b pixels is guaranteed, while the total
amount of pilot power used is minimized. Since we are considering full coverage, we
denote b = n.

3.2 Problem Complexity

It has been proven that the problem of pilot power optimization for full coverage of
the service area is N P-hard, since it can be reduced to the set covering problems [24].
Consequently, as long as P # N P, it is unfeasible that a polynomial-time algorithm
exists, which is able to find an exact solution to this problem.

3.3 Optimization Objective and Constraints

The optimization objective is defined as follows

P* = min ch; (2)

ceC

subject to
LGS; )y, (3)

where
cov(s) = 1, if and (')nly if 3¢ | SIR(c,s) > . . ()
0, otherwise

The definition of (4) provides us with a simple way of asserting the coverage of
a given pixel, s. It follows that if the pilot signal of at least one cell ¢ satisfies the
imposed SIR threshold ~, the pixel is covered and hence cov(s) = 1.

4 OPTIMIZATION APPROACHES

Since the problem instances we will be analyzing are part of a real mobile network
deployed in Slovenia by Telekom Slovenije, d.d., there are no references in the liter-
ature of other optimization techniques dealing with exactly the same data set. For
this reason, we will introduce two different strategies for setting the pilot power,
that shall enable us to compare the experimentation results. The first strategy is
attenuation-based pilot power, presented in [18], in which a pixel of the service area
is always covered by the cell with the highest attenuation-factor value. The second
strategy is our parallel-agent approach, based on ideas inspired by two-dimensional
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cellular automata [15] and metaheuristics [21]. Similar criteria for result comparison
have also been used in [19]. A detailed description is given in Section 4.2.

4.1 Attenuation-Based Pilot Power

The first heuristic for setting the pilot power of all cells in the network is known
as attenuation-based, since it relies on the attenuation factor att.,. Following this
heuristic, a pixel of the service area s is always covered by the cell exhibiting the
maximum att.s,. We use ¢(s) to denote the cell that has, among all cells, the
maximum attenuation factor over the pixel s as

c(s) = max att,.. 5
(5) = ma i, (5)
Assuming the maximum available power pl is the same for all the cells in the
network, it follows that for any pixel s, the cell with the maximum attenuation
factor requires the minimum power level. Consequently, we introduce an equivalent
definition for ¢(s) as

c(s) = minpe,s, (6)

where p, s is the pilot power of cell ¢ such that the pixel s is covered.
Picking the cells conforming to (6) and setting the pilot powers accordingly, we
achieve full coverage of the service area, where the pilot power of cell ¢ is as follows:

Att _

(&

7
seg:lc%g:c Pe, ( )

In this case, the solution exhibits a total pilot power of

PAtt _ chAtt’ (8)

ceC

The last part of the procedure consists of finding, for every pixel, the maximum
attenuation factor among all cells, i.e. att.s)s. This value is then used to sort the
pixels in descending order. The solution is thus established by the first b pixels of
the resulting sorted sequence.

4.2 Parallel-Agent Approach

In the parallel-agent approach, a set of autonomous worker agents explore the geo-
graphic area, targeted to be under mobile network coverage, in order to optimize the
pilot power consumption of the network. Each agent randomly moves over the ser-
vice area as it dictates different changes to the pilot power of the cells. An evaluator
performs radio propagation predictions based on each agent’s proposed change.
The search process during optimization is strictly random. However, several
physical properties that are exclusive to the problem being solved are being exploited
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during exploration of the search space. Additionally, whenever the current solution
breaks any of the given constraints, the optimization process is guided back to
the space of valid solutions, providing a mechanism for improving exploration and
escaping from local optima.

Because of the independent nature in agent’s behavior, a parallel implemen-
tation is fairly straightforward to achieve. The first hardware restriction we have
to overcome is the amount of memory on the GPU device. Consequently, careful
memory utilization and organization are critical to successfully accommodate all in-
volved problem elements on the GPU. Figure 1 gives an overview of the optimization
system architecture. Within this GPU-only architecture, agents work in a parallel
and autonomous manner, while the evaluator reacts to agent changes.

Texture memory| Global memory
Interference |4 | Coverage data |
matrix N
Pilot powers of \]
network cells
Path loss
matrices for all|[]
network cells

Coordinates of \J+2
uncovered cells

——
- >
1D data structrure, 2D data structure 3D data structure I Write-only op 7 Read-only op i

Figure 1. Architecture of the optimization system on GPU

4.2.1 The Agents

The agents apply the pilot power changes based exclusively on local information.
Each of them encapsulates a set of steps that is consistently applied as it ran-
domly moves through the service area of the network. Whenever an agent arrives
at a pixel s, it identifies the set of cells covering the current pixel, namely

B(s) ={ce C| SIR(c,s) > .} 9)

The step set applied from this point on directly depends on the cardinality of B(s),
while the agent’s movement over the service area is determined by the cardinality
of set U, U C S, which is defined as

U={seS|VeeC:SIR(c,s) < 7} (10)

The agent’s behavior is dictated by the pseudo-code shown in Table 1. An ex-
ample diagram is depicted in Figure 2. Steps 1 to 4 are responsible for guiding the
agent’s movement. The coordinates are selected randomly from two sets. The first,
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S, is the set of all pixels in the service area. The other one, U, is the set of pixels
that are currently not being covered by the network. Only “special” agents may
select pixel coordinates of the set U. It follows that an agent’s movement depends
on its “specialty” and the number of pixels not covered by the current solution.
During steps 5 to 8, the agent applies step sets S5y and S.S; based on the number
of cells in B(s).

Step

repeat
1 if Special agent() and |U| > 0 then
s = random element from U
else
3 s = random element from S
end if
move to s
if |B(s)| =0 then
apply SSy // increase power
else if |B(s)| > 1 then
apply SS; // decrease power
end if
while not (stopping criteria)

0 O Ut

Table 1. Pseudo-code of the agent’s behavior

SA

Figure 2. Example of coverage optimization of a two-antenna network by six agents (A),
three of which are “special” agents (SA). The depicted area is divided into pixels
that define the set S. The set U is represented by white pixels, which are not under
coverage. Grayed pixels indicate the area under service coverage, whereas darker
pixels indicate coverage by more than one network cell.
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Step
repeat
1 ¢ = next cell with maximumatt(s)
2 pe = Adjust pilot(c, increase rate)
3 while (p. ¢ P.) and (num of tries < |B(s)|)

Table 2. Pseudo-code of step set S.Sy

If the agent’s current location, at pixel s, is not covered by any cell (i.e. |B(s)| =
0), the step set S5y (shown in Table 2) is applied. It starts by selecting the cell with
the maximum attenuation factor at pixel s (step 1). If many cells have the same
value, one is randomly picked out of them. Once c is uniquely identified, the agent
changes its pilot power by increase rate dB (step 2). By using a higher increase rate,
the network shall potentially cover s, as well as some neighboring pixels. Areas
without coverage usually contain many uncovered pixels grouped together, forming
irregular uncovered islands.

Step
repeat
1 ¢ = next random cell(B(s))
2 pe = Adjust pilot(c, decrease rate)
3 while (p, ¢ P.) and (num of tries < |B(s)|)

Table 3. Pseudo-code of step set SS1

The step set SS7 in Table 3 is applied whenever the agent’s current location, at
pixel s, is covered by one or more cells (i.e. |B(s)| > 1). The first step randomly
selects a cell from B(s). The agent shall decrease the pilot power of ¢ in step 2.
This practice keeps the coverage constraint valid over s, although it might potentially
break it on other pixels. Ideally, every pixel would be covered by exactly one network
cell, although this is just a representation of a perfect solution that is almost entirely
unreachable, because of the irregularity in network topology and terrain.

In both step sets, SSy and S5, the agent makes sure that the new pilot power
setting, i.e. after applying the change, is an element of P.. If this is not the case,
cell ¢ is discarded and another cell is selected at the first step of SSy and S5,
adjusting its pilot power accordingly. This is repeated for a maximum of |B(s)|
tries to avoid getting trapped in an endless loop.

The values increaserate and decreaserate are configurable parameters that
should be set before starting the optimization process. They indicate the dB adjust-
ment proposed to the pilot power of cell ¢ and are based on the physical properties
of the problem being solved. Namely, lowering the pilot power of a cell decreases
the interference at pixel s. Moreover, the target SIR value at pixel s is reduced
under lower interference; thus coverage of this pixel may be achieved with lower
pilot power. On the other hand, by increasing the pilot power of a cell with the
maximum atts, we improve coverage by evenly distributing the power among differ-
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ent network cells, since the selected cell, ¢, is, on average, the nearest to the present
location.

4.2.2 The Evaluator

The evaluator represents an important component of the optimization system, since
it reacts to agent changes by recalculating the value of the objective function, i.e.
coverage of the service area and the total pilot power used by all the cells in the
network being optimized.

The path-loss and interference data were calculated in advance, using the com-
mercial radio planning tool TEMS™ CellPlanner, which has been generously pro-
vided by the Radio Network Department at Telekom Slovenije, d.d. These predic-
tions already include losses and gains from cabling, hardware, and user equipment.

After a short initialization, during which the pre-calculated path-loss and inter-
ference matrices for the whole area are loaded, the evaluator computes the service
area coverage, based on the pilot powers supplied as the initial solution from which
the search process begins. Initial solutions are randomly generated sets, containing
valid pilot power settings that fulfill the coverage constraint. The evaluator then
waits for agent changes to arrive and incrementally calculates subsequent solutions
accordingly.

It is the responsibility of the evaluator to maintain a special part of memory,
intended for keeping track of the uncovered pixels in the service area, constantly
updated. Whenever the current solution is not valid because of uncovered pixels,
i.e. Equation (3) does not hold, “special” agents take on correcting the coverage.
They achieve this by randomly selecting an uncovered pixel coordinate from this
portion of memory (one at a time) so that a valid solution may be reached again.
It should be noted that these “special” agents shall only apply step set S.Sy for as
long as the solution is not valid. The portion of “special” agents that may work in
correcting the current solution is an optimization parameter.

As it has been mentioned before, this constraint-repairing strategy enhances
certain properties of the search process performed, namely:

e increases exploration of the search space, as different regions are also being
inspected, and

e enables the algorithm to escape from local optima, leading the search to other
areas containing potentially good solutions.

It is worth mentioning that the evaluator itself has no influence on the optimization
process from the search point-of-view. Its task is to provide feedback and updated
information to the agents exploring the service area. From the performance point-
of-view, the importance of the evaluator is significant, as will be shown in the next
sections.
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5 IMPLEMENTATION

We have chosen the Open Computing Language (OpenCL) [20] as the implementa-
tion platform. OpenCL is an open parallel computing API designed to enable GPUs
and other co-processors to work together with the CPU and so providing additional
computing power. As a standard, OpenCL 1.0 was released in 2008, by The Khronos
Group, an independent standards consortium [12]. For additional information about
the OpenCL standard and API, we refer the reader to the numerous guides available
online.

Our choice in using OpenCL was greatly influenced by the fact that its bitcode
runs on a variety of hardware, including multicore CPUs and GPUs from different
vendors. This provides a complete framework capable of comparing execution speed-
up on different hardware without the need of changing the implementation.

One unfortunate consequence of the vendor variety is that NVIDIA’s CUDA
[14] and OpenCL documentation present disparate naming conventions for some key
components. For the sake of consistency we present a short “translation dictionary”
between them as shown in Table 4.

OpenCL | CUDA
grid | grid
work group | block
work item | thread
_kernel | __global__
__global | __device__
_local | __shared__
_private | __local__
imagend_t | texture<type,n,...>
barrier (L|M|[F) | __syncthreads()
get_local id(0|1]2) | threadIdx.x|y|z
get_group_id(0|1]2) | blockIdx.x|y|z
get_global id(0[1]|2) | (not implemented)

Table 4. Terminology translation between OpenCL and CUDA [10]

Despite the use of OpenCL as the target platform for our implementation, the
details described in the next sections may be equally applied on CUDA.

The evaluator was completely implemented on GPU, because its performance
has a great impact on the speed of the optimization system as a whole. The imple-
mentation of the agents is also based on GPU, which drastically reduces the number
of data transfers between CPU and GPU, since all problem elements are available
on the GPU during the optimization process. Therefore, it is a challenging task to
accommodate all the needed elements on GPU memory, which is notably smaller
than the RAM memory usually available on modern computers.
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5.1 Evaluator on GPU

The evaluator implementation is one of the biggest challenges we faced. The great
amount of data needed to evaluate agent changes of pilot power was the first re-
striction we run into, as there was not enough memory on the GPU for all of them.
Moreover, it imposes a hard constraint in terms of the scalability of our optimization
approach. Generally speaking, we intend to take advantage of the GPU in terms
of parallel speed, while the size of the data sets used should not limit its use. As
a solution, we propose to change the internal representation of the following data
structures:

e the path-loss matrices, one for each of the cells of the network being optimized
and

e the interference matrix, which holds data for the whole service area.

The path-loss matrices are potentially as big as the underlying data used to calculate
the radio propagation predictions over the service area of the network. In our
case, we have at our disposal terrain data covering more than 78 000 km?, including
a digital elevation model of 100 m? resolution. The data include the whole country
and some parts of the neighboring countries, ensuring availability even at the country
borders. It is not possible to calculate the path losses of more than 100 transmitters
over the afore-mentioned area, as the matrix elements would require more memory
than is currently available on most modern GPU hardware. Such situations would
drastically reduce the scalability of our approach, especially for large real-world
networks. For this reason, we have decided to change the representation unit of the
path-loss matrix elements from the linear scale to a logarithmic one, namely decibels
(dB). After consultation with experts in the radio-telecommunications field, the
decision was that the additional error introduced by using integer decibels instead
of a real-numbered linear scale is negligible, since the digital elevation model, which
has a resolution of 100m? per pixel, presents a bigger rounding problem. Therefore,
the path-loss data-type was changed from float to unsigned char, consequently saving
three bytes per data element. It follows that the path-loss between a network cell
and any point on the service area should never exceed 255 dB. This scale is large
enough for problem representation, since service discovery by the mobile terminal is
still successful with a RSCP of around —115dB [9]. Moreover, since the path loss is,
by definition, a positive value, we neglect the sign from the internal representation
without losing information.

In terms of scalability, another improvement is introduced for further reducing
the amount of memory needed for network coverage calculation, namely the calcu-
lation radius around each network cell. Taking, for example, a 10km calculation
radius around a cell is generally enough for coverage-calculation purposes over the
2 GHz spectrum of UMTS [9]. Clearly, the calculation radius drastically lowers the
memory requirement on the GPU, especially when comparing a potential area of
400 km? with the initial one, covering more than 78000km?. To correctly locate
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the reduced areas, delimited by the calculation radius around each network cell,
we additionally supply the offset of the upper-left corner for each of the path-loss
sub-matrices. The memory layout for the path-loss matrices is shown in Figure 3.
It is worth pointing out that the introduced memory-efficiency methods do not have
a significant impact on the quality of the solutions, which are generated by the
algorithm. This will be further elaborated in Section 6.4.

(x_offsetl,
A| y_offset1)

Path loss matrices,
one network cell each
(elements in dB)

(x_offset2, Lo g
y_offset2) L #

Matrix offsets within
the service area

& [(x_offset..., - ;
y_offset..)) .- 4

K (x_offsetN,
y_offsetN)

Figure 3. Texture memory organization of the path-loss matrices on the GPU. Each layer
represents the path loss for one cell of the network under optimization

Because the content of the path-loss matrices is constant throughout the opti-
mization process, they are kept in read-only texture memory to take advantage of
the fast access time provided by the hardware. Additional speed-up is achieved by
incrementally recalculating the service area coverage as the agent changes arrive.
Specifically, the network cells containing new settings that have not yet been evalu-
ated have their pilot powers saved in negative form, serving as a flag to indicate that
coverage re-evaluation is needed. Since pilot powers are positive numbers, there is
no possibility for confusion.

5.2 Parallel Agents on GPU

The autonomous and programmable nature of the agents makes them ideal for par-
allel and GPU-based implementations. By lowering the complexity of the step sets
applied at each time, we were able to tackle larger optimization problem instances
with good results in very short time.

For the kernel implementing agent behavior, only one work group is launched. It
contains as many work items as there are agents deployed during the optimization,
organized in a 1D grid. Each work item randomly generates a coordinate within
the service area, using the system time in milliseconds as a random seed. Because
OpenCL lacks functions for random-number generation, we implemented a simplified
version of Marsaglia’s generator [11]. Afterwards, each work item analyzes the



1038 L. Benedicié, M. Stular, P. Korosec

received signals at the current coordinate by applying step sets S5, or 5SS, as
it has been explained in Section 4.2. The outcome of the analysis is saved in its
local-memory position by each of the work items. It contains the id of the network
cell (at position 2 x local_id), and the pilot power setting (at position 2 x local_id+1).
The new pilot power is calculated as the dB difference from the previous one, based
on the values of increase rate and decrease rate. Since both the cell id and the pilot
power are of type unsigned short, there is enough space in a 16 Kb local memory
block to allocate up to 4,096 independent agents. Therefore, this number is not
bounded by size of local memory, since most modern GPUs have a hard limit in
the number of work items per work group, being 256 or 512. The last step involves
saving the new pilot powers back to their containing vector in global memory. This
is done by only one of the work items within the work group, to avoid memory-access
conflicts. At this moment, the sign of updated pilot powers is changed to indicate
that coverage re-calculation is needed. Clearly, the vector containing pilot powers
in global memory is of type int, as it must allow signed-value storage. Nevertheless,
a single pilot power setting never exceeds 65535 mW. In case there is more than one
new setting for a specific network cell, the median among all proposed settings is
calculated and applied as the new pilot power for that cell.

Even though the agent kernel does not achieve coalesced access to the GPU
global memory, its sole implementation provides enhanced performance, since most
of the data accessed during the optimization process is already available on the
GPU. This significantly reduces the number of data transfers between the CPU and
GPU, consequently improving the speed of the optimization process. Moreover, the
kernel also produces truly parallel behavior of the agents, as they all explore the
service area at the same time.

6 SIMULATIONS
6.1 Test Networks

All the test networks, Net;, Nety, and Nets are subsets of a real UMTS network
deployed by Telekom Slovenije, d.d., in Slovenia. The path-loss predictions are
calculated using the Okumura-Hata model [8], using a digital elevation model of
100m? resolution as input data and a receiver height of 1.5m above ground level.
The requirements for SIR coverage were provided by experts of the Radio Network
Department at Telekom Slovenije, d.d.

Nety is deployed over a densely populated urban area. For this reason, the
SIR coverage threshold is lower, since network capacity is the dominating factor,
whereas coverage is flexible because of a higher cell density, i.e. more base stations
per surface unit. Net, represents a network deployed over a dominant rural area,
meaning that network capacity may be reduced at the cost of better coverage, since
each cell must cover greater area. The last network, Nets, represents a suburban
area with a highly-dense populated, but relatively small, downtown center, where
compromise between network capacity and coverage has to be achieved.
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We have produced network configuration settings based on the attenuation-
based approach. These settings represent what could be an initial network setup by
common planning standards [9]. Moreover, such settings are also very straightfor-
ward to calculate by a network planner. Table 5 shows some configurations of the
test networks used. The parameter values used during experimentation are shown
in Table 6.

Cells [m] Area [km?]

Nety 7 100.00
Nety 23 306.25
Nets 129 405.00

Table 5. Network configurations

Parameter Nety Neto Netsg
I 15.00 W 19.95 W 15.00 W
To 1.55-100¥W  1.55-1074W  155-10014W
Ve 0.010 0.020 0.015

Table 6. Network parameters

6.2 Algorithm Parameter Settings

After short experimentation, we determined the parameter settings for the optimiza-
tion algorithm. There was no fine tuning of parameters for each problem instance.
Nevertheless, we gained valuable information regarding the agent’s behavior that we
used to set the following parameter values:

e increase rate was set to 0.2dB,
e decrease rate was set to —0.1dB,

e number of agents was set to 16 and

e 10000 changes per agent were allowed.

6.3 Experimental Environment

All experiments were done on Intel i7 2.67 GHz computer with 6 GB of RAM run-
ning 64-bit Linux operating system. The GPU hardware was ATI HD5570 with
1 GB DDR3 RAM. The implementation language used was C, with OpenCL and
OpenMPI extensions. Experimentation with MPI-based agents was carried out on
a CPU-only cluster, managed by the XenServer virtualization tool. The virtual
server exposed 12 CPUs and 16 GB of RAM, also running Linux.
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6.4 Optimization Results

Table 7 shows that results achieved by our optimization approach significantly im-
proved solution quality. This was expected, since we have already shown that our
previous approach, which was used as basis, outperformed the previously best ap-
proach. Results show that we reduced pilot power usage in all networks and kept
the service area under full coverage. Moreover, we may see that the solution for
Net; improved the attenuation-based setting by more than 300%. For Nety, the
improvement observed is around 232 %, with an improvement of more than 170 %
for Nets. This means that network capacity has been significantly increased in all
three problem instances. Therefore, more users should be able to access services
provided by the mobile network, since coverage is assured at lower power usage.
Moreover, an increased speed in data services may also be achieved [9].

Attenuation-based Parallel agents
Total power [W] Average power [W]| Total power [W] Average power [W]
Nety 419.292 5.445 137.064 1.780
Nety 78.297 3.404 33.344 1.450
Nets 1014.113 7.861 582.954 4.519

Table 7. Optimization results after applying two different approaches, e.g. attenuation-
based and parallel agents

After collecting data from ten independent runs, we generated convergence
graphs, shown in Figures 4-6. The graphs contain feasible solutions only, i.e. solu-
tions that meet the full-coverage constraint. Unfeasible solutions were marked with
a value of inferior quality than the worst solution found by the algorithm in all ten
runs. In case of Nety, the value was set to 428, for Nety the value was set to 129
and for Nets the value was set to 1,435.

The analysis of convergence graphs of Net; and Nets shows that the algorithm
quickly converges at the beginning, followed by a steady improvement of intermedi-
ate solutions. In Net; we notice an additional improvement of the solutions found,
even towards the end. This fact suggests that in this case longer runs would poten-
tially find even better solutions. For the instance Nets, we observe a slower initial
convergence, with steady improvement of intermediate solutions and no significant
solution enhancement during the last 1000 iterations. This fact, together with the
aforementioned results, suggest that this problem instance presents a more difficult
optimization case than Net; or Nety. Nevertheless, the improvement observed is,
on average, around 100 %.

6.5 Implementation Results
After measuring the quality of the solutions given by our parallel-agent approach, we

present the experimental results regarding efficiency of different implementations.
For this purpose, only execution times and speed-up factors are presented. The
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Figure 6. Convergence results for the optimization of network Nets

running time was measured for ten independent runs on each platform. The number
of changes per agent was limited to 100, while all other algorithm parameters were
kept at the same values as previously stated in Section 6.2.

The results, shown in Table 8, are reported for different sizes of problem in-
stances, i.e. Net;, Nety, and Nets. These networks provide different combinations
of network cells and service area size. Results are presented for:

e CPU-only implementation, including evaluator on CPU and MPI-based agents,
e GPU evaluator with MPI-based agents and
e GPU evaluator with agents on the same GPU.

The implementation combining CPU-based evaluator and MPI-based agents is the
basis for the speed-up calculation.

CPU eval. + MPI agents GPU eval. + MPI agents GPU eval. + GPU agents

Avg. time Avg. time Speed-up Avg. time  Speed-up
Netq 105455 346 305x 67 1574x
Neto 33700 195 173x 46 733x
Nets 191900 506 379x 117 927x

Table 8. Implementation-efficiency measures with average times [s] and speed-ups
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It should be noted that the MPI implementation of agents, used for the first
and second measured setups, is not fully parallel, since internal synchronization
at network level is performed, so agent changes arrive in a serial fashion to the
evaluator, before being evaluated.

The GPU-based evaluator, communicating with agents over MPI, provides the
second measured setup. The implementation takes advantage of local memory for
work item collaboration within a work group, and texture memory for constant
elements, as has been explained in Section 5.1. Still, the speed-up is considerable,
but could be further improved, since numerous data transfers between CPU and
GPU are needed for the agents to access optimization-related information.

The last result set presents measurements for the complete GPU implementa-
tion, including evaluator and agents on the same device. The substantial speed-up
delivered by this combination highlights the great impact that CPU-to-GPU me-
mory transfers have on overall system performance. This fact is supported by the
speed-up between the second and third measured setups, which exhibit, on average,
an improvement of more than 400 %.

7 CONCLUSION

In this paper, we have addressed the problem of providing full coverage to a service
area of a UMTS network by using a minimum amount of pilot power. We have put
emphasis on the confluence of a real-world problem, with live data from a deployed
mobile network, with state-of-the-art parallel GPU hardware and implementations
that, to the best of our knowledge, have never been dealt-with before.

We have presented a parallel-agent approach, which is aimed at giving good
solutions to big problem instances in an acceptable amount of time. The experi-
mental results show that our approach is able to find competitive solutions when
compared to other common radio-planning methods [9]. The presented results also
demonstrate that our algorithm is able to find high quality solutions even for large
networks, that contain many cells over a large service area. This fact suggests that
our approach could be successfully applied to even bigger problem instances.

GPU architectures not only allow implementation of parallel heuristics in a natu-
ral way, they also substantially improve the performance of the optimization process.
We have reported and validated the great performance gains by experimentation on
problem instances of different sizes.

After successfully implementing the evaluator on GPU, we realized that the
efficiency of this approach was limited by the CPU-to-GPU data transfers. Ne-
vertheless, even with such implementation, we have already obtained substantial
speed-up.

To deal with the CPU-to-GPU data transfer issue, we implemented a fully-
enabled GPU optimization system that achieved impressive speed-up. Still, we had
to consider different data representation schemes for the problem elements, so to
avoid memory limitations on the GPU device. Comparison of our experimental
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results with other algorithms dealing with the same and similar problems would be
useful. However, this task is not straightforward, since the results of several works,
e.g. [7, 22], depend on black-box evaluations, making experimental association very
difficult, if possible at all.

Although not being currently used in everyday planning tasks, the work pre-
sented in this paper is currently being extended in Telekom Slovenije, d.d., for
future use. Namely, with the imminent roll out of LTE, an implementation of the
fourth generation mobile networks, the solving of the service coverage problem will
receive a great deal of attention in the near future.

All in all, we consider that the present work provides a robust foundation for
further research on grid-based metaheuristics with computationally expensive evalu-
ation functions. In future work, we will further analyze our parallel-agent approach,
including experimentation with different parameters, in order to gain better under-
standing of the dynamics leading the algorithm during the search process. Multi-
GPU environments present an interesting possibility, where evaluator and worker
agents could be deployed over separate GPU devices.
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