
Computing and Informatics, Vol. 31, 2012, 507–530

VERIFICATION OF SYSTEMS WITH DEGRADATION
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Abstract. We focus on systems that naturally incorporate a degrading quality,
such as electronic devices with degrading electric charge or broadcasting networks
with decreasing power or quality of a transmitted signal. For such systems, we intro-

duce an extension of linear temporal logic (Linear Temporal Logic with Degradation
Constraints, or DLTL for short) that provides a user-friendly formalism for specify-
ing properties involving quantitative requirements on the level of degradation. We
investigate the possibility of translating DLTL verification problem for systems with
degradation into previously solved MITL verification problem for timed automata,
and we show that through the translation, DLTL model checking problem can be
solved with limited, yet arbitrary, precision. For a specific subclass of DLTL formu-
las, we present a full precision verification technique based on translation of DLTL
formulas into a specification formalism called Büchi Automata with Degradation
Constraints (BADCs) developed earlier.

Keywords: Systems with degradation, linear temporal logic, quantitative model
checking, automata-based approach to verification, timed automata

1 INTRODUCTION

Model checking [6] has been recognized as one of the successful formal verification
techniques that, if employed during the software development cycle, may bring sig-
nificant reduction in total development cost or time-to-market [15, 14]. Recently, we
have shown how the automata-based verification procedure, as used for model check-
ing of non-deterministic systems, may be extended to systems with degradation [7].
Degradation is a natural phenomenon present in many systems we encounter regu-
larly in our everyday lives. For example, data stored in memory are subject to bit
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rot, value of money degrades with time due to inflation, signal strength degrades
with the distance from the transmitter, capacity of a recharging battery pack de-
grades with every charging cycle, and many others. There is no doubt that a number
of software systems produced must take the degradation phenomenon into account.
Verification of worst-case degradation scenarios that a software system under de-
velopment must survive or designing a strategy to avoid degradation below a given
threshold are examples of problems that can be addressed with the model checking
approach.

In our previous work, we have introduced two formalisms to capture the veri-
fication problem for systems with degradation [7]. Those were Transition Systems
with Degradation (TSD) used to describe the degradation aspects in the behavior of
the system under development, and Büchi Automata with Degradation Constraints
(BADC) used to capture their properties. Given a TSD and a BADC specification
of an undesired system behavior we have shown how to decide whether the system
exhibits the behavior or not.

A drawback of the designed verification framework is the necessity to express the
undesired behavior of the system with use of an automaton. According to our ex-
perience, constructing a BADC from a natural language description of a property is
far more complicated than in standard non-degradation case, let alone the necessity
of negation of the degradation specification. We address this issue by introducing
an easy-to-use specification formalism, called Linear Temporal Logic with Degra-
dation Constraints (DLTL) that is capable of expressing quantitative properties of
systems with degradation.

This paper aims at verification of systems with degradation against DLTL for-
mulas and it is based on preliminary results presented in [8]. We show that DLTL
verification problem can be translated into a verification problem for real-time sys-
tems. In particular, we present how a system with degradation can be interpreted
as a Timed Automaton (TA) and a DLTL formula as a formula of Metric Inter-
val Temporal Logic (MITL) [2]. Using this approach, the verification problem for
systems with degradation and DLTL fomulas can be solved up to chosen precision.
Furthermore, we show that a formula from a specific DLTL subclass, which we call
half-bounded DLTL, can be translated into a BADC and thus we obtain a method
for verification of the DLTL subclass with full precision.

The contribution of our paper can be seen in the context of the work aimed at
specification and verification of quantitative temporal logic properties. The current
research is focused mainly on probabilistic and timed aspects inherently present in
systems under investigation. Namely, in the area of probabilistic systems, proba-
bilistic versions of CTL [13], LTL [17], and CTL∗ [5] have been developed and widely
used both for specification and verification of systems behavior. In fact, probability
can be viewed as a degrading phenomenon and DLTL as a probabilistic logic. We
have investigated the relation between DLTL and PCTL* in [8] and we have proven
that their expressivness is incomparable. For timed systems, a number of specifica-
tion formalisms have been developed as well. Let us mention at least the temporal
logic for the specification of real-time systems [3, 4]. In [10, 11] the authors consider
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model checking of quantitative LTL (qLTL) properties. Their approach is different
than ours as they interpret qLTL over structures whose atomic propositions have
values in [0, 1] rather than in {0, 1}. In [9] the authors introduce Discounted CTL
(DCTL). DCTL formulas are not interpreted as true or false, their value is a real
number in interval [0, 1]. Works of Koymans and Alur et al. ([16, 1]) focus on metric
temporal logic (MTL), and parametric temporal logic (PLTL), respectively, which
permit limiting the scope of temporal operators. Rather than the level of degrada-
tion, the number of steps within which the given formula is satisfied, is limited. To
our best knowledge, none of the existing works focuses on systems with a quality
that degrades relatively, not absolutely, along a run of a system.

The rest of the paper is organized as follows. Section 2 reviews timed au-
tomata and MITL. In Section 3, we review transition systems with degradation and
introduce DLTL. Sections 4 and 5 aim at verification of DLTL formulas and its
half-bounded subclass, respectively. Finally, in Section 6 we conclude and outline
possible future directions.

2 PRELIMINARIES

A timed automaton is an automaton equipped with a finite set of real-valued clock
variables (clocks) that can be intuitivelly viewed as stopwatches allowing us to reason
about timed properties of real-time systems.

A clock constraint γ over finite set of clocks X is a finite expression constructed
according to the grammar γ ::= x ⊲⊳ c | γ ∧ γ, where ⊲⊳∈ {<,≤, >,≥}, x ∈ X,
and c ∈ N. Let CC(X) denote the set of all clock constraints over X. A clock

valuation ν is a function ν : X → R≥0 assigning to each clock x ∈ X its current
value ν(x). We use ν + d to denote valuation ν ′, where ν ′(x) = ν(x) + d for each
x ∈ X.

Definition 1 (Timed Automaton (TA)). A timed automaton is a tuple A = (Q,Σ,
X, δ, Qinit , Inv, AP, L), where Q is a finite set of states, Σ is a finite set of actions,
X is a finite set of clocks, δ ⊆ Q × CC(X) × Σ × 2X × Q is a transition relation,
Qinit ⊆ Q is a set of initial states, Inv : Q → CC(C) is an invariant-assignment
function, AP is a set of atomic propositions, and L : Q→ 2AP is a labeling function.

A 5-tuple (q1, γ, σ, R, q2) ∈ δ corresponds to a transition from state q1 to q2
labeled with σ that is enabled if constraint γ is satisfied. R denotes the subset of
clock variables that are reset to zero when the transition is executed. Time can
progress (i.e. the value of clock can increase) in states, whereas transitions between
states always take zero time. Function Inv assigns to each state an invariant that
gives a limit on how much time can be spent in that state. There are two possible
ways how a TA can evolve: via discrete transitions, i.e., those between states, and
delay transition, i.e., staying in a state with letting time pass.

A run of a timed automaton is a sequence ρ = (q0, ν0)
d0−→ (q0, ν

′
0)

σ0−→ (q1, ν1)
d1−→

(q1, ν
′
1)

σ1−→ (q2, ν2) . . . , such that q0 ∈ Qinit, ∀x ∈ X : ν0(x) = 0, and ∀i ∈ N:
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•
(

(qi, νi), di, (qi, ν
′
i)
)

if and only if di ∈ R≥0, ν
′
i(x) = νi(x) + di for all x ∈ X, and

ν ′i satisfies Inv(qi), and

•
(

(qi, ν
′
i), σi, (qi+1, νi+1)

)

if and only if there exists (qi, γi, σi, Ri, qi+1) ∈ δ, such
that ν ′i |= γi, νi+1(x) = ν ′i(x) for all x ∈ X \Ri, νi+1(x) = 0 for all x ∈ X ∩ Ri,
and νi+1 satisfies Inv(qi+1).

A position on the run ρ is defined as any state that may appear during the run,
i.e., a tuple (qi, ν), where ν = νi + d, and d ≤ di. A time duration Tρ(qi, ν)
up to position (qi, ν) is the sum of the delays up to this position Tρ(qi, ν) =
∑i−1

j=0 di + d. We denote by ρ(t) and ρt a position (q, ν) on ρ, such that Tρ(q, ν) = t

and suffix of run ρ initialized in ρ(t), respectively. Run ρ produces a word w =
(

L(q0),Tρ(q0, ν
′
0)
)(

L(q1),Tρ(q1, ν
′
1)
)

. . . . A language L(A) of a timed automaton A
is a set of all words produced by all runs of A.

Metric Interval Temporal Logic (MITL) is a specification logic for real-time
systems. MITL formulas are interpreted over runs of timed automata.

Definition 2 (MITL Syntax). The syntax of a MITL formula over the set of atomic
propositions AP is given as follows: ϕ ::= tt | α | ¬ϕ | ϕ∧ϕ | ϕUIϕ, where α ∈ AP ,
and I is a non-singular1 interval with integer end-points (I may be also unbounded).

Definition 3 (MITL Semantics). Given a MITL formula ϕ and a run ρ of a timed
automaton A, the satisfaction relation ρ |= ϕ is for formulas ϕ of form tt | α |
¬ϕ | ϕ ∧ ϕ given analogously as for LTL [2, 6]. Furthermore, ρ |= φUIψ ⇔ ∃t ∈
R≥0, such that (ρt |= ψ ∧ t ∈ I ∧ ∀0 ≤ t′ < t.(ρt

′

|= φ)).

Each MITL formula ϕ defines a language L(ϕ) of all words produced by all runs
satisfying ϕ. Note that MITL formulas do not contain next operator, because the
time domain is dense. Boolean operators ∨, and ⇒ are defined in the usual way.
Besides that, we define temporal operators FIϕ ≡ ttUIϕ (eventually), GIϕ ≡ ¬FI¬ϕ
(globally), and φRIϕ ≡ ¬(¬φUI¬ϕ) (release).

Given a timed automaton A and a MITL formula ϕ, the model checking ques-
tion whether L(A) ⊆ L(ϕ) can be solved using automata-based approach. First,
formula ϕ is negated and translated into a timed automaton B¬ϕ. Then, a product
timed automaton A×B¬φ is built, such that L(A×B¬ϕ) = L(A)∩L(B¬ϕ). Finally,
by checking emptiness of L(A × B¬ϕ), the answer to model checking problem is
obtained. MITL model checking is EXPSPACE-complete [2].

The translation process from a MITL formula ¬ϕ into timed automaton B¬ϕ

requires the intervals appearing in ¬ϕ to have integer bounds. Although this might
seem restrictive, there is a simple way how to extend the results to deal with intervals
with rational bounds. The “trick” is to pick a suitable constant p ∈ Q>0 and multiply
all the interval bounds appearing in ¬ϕ with p in order to get integer interval bounds.
All the constants that appear in the model checked timed automaton A have to be
multiplied with p as well.

1 Singular intervals are those of [t, t] form.
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3 SPECIFICATION OF SYSTEMS WITH DEGRADATION

3.1 Modeling Systems with Degradation

In this section we review a modeling formalism for systems with degradation intro-
duced in our earlier work [7]. A Transition System with Degradation is a labeled
transition system that is enhanced with a rational degradation constant associated
with every transition.

Definition 4 (Transition System with Degradation (TSD)). A transition system
with degradation is a tuple T = (S,Act, T,D, Sinit ,AP , L), where

• S is a finite set of states,

• Act is a finite set of actions,

• T ⊆ S × Act× S is a transition relation,

• D : T → (0, 1] is a degradation relation,

• Sinit ⊆ S is a set of initial states,

• AP is a set of atomic propositions,

• L : S → 2AP is a labeling function.

Transition t = (s1, a, s2) ∈ T represents that the system can make a transition
from state s1 to state s2 under action a. The degradation constant D(t) determines
to what fraction the level of quality degrades when the transition t is executed. If
D(t) = 1 the level of quality is unchanged, if D(t) = 0.75 the level of quality is
decreased to 75% of the level of quality at the moment before the transition was
executed. In other words, if the level of degradation is l at state s1, then after the
execution t, the level of degradation at state s2 is l ·D(t).

A run of a TSD T = (S,Act, T,D, Sinit ,AP , L) is an infinite sequence π = s0
t0−→

s1
t1−→ . . . , where si ∈ S and ti = (si, ai, si+1) ∈ T for all i ≥ 0. We denote by π(i)

and πi the (i+1)-st state of the run π (i.e., si) and the suffix beginning in π(i),
respectively. A level of degradation Dπ(i) on run π up to state π(i) is defined as
a product of all degradation constants associated with transitions along this state
Dπ(i) =

∏i−1
j=0D(tj).

Example 1. An example of a system with degradation is illustrated in Figure 1.

3.2 Temporal Logic for Systems with Degradation

In our previous work [7], we have shown that systems with degradation may be
model checked if the property to be verified (its negation to be more precise) is
described by a so-called Büchi automaton with degradation constraints (BADC).
This is, however, the major drawback of the method as specifying properties (or
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Fig. 1. An example of a data gathering robot system. The left figure (A) illustrates an en-
vironment with two data gather locations (g1, and g2) and two data upload locations
(u1, and u2). The set AP = {g1, g2, u1, u2} is the set of atomic propositions. Initially,

the robot is placed in g1. In intersections, one of the actions n (go north), s (go
south), w (go west), or e (go east) can be applied. When an action is chosen, the
robot turns the corresponding direction and further simply follows the path until an-
other intersection, a data gather location, or a data upload location is reached. The
robot’s task is to periodically gather data in data gather locations and upload them
in data upload locations. The robot is equipped with a fast, cheap, volatile memory
that stores data in capacitors within an integrated circuit. Since the capacitors leak
charge, the data gathered in data gather locations gradually decay. We can capture
the data quality degradation through labeling of transitions with degradation con-
stants. The traveling times between regions differ and thus the degradation constants
differ for different transitions, too. The right figure (B) illustrates the correspond-
ing TSD. For simplicity, we illustrate two transitions representing connection of two
regions as a bidirectional arrow. Each bidirectional arrow is thus labeled with two ac-
tions, one for each direction. In each state, the closer one of the two labels represents
the action that can be applied in that state. For instance, s1

e
−→ s2, and s2

w
−→ s1.

Each transition is also labeled with a degradation constant. States are labeled with
sets of atomic propositions. Namely, L(s1) = {g1}, L(s9) = {g2}, L(s2) = ∅, etc.

their negations) directly as BADCs is not a user-friendly process. On the other
hand, expressing properties by means of a temporal logic can be viewed as quite
intuitive process with some resemblance to natural language.

We propose Linear Temporal Logic with Degradation Constraints (DLTL) that
allows for specification of quantitative properties of systems with degradation. The
syntax of DLTL resembles syntax of MITL, however the logics differ in their seman-
tics as they are interpreted over significantly different models.

Definition 5 (DLTL Syntax). Let α ∈ AP , and I be an interval within (0, 1]. The
syntax of a DLTL formula over the set of atomic propositions AP is given according
to the following rules:

ϕ ::= tt | α | ¬ϕ | ϕ ∧ ϕ | XIϕ | ϕUIϕ.
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Definition 6 (DLTL Semantics). Let π a run of a TSD T . DLTL semantics is
defined through the satisfaction relation |=.

• π |= tt always

• π |= a ⇐⇒ a ∈ L(s0)

• π |= ¬ϕ ⇐⇒ π 6|= ϕ

• π |= ϕ ∧ ψ ⇐⇒ π |= ϕ ∧ π |= ψ

• π |= XIϕ ⇐⇒ π1 |= ϕ ∧ Dπ(1) ∈ I

• π |= ϕUIψ ⇐⇒ ∃j.(πj |= ψ ∧Dπ(j) ∈ I ∧ ∀0 ≤ i < j.(πi |= ϕ))

The standard LTL operators X, and U are included in DLTL as X(0,1], and U(0,1],
respectively. Other Boolean operators such as ∨ (disjunction), and ⇒ (implication)
are defined in the expected way. In addition to that, we also define three useful
temporal operators FIϕ ≡ ttUIϕ (eventually), GIϕ ≡ ¬FI¬ϕ (globally), and φRIψ ≡
¬(¬φUI¬ψ) (release).

Similarly as LTL formulas, DLTL formulas can be normalized, i.e. transformed
into a form, where all negations are applied only directly to atomic propositions.

Example 2. In our robot data gathering system (Example 1), a property “Data
are gathered in location g1. The data are moved to an upload location before their
integrity drops bellow 90% and meanwhile, no data are gathered in location g2.” can
be expressed as a DLTL formula g1∧¬g2U≥0.9(u1∨u2). A more complicated property
for our robot data gathering system is, for instance, “Periodically visit both data
gathering locations. Always upload the data in one of the upload locations before
their integrity drops bellow 90%.” A DLTL formula expressing this behavior is
GFg1 ∧ GFg2 ∧ G

(

g1 ∨ g2 → F≥0.9(u1 ∨ u2)
)

.

4 TIMED AUTOMATA APPROACH TO DLTL MODEL CHECKING

The verification question we would like to answer is, whether all runs of a given
TSD satisfy a given DLTL formula. We approach this problem via its conversion into
verification problem for timed automata and MITL formulas. During the conversion
process, two major differences have to be overcome: (1) in systems with degradation,
the degradation decreases along the transitions, whereas in timed systems, the time
passes in the states, and (2) the degradation constants are meant to be multiplied,
whereas time passes in additive fashion. We address the first one by modelling
transitions of a TSD as states of a timed automaton and the second one by applying
logarithm to the degradation constants. We build on the fact that log a · b = log a+
log b.

Assume that the given DLTL formula ϕ sastisfies two additional assumptions:

1. the intervals that appear in ϕ are non-singular, and

2. ϕ does not contain next operator.
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These restrictions allow us to translate ϕ into a MITL formula. We discuss how to
deal with full DLTL later.

First, we preprocess the given TSD T = (S,Act, T,D, Sinit ,AP , L) into a TSD
T ′ = (S ′, Act′, T ′, D′, Sinit ,AP

′, L′) this way:

• S ′ = S ∪ S × T ∪ T × S,

• Act′ = Act ∪ {ǫ}, where ǫ 6∈ Act,

• T ′ = {
(

s1, σ, (s1, t)
)

,
(

(s1, t), ǫ, (t, s2)
)

,
(

(t, s2), ǫ, s2
)

| t = (s1, σ, s2) ∈ T},

• D′(t) = 1 for all transitions leading from and to some s ∈ S, and
D′

(

(s1, t), ǫ, (t, s2)
)

= D(t) for the rest of the transitions,

• AP ′ = AP ∪ {αǫ}, where αǫ 6∈ AP ,

• L′(s) = L(s) for all s ∈ S, and L′(s) = {αǫ} for all s ∈ S ′ \ S.

Second, we convert the given normalized DLTL formula ϕ into ϕ′ by replacing
each non-negated occurrence of atomic proposition α with αǫUα and each negated

occurrence of α with αǫU¬α. This way, we “ignore” the states corresponding to the
transitions of T .

Lemma 1. T |= ϕ ⇐⇒ T ′ |= ϕ′.

Proof: (Sketch.) Each run π producing word α0α1α2 . . . in T maps to a single run
π′ producing word α0αǫαǫα1αǫαǫα2 . . . in T ′. It is easy to show by induction that
for all i ≥ 2 it holds that πi |= ϕ if and only if π′3i−4 |= ϕ′∧π′3i−3 |= ϕ′∧π′3i−2 |= ϕ′.
Finally, we get that π |= ϕ ⇐⇒ π′ |= ϕ′. �

Given TSD T and the corresponding TSD T ′, we build a timed automaton
A = (S ∪ T, Act′, {x}, δ, Sinit , Inv, AP

′, LA), where

• δ = {
(

s1, x = 0, σ, ∅, t
)

,
(

t, x = logD(t), ǫ, {x}, s2
)

| t = (s1, σ, s2) ∈ T},

• Inv(s) = x ≤ 0 for all s ∈ S, and Inv(t) = x ≤ logkD(t) for all t ∈ T ,

• LA(s) = L(s) for all s ∈ S, and LA(t) = {αǫ} for all t ∈ T ,

such that k is a logarithm base arbitrarily picked from (0, 1). Note that logk x > 0 for
all x ∈ (0, 1]. For simplicity, let log denote logk in further text. A DLTL formula ϕ′

is transformed into a MITL formula ϑ as follows: Each occurrence of interval (a, b)
is replaced with (log b, log a), and analogously, each occurrence of (a, b], [a, b], and
[a, b) is replaced with [log b, log a), [log b, log a], and (log b, log a], respectively. In
case a = 0, we use ∞ instead of log a. The rest of the formula remains the same.

Lemma 2. T ′ |= ϕ′ ⇐⇒ A |= ϑ.

Proof: Follows directly from the structure of T ′, construction of A, and the fact
that log(a·b) = log a+log b, and 0 < a ≤ c ≤ b ≤ 1 ⇒ 0 ≤ log b ≤ log c ≤ log a <∞.
�

Corollary 1. T |= ϕ ⇐⇒ A |= ϑ.
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Example 3. An example of an edge transformation of a TSD T into a TSD T ′ and
into a timed automaton A is illustrated in Figure 2.

x = log 0.6
timed automaton A:

TSD T : TSD T ′:
α
0.6

α

1 0.6
ǫ ǫ

1
. . .. . .. . .. . .

. . .

x ≤ 0
α
x = 0

x ≤ log 0.6
ǫ

x ≤ 0
. . .

reset(x)

Fig. 2. An example of edge transformation of a TSD T

The remaining task is to check emptiness of L(A) ∩ L(¬ϑ). Without loss of
generality, assume that ¬ϑ is normalized from now on. If log c is a rational number
for all constants c that appear in formula ¬ϑ, then we proceed as follows. We pick
a suitable constant p ∈ Q>0 and multiply all the constants both in A and ¬ϑ with p
in order to make all the interval bounds appearing in formula ¬ϑ integer. Formula
¬ϑ can now be translated into a timed automaton B¬ϑ. The rest is well-known
checking of language emptiness for timed automaton A × B¬ϑ. However, in many
cases it is not possible to find k, such that logk c is a rational number for each
constant c that appears in ¬ϑ. Therefore, necessarily, some kind of approximation
is needed.

Lemma 3. Consider intervals I and I ′, such that interval I ′ is within I . For any
run ρ, it holds that ρ |= ϕUI′ψ ⇒ ϕUIψ, and dually, ρ |= ϕRIψ ⇒ ϕRI′ψ.

Proof: Directly from expanding definition of UI and RI , respectively. �

Based on Corollary 1 and Lemma 3, the model checking procedure can be sum-
marized as follows:

1. Transform TSD T into timed automaton A and DLTL formula ϕ into MITL
formula ϑ. Obtain ¬ϑ as normalized negation of ϑ.

2. Pick a precision constant p ∈ Q>0, and multiply all constants in A and in ¬ϑ
with p.

3. In each UI operator in ¬ϑ replace left bound a and right bound b of interval I
with ⌈a⌉ and ⌊b⌋, respectively. Dually for each RI operator.

4. Translate ¬ϑ into B¬ϑ and check, whether L(A) ∩ L(B¬ϑ) = ∅. If yes, then
T |= ϕ, otherwise continue on line 5.

5. In each UI operator in of ¬ϑ replace left bound a and right bound b of interval
I with ⌊a⌋ and ⌈b⌉, respectively. Dually for each RI operator.

6. Translate ¬ϑ into B¬ϑ and check, whether L(A) ∩ L(B¬ϑ) = ∅. If no, then
T 6|= ϕ, otherwise pick a precision constant p′ > p and repeat the procedure
from line 3.
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If the outlined procedure provides an answer, the answer is correct. On the
other hand, the termination is not guaranteed and thus we can only answer model
checking question with limited, yet arbitrary precision. The price paid for increasing
precision is rapidly increasing computational demands. The size of timed automaton
B¬ϑ is O(2N ·K) with N ·K clocks, where N is the number of atomic propositions,
Boolean, and temporal operators in ¬ϑ and K − 1 is the largest integer constant in
¬ϑ [2]. Higher precision causes increase of the constantK, and hence also significant
increase of the size of B¬ϑ.

Remark 1. For the sake of presentation simplicity, we assumed continuous seman-
tics of timed automata, although the dynamics of a TSD is purely discrete. Therefore
we had to restrict DLTL formulas not to contain next operators and singular inter-
vals. In order to solve the model checking problem for full DLTL, one can consider
discrete semantics of timed automata and Metric Temporal Logic (which is MITL in-
cluding singular intervals). The approach is analogous, but approximation is needed
not only in the formulas, but in the timed automaton as well. The complexity of
emptiness checking of L(A) ∩L(¬ϑ) remains EXPSPACE-complete and dependent
on the size of constants appearing in ¬ϑ [2].

5 VERIFICATION OF HALF-BOUNDED DLTL FORMULAS

The timed automata approach summarized in the previous section gives answer to
the DLTL verification question with limited precision only. In this section, we focus
on a different approach to DLTL model checking problem providing a full precision
verification algorithm for a special subclass of DLTL formulas with half-bounded
intervals.

Definition 7 (Half-Bounded DLTL Formula). A half-bounded DLTL formula is
a DLTL formula given according to the grammar ϕ ::= tt | α | ¬ϕ | ϕ ∧ ϕ | XIϕ |
ϕUIϕ, where α ∈ AP , and I is an interval of form (0, d], (0, d), (d, 1], or [d, 1], where
d ∈ (0, 1]. For simplicity, we use ⊲⊳ d, where ⊲⊳∈ {≤, <,≥, >} to denote interval I .
In particular, we use ≤ d, < d,≥ d, and > d to denote interval (0, d], (0, d), (d, 1],
and [d, 1], respectively.

Unlike in the previous section dealing with full DLTL, in this section we follow
directly the automata-based approach to LTL model checking [18], which consists
of four steps. First, a system is modeled as a transition system, and a specifica-
tion is expressed as an LTL formula. Second, the negation of the LTL formula is
translated into an automaton over infinite words. Third, a product automaton is
constructed accepting the runs of the system that satisfy the negation of the speci-
fication. Finally, the product automaton graph is analyzed with the use of standard
graph techniques to answer whether there exists a run satisfying the negation of the
specification, i.e., violating the original LTL formula.

In our earlier work [7] we developed an automata-like formalism for specification
of systems with degradation, called Büchi Automata with Degradation Constraints
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(BADC), and an algorithm for verification of TSDs against specification given as
a BADC. Hence, in this section, we only focus on the second step of the above
outline and we present translation of a half-bounded DLTL formula into a BADC.
Thus we complete a technique for verification of TSDs against half-bounded DLTL
formulas. Note that the algorithm provides answer to the verification question with
full precision.

5.1 Büchi Automata with Degradation Constraints

Büchi Automata with Degradation Constraints [7] are the standard Büchi automata
that are enriched with a finite set of rational-domain variables, the so-called degrada-

tion variables, used to capture the level of degradation during the system execution.
Furthermore, transitions of BADCs are enriched with the so-called resets of degra-
dation variables and they are guarded with degradation constraints. Note that the
range of every degradation variable is (0, 1]. Informally, the role of a degradation
variable is to measure the level of degradation since the last time the variable was
reset. Likewise the standard Büchi automata, BADCs recognize sets of traces over
a given set of atomic propositions. They can be thus used to express desired or
invalid properties of runs of TSDs.

In order to define BADCs formally, we first give definition of degradation con-
straints. A degradation constraint γ over the set of degradation variables X is
constructed according to the following rules: γ ::= x ⊲⊳ d | d ⊲⊳ d | γ ∧ γ,

where ⊲⊳∈ {<,≤, >,≥}, x ∈ X, and d ∈ (0, 1] is rational. Degradation valua-

tion ν is a function that assigns every degradation variable a value from (0, 1], i.e.
ν : X → (0, 1]. The set of all possible degradation valuations and the set of all
degradation constraints is denoted by Eval(X) and DC (X), respectively. We also
use ≫ to denote > or ≥, and ≪ to denote < or ≤.

Definition 8 (BADC). A Büchi Automaton with Degradation Constraints
(BADC) is a tuple A = (Q,Σ, δ, X, qinit , F ), where

• Q is a finite, nonempty set of states,

• Σ is a finite alphabet,

• δ ⊆ Q× Σ×DC(X) × 2X ×Q is a transition relation,

• X is a finite set of degradation variables,

• qinit ∈ Q is an initial state,

• F ⊆ Q is a finite set of states (so-called Büchi accepting condition).

A 5-tuple (q, α, γ, R, q′) ∈ δ corresponds to a transition from state q to q′ labeled
with α that is enabled if constraint γ is satisfied. R then denotes the subset of
degradation variables that are reset to 1 when the transition is executed.

The semantics of BADCs are defined over infinite input words from (Σ×(0, 1])ω,
i.e., when Σ = 2AP then the semantics are defined over traces of a TSD.
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Definition 9 (BADC Semantics). The semantics of a BADC A = (Q,Σ, δ, X, qinit ,
F ) is given by a (possibly infinite) labeled transition system S = (S,Act, T, Sinit),
where

• S = Q× Eval(X)

• Act = Σ× (0, 1]

• T ⊆ S × Act × S.
(

(q1, ν1), (α, d), (q2, ν2)
)

∈ T , i.e., (q1, ν1)
α,d
−−→ (q2, ν2), if and

only if there is a transition (q1, α, γ, R, q2) ∈ δ, such that

– ν1 satisfies constraint γ

– ν2(x) =

{

d, ifx ∈ R

ν1(x) · d otherwise

• Sinit = {(qinit , νinit) | νinit(x) = 1 for all x ∈ X}.

A run of a BADC over a word σ = (α0, d0)(α1, d1) . . . ∈ (Σ×(0, 1])ω is an infinite

sequence ρ = (q0, ν0)(q1, ν1)(q2, ν2) . . . such that (q0, ν0) ∈ Sinit and (qi, νi)
αi,di−−→

(qi+1, νi+1) for all i ≥ 0. A run ρ = (q0, ν0)(q1, ν1) . . . is accepting if qi ∈ F for
infinitely many indices i. Language of all words accepted by BADC A is Lω(A) =
{σ ∈ (Σ× (0, 1])ω | there exists an accepting run for σ in A}.

Example 4. For our robot data gathering system from Example 1, Figure 3 illus-
trates a BADC that captures the following property: “Data are periodically gathered
in location g1 and uploaded in an upload location before their integrity drops bellow
90%.”

R = {x}

¬g1

¬g1 ¬u1 ∧ ¬u2

u1 ∨ u2g1
x ≥ 0.9R = {x}

g1

Fig. 3. A BADC for a robot data gathering system

5.2 Translation of DLTL Formulas into BADCs

The algorithm we present for translation of DLTL formulas into BADCs is based
on the standard algorithm for translation of LTL formulas into Büchi automata as
given in [12]. However, several nontrivial issues have to be overcome to deal with
the degradation constraints.

5.2.1 Scheme of Translation

The whole process of translation consists of several succeeding steps. These are
summarized below.
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• First, a linear temporal logic formula ϕ is rewritten into such a form that the
formula contains only the standard and constrained temporal operators U (until),
R (release), and X (next), and at the same time all the ¬ (negation) operators
are applied to propositional variables only.

• Second, a formula graph is built with a tableau-like procedure. Each graph
node is defined by several sets of formulas. The key idea of the procedure
employs several equalities such as the following one. Formula φUψ is equal to
ψ ∨ (φ ∧ X(φUψ)). This equality allows to define what are the requirements on
the current state of the run and what are the requirements on the next state
of the run. For φUψ subformula there are two decomposition options: either ψ
has to hold true in the current state and there are no requirements regarding
the next state, or φ has to hold true in the current state and φUψ has to hold
in the next state.

• Third, using the formula graph, a generalized Büchi automaton (GBA) is built.

• Finally, the GBA is transformed into a standard Büchi automaton accepting
exactly the words satisfying the formula ϕ.

5.2.2 Normal Form

DLTL formula ϕ is normalized if it contains only temporal operators U, X, R, U⊲⊳d,
X⊲⊳d, and R⊲⊳d and all negation operators apply to atomic propositions. Any DLTL
formula can be normalized using the standard syntax equivalences and equivalences
defined earlier in Section 3.2. Thus, without loss of generality, we may assume that
from now on the given DLTL formula ϕ is normalized.

5.2.3 Formula Graph

Let us first informally present key ideas used in the construction of the formula
graph for a normalized DLTL formula ϕ. The full algorithm is presented later in
this section.

The basic data structure of the formula graph is called a node. Each node
contains three important set of formulas, which are subformulas of the original
formula ϕ. Intuitively, these describe temporal properties of suffices of runs of
TSDs. The three sets are:

• Old is a set of formulas, that must hold in the node and have been already
processed.

• New is a set of formulas, that must hold in the node and have not been processed
yet.

• Next is a set of formulas that must hold in all immediate successors of nodes
satisfying properties in Old .

Initially, the construction starts with a node, whose Old and Next are empty
and New contains the formula ϕ. The nodes are iteratively expanded. Every time,
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a node q and a formula ψ ∈ New (q) are chosen to be processed. The processed node
is replaced with a new node (or several nodes). The sets Old , New and Next are
inherited from the processed node, but ψ is moved from New to Old and New and
Next are updated depending on the formula ψ. When there are no other formulas
in New(q), a new node p with New(p) = Next(q) is created together with an edge
leading from q to p.

The key idea in the translation process of DLTL formulas is that constraints on
the level of degradation given in the formula ϕ can be captured through degradation
constraints and resets associated with the edges between nodes in the formula graph.
More precisely, we associate a degradation variable with every unary, or binary
operator O⊲⊳d when a formula O⊲⊳dψ, or φO⊲⊳dψ, respectively, is moved from New to
Old . Let us now explain in more details how each of formulas X⊲⊳dψ, φU⊲⊳dψ, and
φR⊲⊳dψ is processed.

Let q and X⊲⊳dψ ∈ New (q) be the currently processed node and formula, re-
spectively. For each trace π satisfying X⊲⊳dψ it holds that the level of degradation
between π(0) and π(1) has to satisfy ⊲⊳ d. Therefore, we associate a degradation
variable x with the node q and reset x on each edge incoming to the node q. All
outgoing edges from the current node are labeled with constraint x ⊲⊳ d. Finally, we
replace q with a new node q′, such that formula the X⊲⊳dψ is moved from New(q′) to
Old(q′) and ψ is added to Next(q′). See Figure 4.

Old

Next
New ′ = New \ {X⊲⊳dψ}
Old ′ = Old ∪ {X⊲⊳dψ}

Next ′ = Next ∪ {ψ}

reset(x) reset(x)

node q node q′

x ⊲⊳ d

New = {X⊲⊳dψ, . . .}

Fig. 4. Expansion of a node containing a constrained next operator in its New set

Let q and φU⊲⊳dψ ∈ New (q) be the currently processed node and formula, re-
spectively. Similarly as in the previous case, we need to measure degradation from
the current node q and we do it with degradation variable x. We reset variable x on
each edge incoming to the node q. There are two options: Either ψ is satisfied in
the current node and the current degradation (i.e., the value of x) satisfies ⊲⊳ d or φ
is satisfied in the current node and in the next node it holds that φ is satisfied until
the moment when ψ is satisfied and the current degradation (i.e., the value of x) in
that moment satisfies ⊲⊳ d. As we have to remember that degradation variable x is
already initialized in the node q, we define an until operator with fixed degradation
variable Ux

⊲⊳d:
φUx

⊲⊳dψ ≡ (x ⊲⊳ d ∧ ψ) ∨ X(φUx
⊲⊳dψ).

The difference between U⊲⊳d and Ux
⊲⊳d operators is as follows: When φU⊲⊳dψ is to

be satisfied in the node q, we have to associate a variable x with this formula and
reset it on all edges incoming to q. When φUx

⊲⊳dψ is to be satisfied in the node q,
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it is already associated with a degradation variable x. Variable x cannot be reset,
because it “measures” the degradation from some of the predecessors of q. The
operator U⊲⊳d can be expressed as:

φU⊲⊳dψ ≡ (x ⊲⊳ d ∧ ψ) ∨ X(φUx
⊲⊳dψ),

where x is a degradation variable with value set to 1.

However, in some cases (such as in translation of formula G(φU⊲⊳dψ)) this ap-
proach would lead into an infinite formula graph with an infinite number of degra-
dation variables. Hence, we present ideas that allow us to introduce only finite
number of degradation variables in the formula graph.

1. Let ϕ be a translated formula and φU≫dψ its subformula. We allocate exactly
one degradation variable x with the subformula φU≫dψ and whenever φU≫dψ

appears in New(q) of a node q, we associate it with this x. The question is,
how to proceed when variable x is needed to be reset in two different nodes as
illustrated in Figure 5.

?reset(x) New contains
φU≥0.7ψ

node q node p

φUx≥0.7 ψ

New contains

φU≥0.7 ψ, and. . .

Fig. 5. We cannot reset x at the edge labeled with “?” as we would lose information about
the degradation for the first occurrence of the until formula. At the same time we
have to reset x there to measure the degradation for the second occurrence of the
until formula.

We know that if φUx
≫dψ is satisfied in a node q, then also φU≫dψ is satisfied there.

This is because the degradation is monotonically decreasing. Hence, whenever
both φU≫dψ ∈ New (q) and φUx

≫dψ ∈ New(q), we remove φU≫dψ from New(q)
completely. The satisfaction of φUx

≫dψ will ensure satisfaction of φU≫dψ.

2. A bit more complicated situation arises when we consider subformulas φU≪dψ.

We know that if φU≪dψ is satisfied in a node q, then also φUx
≪dψ is satisfied

there (because the degradation is monotonically decreasing). However, when
both φU≪dψ ∈ New (q) and φUx

≪dψ ∈ New(q), we cannot simply ignore the for-
mula φUx

≪dψ and reset the variable x. This is due to the fact that the complete
satisfaction (meaning reaching ψ and satisfying x ≪ d) of the formula φUx

≪dψ

can be reached earlier than satisfaction of φU≪dψ. This may cause that com-
pleting the satisfaction of φU≪dψ formula will be permanently postponed and
degradation constraints in the formula graph will not be satisfied even if they
should be, as illustrated in Figure 6.

Therefore, we allocate two degradation variables x and y with subformula
φU≪dψ.
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0.8 0.8 0.8

φ, ψφ, ψφ, ψ φ, ψreset(x)

reset(x)

node q

New contains x ≤ 0.7
φU≤0.7 ψ, and

φUx≤0.7 ψ

(A) (B)

Fig. 6. When translating a formula G(φU≤0.7ψ), the node q illustrated in (A) would never
be left until the value of degradation variable x drops bellow 0.7. At the same time,
x would be reset in every step. That means that reading the trace as produced by
the run in (B) would keep the formula graph in the node q forever. Satisfaction of
ψ would never been checked and the trace would not be accepted. However, the run
obviously satisfies the formula G(φU≤ 0.7ψ).

Instead of operator Ux
⊲⊳d, we have Uxy

≪d, which is defined analogously:

φU
xy
≪dψ ≡ (x≪ d ∧ ψ) ∨ X(φUxy

≪dψ).

Similarly, φU≪dψ can be then expanded as

φU≪dψ ≡ (x≪ d ∧ ψ) ∨ X(φUxy
≪dψ),

where x and y are degradation variables with value set to 1.

Assume that variables x and y are reset in node q (i.e., φU≪dψ ∈ New (q),
but φUxy

≪dψ 6∈ New(q)). Consider a node p, such that φU≪dψ ∈ New(p) and
φU

xy
≪dψ ∈ New (p). Instead of the variable x we reset the variable y. This way,

the variable x captures the degradation from the node q, whereas y from the
node p. When another node r appears, such that both φU≪dψ ∈ New(r) and
φU

xy
≪dψ ∈ New(r), we again reset y and thus x still captures the degradation

from the node q, but y now captures the degradation from the node r. Then,
when constraint x ≪ d is satisfied and ψ holds, the variables x and y interchange
their roles until y ≪ d is satisfied. Now, when constraint y ≪ d is satisfied and
ψ holds, we know that φU≪dψ is satisfied not only for r, but also for p. This is
illustrated in Figure 7.

Very similar ideas as in the case of the constrained until operator U⊲⊳d are fol-
lowed in the case of the constrained release operator R⊲⊳d.

Lemma 4. Given a formula ϕ, only a finite number of degradation variables is
needed to build a formula graph for the formula.

Proof: Follows from the description above. �

Lemma 5. The expansion of each node of the formula graph corresponds to the
semantics of the expanded subformula.
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0.8 0.8 0.8 0.8

φ, ψ φ, ψ φ, ψφ, ψφ, ψ

y = 1 y = 1
x = 1 x = 0.8 x = 0.64

y = 1
y = 0.8 y = 0.64
x = 1 x = 1

reset(x) x ≤ 0.7

φU
xy
≤0.7ψ

reset(y)

node q node p

New contains
φU≤0.7 ψ. and

φU
yx
≤0.7ψ

New contains
ψ and

(A) (B)

Fig. 7. Illustration of the φU≪dψ case. The value of x is not reset until x ≤ 0.7. After
then, its value becomes unimportant and the variable x can be reused to measure
degradation from a different point. The value of y is reset whenever we need to
start measuring degradation. In the fifth state of the run, we find out that φU≤0.7ψ is
satisfied for the third (blue) state. Therefore, it is satisfied also for all states preceding
this one.

Proof: The proof follows from the following idendities for U⊲⊳d and R⊲⊳d operators.
Let π be a run and x be a degradation variable, such that ν(x) in the state π(i) is

D
π(i)
π(0) for all i. The semantics of operatorU⊲⊳d is defined as follows. πk |= ϕUx

⊲⊳dψ ⇐⇒

∃j ≥ k.(D
π(j)
π(0) ⊲⊳ d ∧ π

j |= ψ ∧ ∀k ≤ i < j.(πi |= ϕ)). Simiarly, πk |= ϕRx
⊲⊳dψ ⇐⇒

∀j.(D
π(j)
π(0) ⊲⊳ d⇒ (πj |= ψ∨∃0 ≤ i < j.(πi |= ϕ)). Then π |= ϕU⊲⊳dψ ⇐⇒ π |= (x ⊲⊳

d∧ψ)∨ π |= ϕ∧X(ϕUx
⊲⊳dψ), which follows from the semantics of operators U⊲⊳d and

Ux
⊲⊳d, and π |= ϕR⊲⊳dψ ⇐⇒ π |= ϕ ∧ (x ⊲⊳ d⇒ ψ) ∨ π |= (x ⊲⊳ d⇒ ψ) ∧ X(ϕRx

⊲⊳dψ),
which follows from the semantics of operators R⊲⊳d and Rx

⊲⊳d. �

The details of the translation algorithm are given in the Appendix.

5.2.4 Formula Graph to Generalized BADC

Definition 10. A generalized BADC is a tuple AG = (Q,Σ, δ, X, qinit, FG), where
Q, Σ, δ, X and qinit are defined as in BADC, and FG ⊆ 22

Q

is an acceptance
condition. FG = {F1, . . . , Fn} is a set of sets of accepting states.

A run is defined exactly the same as for a BADC. An accepting run of a ge-
neralized BADC is a run ρ = (q0, ν0)(q1, ν1) . . ., such that for each acceptance set
F ∈ FG it holds that qi ∈ F for infinitely many indices i.

A generalized BADC is obtained from the formula graph as follows:

• The set of states Q is the set of nodes with a new initial node called init

• Σ = 2AP

• t = (q, α, γ, R, q′) ∈ T if there exists an edge e between q and q′ labeled with
input α ∈ Σ which satisfies restriction given by the set ((AP ∪¬AP )∩Old (q′)).
γ and R are the degradation constraints and resets associated with the edge e,
respectively.

• F = {F1, . . . , Fn, F
′
1, . . . , F

′
n}. For each ϕUψ subformula we define Fi = {q ∈

Q | ϕUψ 6∈ Old(q) ∨ ψ ∈ Old(q)}, For each ϕU⊲⊳dψ subformula associated with
degradation variable x (or variables x, y) we define F ′

i = {q ∈ Q | none of
ϕU⊲⊳dψ, ϕU

x
⊲⊳dψ, ϕU

xy
⊲⊳dψ, ϕU

yx
⊲⊳dψ belongs to Old (q), or ψ ∈ Old(q)}
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5.2.5 Generalized BADC to BADC

The translation from the generalized BADC to BADC follows the same principles as
the translation from the generalized BA to BA. The key idea is to make a separate
copy of the BADC for each set acceptance F ∈ FG. In ith copy, only the set Fi

is accepting. When a state from Fi is reached, the computation is moved to the
(i+ 1)th copy (or, more precisely ((i+ 1) mod | FG |)th copy). This way we force
the resulting Büchi automaton to visit each of the set F ∈ FG infinitely many times.

Theorem 1. The automaton A constructed for a property ϕ over a set of atomic
propositions AP accepts exactly the set of words that satisfy ϕ.

Proof: Follows from the correctness of construction in [12], proof of Lemma 4, and
proof of Lemma 5. �

Note that because the number of degradation variables needed to capture a single
degradation constraint is constant, the worst case complexity of the overall transla-
tion remains exponential as in [12].

6 CONCLUSIONS AND FUTURE WORK

In this paper we aim at quantitative properties of systems with degradation. We
introduce a version of linear temporal logic that allows for specification of require-
ments on the level of degradation of individual system runs. We show a connection
between systems with degradation and timed automata and we use MITL model
checking algorithm to solve DLTL model checking problem. The solution suffers
from two major drawbacks. First, the verification problem can be answered only
with limited precision, and second, higher precision causes rapidly higher compu-
tational demands. We partially address these issues in this paper by introducing
a verification algorithm for half-bounded fragment of DLTL.

In our future work, we plan to overcome the mentioned issues fully by introducing
a direct translation process from all DLTL formulas into BADCs. Another future
focus of ours is on control strategy synthesis for systems with degradation from
DLTL specifications, on continuous and hybrid systems with degradation, and also
on a case study.

Acknowledgement

This work has been partially supported by grants No. GAP202/11/0312, LH11065,
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7 APPENDIX – TRANSLATION ALGORITHM DETAILS

In the algorithm presentation, we follow the notation given by authors in [12]. We
define negation of a degradation constraint ¬(x ⊲⊳ d) as follows: ¬(x ≤ d) = x > d,
¬(x < d) = x ≥ d, ¬(x ≥ d) = x < d, and ¬(x > d) = x ≤ d.

Data structures

Id : unique name of the node,
Inc: structure coding edges of the graph, i.e., set of triples

(id,constraint,reset), such that each triple codes an incoming edge
from the Father node (id) to the current node. When id = init, then
the current node is an initial node (init is not a name of a node).

Old : set of formulas, that must hold in the node and have been already
processed

New : set of formulas, that must hold in the node and have not yet been
processed

Next : set of formulas that must hold in all immediate successors of nodes
satisfying properties in Old

Out : constraint and reset that must be on an outgoing edge (con-
straint,reset)

A node is a structure (Id, Inc, New, Old, Next, Out).The set of all nodes is
denoted by Nodes.

List of Functions
expand(n,Nodes): returns a set of nodes after processing node n
new ID(): returns a fresh id
get V ar(ϕ): returns a set of degradation variables associated with sub-

formula ϕ
Neg( ): returns a set of negated formulas for a given set of formu-

las

Pseudo-code
proc create graph(ϕ)
q = (new ID(), {(init, tt, ∅)}, {ϕ}, ∅, ∅, (tt, ∅))
returnexpand(q, ∅)

end

proc expand(q, Nodes)
if New (q) == ∅
then if (∃r ∈ Nodes with Old(r) = Old(q) ∧ Next(r) = Next(q)∧

Out(r) = Out(q))
then Inc(r) = Inc(r) ∪ Inc(q)
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returnNodes

else N = (new ID(), {Id(q)} × {Out(q)},Next(q), ∅, ∅, (∅, tt))
returnexpand(N,Nodes ∪ {q}) /∗q is a new node ∗/

fi

else

switch

caseϕU≫dψ ∈ New (q) and ϕUx
≫dψ ∈ New(q) ∪Old (q)

New (q) = New(q) \ {ϕU≫dψ}
returnexpand(q, Nodes)

caseϕU≪dψ ∈ New (q) and ϕUxy
≪dψ ∈ New(q) ∪Old (q)

New (q) = New(q) \ {ϕU≪dψ, ϕU
xy
≪dψ}

N1 = (new ID(), inc1,New(q) ∪ {ψ},Old(q) ∪ {η},Next (q), Out(q)),
where inc1 = {(id, c ∧ x≪ d ∧ 1 ≪ d, r) | (id, c, r) ∈ Inc(q)}

N2 = (new ID(), inc2,New(q) ∪ {ϕ, ψ},Old(q) ∪ {η},Next(q)∪
{ϕUyx

≪dψ}, Out(q)),where
inc2 = {(id, c ∧ x≪ d, r ∪ {y}) | (id, c, r) ∈ Inc(q)}

N3 = (new ID(), inc3,New(q) ∪ {ϕ},Old(q) ∪ {η},Next(q)∪
{ϕUxy

≪dψ}, Out(q)),where
inc3 = {(id, c, r ∪ {y}) | (id, c, r) ∈ Inc(q)}

returnexpand(N1, expand(N2, expand(N3,Nodes)))

caseϕR≪dψ ∈ New (q) and ϕRx
≪dψ ∈ New (q) ∪Old (q)

New (q) = New(q) \ {ϕR≪dψ}
returnexpand(q, Nodes)

caseϕR≫dψ ∈ New (q) and ϕRx
≫dψ ∈ New (q) ∪Old (q)

New (q) = New(q) \ {ϕRx
≫dψ}

returnexpand(q, Nodes)

otherwise

letηbe the longest formula inNew(q)
New (q) = New(q) \ {η}
switch(η) /∗ according to the shape of η∗/

case(η ∈ (AP ∪Neg(AP ) ∪ {tt,¬tt}))
if (η == False ∨Neg(η) ∈ Old(q)) /∗q contains a contradiction ∗/
then returnNodes

else N = (new ID(), Inc(q),New(q),Old(q) ∪ {η}, Next(q), Out(q))
returnexpand(N,Nodes)

fi

case(η ≡ ϕ ∨ ψ)
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N1 = (new ID(), Inc(q),New(q) ∪ {ϕ},Old (q) ∪ {η},Next(q), Out(q))
N2 = (new ID(), Inc(q),New(q) ∪ {ψ},Old(q) ∪ {η},Next(q), Out(q))
returnexpand(N2, expand(N1,Nodes))

case(η ≡ ϕ ∧ ψ)
N = (new ID(), Inc(q),New(q) ∪ {ϕ, ψ},Old(q) ∪ {η},Next(q), Out(q))
returnexpand(N,Nodes)

case(η ≡ X⊲⊳dϕ)
x = get V ar(X⊲⊳dϕ)
N = (new ID(), inc,New(q),Old(q) ∪ {η}, Next(q) ∪ {ϕ}, out),where

inc = {(id, c, r ∪ {x}) | (id, c, r) ∈ Inc(q)},
out = {(c ∧ x ⊲⊳ d, r) | (c, r) ∈ Out(q)}

returnexpand(N,Nodes)

case(η ≡ ϕU≫dψ)
x = get V ar(ϕU≫dψ)
N1 = (new ID(), inc1,New(q) ∪ {ψ},Old(q) ∪ {η},Next (q), Out(q)),

where inc1 = {(id, c ∧ 1 ≫ d, r) | (id, c, r) ∈ Inc(q)}
N2 = (new ID(), inc2,New(q) ∪ {ϕ},Old(q) ∪ {η},Next(q)

∪{ϕUx
≫dψ}, Out(q)),where

inc2 = {(id, c, r ∪ {x}) | (id, c, r) ∈ Inc(q)}
returnexpand(N1, expand(N2,Nodes))

case(η ≡ ϕUx
≫dψ)

N1 = (new ID(), inc1,New(q) ∪ {ψ},Old(q) ∪ {η},Next (q), Out(q)),
where inc1 = {(id, c ∧ x≫ d, r) | (id, c, r) ∈ Inc(q)}

N2 = (new ID(), Inc(q),New(q) ∪ {ϕ},Old (q) ∪ {η},Next(q)∪
{ϕUx

≫dψ}, Out(q))
returnexpand(N1, expand(N2,Nodes))

case(η ≡ ϕU≪dψ)
(x, y) = get V ar(ϕU≪dψ)
N1 = (new ID(), inc1,New(q) ∪ {ψ},Old(q) ∪ {η},Next (q), Out(q)),

where inc1 = {(id, c ∧ 1 ≪ d, r) | (id, c, r) ∈ Inc(q)}
N2 = (new ID(), inc2,New(q) ∪ {ϕ},Old(q) ∪ {η},Next(q)∪

{ϕUxy
≪dψ}, Out(q)),where

inc2 = {(id, c, r ∪ {x, y}) | (id, c, r) ∈ Inc(q)}
returnexpand(N1, expand(N2,Nodes))

case(η ≡ ϕU
xy
≪dψ)

N1 = (new ID(), inc1,New(q) ∪ {ψ},Old(q) ∪ {η},Next (q), Out(q)),
where inc1 = {(id, c ∧ x≪ d ∧ y ≪ d, r) | (id, c, r) ∈ Inc(q)}

N2 = (new ID(), inc2,New(q) ∪ {ϕ, ψ},Old(q) ∪ {η},Next(q)∪
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{ϕUyx
≪dψ}, Out(q)),where

inc2 = {(id, c ∧ x≪ d∧, r) | (id, c, r) ∈ Inc(q)}
N3 = (new ID(), inc3,New(q) ∪ {ϕ},Old(q) ∪ {η},Next(q)∪

{ϕUxy
≪dψ}, Out(q)),where

inc3 = {(id, c, r) | (id, c, r) ∈ Inc(q)}
returnexpand(N1, expand(N2, expand(N3,Nodes)))

case(η ≡ ϕR⊲⊳dψ)
x = get V ar(ϕR⊲⊳dψ)
N1 = (new ID(), inc1,New(q) ∪ {φ},Old(q) ∪ {η},Next(q), Out(q)),

where inc1 = {(id, c ∧ ¬(1 ⊲⊳ d), r) | (id, c, r) ∈ Inc(q)}
N2 = (new ID(), Inc(q),New(q) ∪ {ϕ ∧ ψ},Old(q) ∪ {η},Next(q),

Out(q)),where
N3 = (new ID(), inc3,New(q),Old(q) ∪ {η},Next (q) ∪ {ϕRx

⊲⊳dψ},
Out(q)),where
inc3 = {(id, c ∧ ¬(1 ⊲⊳ d), r ∪ {x}) | (id, c, r) ∈ Inc(q)}

N4 = (new ID(), inc4,New(q) ∪ {ψ},Old(q) ∪ {η},Next (q) ∪ {ϕRx
≫dψ},

Out(q)),where
inc4 = {(id, c, r ∪ {x}) | (id, c, r) ∈ Inc(q)}

returnexpand(N3, expand(N2, expand(N1,Nodes)))

case(η ≡ ϕRx
⊲⊳dψ)

x = get V ar(ϕR⊲⊳dψ)
N1 = (new ID(), inc1,New(q) ∪ {φ},Old(q) ∪ {η},Next(q), Out(q)),

where inc1 = {(id, c ∧ ¬(x ⊲⊳ d), r) | (id, c, r) ∈ Inc(q)}
N2 = (new ID(), Inc(q),New(q) ∪ {ϕ ∧ ψ},Old(q) ∪ {η},Next(q),

Out(q)),where
N3 = (new ID(), inc3,New(q),Old(q) ∪ {η},Next (q) ∪ {ϕRx

⊲⊳dψ},
Out(q)),where
inc3 = {(id, c ∧ ¬(x ⊲⊳ d), r) | (id, c, r) ∈ Inc(q)}

N4 = (new ID(), Inc(q),New(q) ∪ {ψ},Old(q) ∪ {η},Next(q)∪
{ϕRx

≫dψ}, Out(q)),where
returnexpand(N3, expand(N2, expand(N1,Nodes)))

end

fi

end
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