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Abstract. Volume clipping techniques can display inner structures and avoid diffi-
culties in specifying an appropriate transfer function. We present an interactive
concave volume clipping method by implementing both rendering and Boolean
operation on GPU. Common analytical convex objects, such as polyhedrons and
spheres, are determined by parameters. So it consumes very little video memory to
implement concave volume clipping with Boolean operations on GPU. The intersec-
tion, subtraction and union operations are implemented on GPU by converting 3D
Boolean operation into 1D Boolean operation. To enhance visual effects, a pseudo
color based rendering model is proposed and the Phong illumination model is en-
abled on the clipped surfaces. Users are allowed to select a color scheme from several
schemes that are pre-defined or specified by users, to obtain clear views of inner
anatomical structures. At last, several experiments were performed on a standard
PC with a GeForce FX8600 graphics card. Experimental results show that the three

basic Boolean operations are correctly performed, and our approach can freely clip
and visualize volumetric datasets at interactive frame rates.

Keywords: Medical image processing, volume clipping, GPU ray casting, Boolean
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1 INTRODUCTION

Consumer level graphics cards have powerful computation performance. With the
rapid development of the game industry, modern graphics cards already provide
a flexible degree of programmability on graphics processing unit (GPU) that opens
up a wide field of time-consuming applications. There are two main categories of
volume rendering based on graphics cards. The first category originally presented
by Cullip and Neumann [1], and further developed by Cabral et al. [2] is directly ex-
ploiting the texture mapping capabilities of graphics hardware by proxy re-sampling
planes. The second one is to implement volume rendering on GPU. For example,
Kruger and Westermann [3] proposed a GPU based ray casting using a two-pass
rendering approach. Rler et al. [4] presented a GPU based multi-volume ray casting
algorithm. Bentoumi et al. [5] proposed a GPU implementation of the shear-warp
algorithm. Marroquim et al. [6] proposed a method for volume and iso-surface ren-
dering with GPU-accelerated cell projection. They also used two-pass rendering
techniques. Furthermore, GPU is widely applied in surface graphics. Gerd Reis
et al. [7] presented high-quality rendering of quartic spline surfaces on the GPU.
Charles and Blinn [8] proposed a real-time GPU algorithm for rendering piecewise
algebraic surfaces. Reimers and Seland [9] presented an algorithm for interactive
ray-casting of algebraic surfaces of high degree. Michael et al. [10] presented GPU-
based trimming and tessellation of NURBS and T-Spline surfaces. Dyken et al. [11]
implemented an approach for Marching Cubes on graphics hardware, which cur-
rently outperforms all other known GPU based iso-surface extraction algorithms in
direct rendering for sparse or large volumes. Kim et al. [12] presented vertex trans-
formation streams based on GPU, which addressed the input geometry bandwidth
bottleneck for interactive 3D graphics applications. Flexibility of GPU improves
parallel computation performance in many time-critical applications. For example,
Fialka and Cadk [13] implemented FFT and convolution on GPU, Kruger and West-
ermann [14] presented linear algebra operators for GPU implementation of numerical
algorithms, Jin et al. [15] used GPU to design marbling textures.

Although GPU based volume rendering techniques can provide users with im-
mediate visual feedback, rapidly specifying an appropriate transfer function is still
a very difficult task. Therefore, volume clipping plays an important role in explor-
ing 3D datasets because it allows users to cut away undesired parts of the volume.
So the volume clipping technique can be regarded as a good complementary tool
to avoid difficulties in transfer function design. Clip planes are frequently used
in texture-based volume rendering by simply enabling the clip functionality of the
OpenGL. Van Gelder and Kim [16] used clip planes to specify the boundaries of the
dataset in 3D texture-based volume rendering; but clip planes only produce convex
geometries. Westermann and Ertl [17] presented stencil based volume clipping. The
clip object has to be rendered for each slice to correctly set the stencil buffer. Xie
et al. [18] proposed CFD based volume rendering to implement Boolean operations
using voxelized objects; but the clipping object consumes a large video memory due
to voxelization. Weiskopf et al. [19] presented volume clipping techniques based on
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a volumetric description of clip objects. A depth based clipping technique analyzes
the depth structure of the clip geometry to decide which regions of the volume have to
be clipped. Another approach allows a clip object to be voxelized and represented by
a 3D volumetric texture. The approach allows users to specify arbitrarily structured
clip objects and it is a very fast technique for volume clipping with complex clip ge-
ometries. Another depth-based method is used for depth sorting semi-transparent
surfaces [20]. The technique is related to virtual pixel maps [21] and dual depth
buffers [22]. Tiede et al. [23] used a similar method to visualize attributed volumes
by ray casting. More recently, Williams et al. [24] presented a volumetric curved
planar reformation for virtual endoscope and fully analyzed projected modes. It
belongs to one kind of complex shaped clip object because a centerline of tubular
object must be extracted before the planar reformation.

In this paper, an interactive concave volume clipping method is proposed by
implementing both rendering and Boolean operations on GPU. It is fast and useful
for viewing inner structures without careful specification of the transfer function.
Common analytical convex objects are used to implement volume clipping on GPU,
due to their compact representation and little memory consumptions. These ana-
lytical convex objects with Boolean operations can form complicated structures. To
obtain clear views of inner structures within medical datasets, a pseudo color based
rendering model is proposed and the Phong illumination model is enabled on the
clipped surfaces. The main contribution of this paper is an interactive concave vol-
ume clipping approach by implementing Boolean operation, rendering, and pseudo
color mapping together on GPU.

This paper is organized as follows. Section 2 describes the concept of rendering
segments for rendering a convex object. Section 3 describes the Boolean operation
method based on 1D rendering segment. Section 4 briefly presents a pseudo color
based rendering model. The detailed GPU implementation of the Boolean operation
based volume clipping techniques is followed in Section 5. At last, some experiments
are performed and conclusions are drawn.

2 RENDERING SEGMENTS

In this section, in order to easily understand our method, the classical GPU ray cast-
ing algorithm is reviewed first, and then the algorithm is modified thus to introduce
the concept of rendering segment.

Stegmaier et al. [25] presented the classical GPU ray casting. In their algorithm,
a bounding box is used to assume that each component of texture coordinates is
always within the normalized range [0, 1]. The color of the front surface is regarded
as coordinates of a start point for the ray casting process and the color of the back
surface stands for coordinates of an end point. The ray direction at any pixel can
be computed by simply subtracting the front color from the back color. In their
algorithm, two pass rendering is required. To render the back faces, front face
culling is enabled. An OpenGL frame buffer object is used to store the result from
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the rendering of the back faces, and the front faces are rendered to generate the
fragments that start the ray casting process until the ray encounters the fragments
of back faces. Thus, the ray casting can achieve interactive frame rates.

As an alternative, the start and end points can also be computed by solving
intersections of the ray casting from a proxy plane and the analytic geometry on
GPU. It is called single plane based method by us. In both the classical algorithm
and single plane based method, the ray direction Dw, the start point Ps and the
end point Pe must be computed first. According to the analytic geometry, the
parameterized equation of a ray is defined as

Pw.xyz = Ps.xyz +Dw × t (1)

where Pw is the 4D homogeneous coordinates (x, y, z, 1), Ps is the start point, t is
a signed distance from the start point Ps. Positive t implies that the point Pw is
in the front of the point Ps along the direction Dw and has distance t from it, and
if t is negative, the point Pw is in the back of the start point Ps with distance t.
We adopt the symbol denotation used by the OpenGL shading language, that is,
Pw.xyz stands for a new vector consisting of the first three components of the 4D
homogeneous coordinates.

According to a definition of convex object, a ray has no more than two points
of intersection with any convex object. As shown in Figure 1, a ray Ray1 has two
points of intersection with a convex object, which are called a start point and an
end point represented by the distance parameters ts and te, respectively. The ray
Ray2 can be considered to have two points of intersection which are overlapping
and ray Ray3 has no intersection with the convex object. We call the ordinal pair
of two values (ts, te) a rendering segment. The absolute value of |te − ts| is called
its length. The GPU ray casting algorithm performs volume integral from the start
point ts to the end point te to render the desired part of volume within the convex
clip object. If there is no intersection, we think that the rendering segment is empty.
If the rendering segment is empty or has a length less than the re-sampling interval,
the rendering segment can be discarded immediately.

convex object

Ray1

ts

te

ts

te
Ray2

Ray3

Fig. 1. Points of intersection between a ray and a convex object

In both the classical and single plane based GPU ray casting methods, the
bounding box which is a convex clip object is required to prevent texture coordinates
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out of the normalized range. The bounding box is a special polyhedron which is
defined by six planes. In other words, convex polyhedron volume clipping must
be performed first in our algorithm. Since any polyhedron can be represented as
a series of planes, polyhedron volume clipping is actually the same as multiple planar
clipping.

3 CONCAVE VOLUME CLIPPING USING BOOLEAN OPERATION

Methods with multiple clip planes can only implement convex clipping, but cannot
perform concave clipping. So we make use of Boolean operations of analytical convex
objects in order to perform concave volume clipping on GPU.

We implement three basic Boolean operations, which are intersection, union and
subtraction. The intersection operation removes everything except the overlapping
areas of the two objects. The subtraction operation removes the overlapping portion
of the second object from the first object. The union operation joins all selected
objects into a single object. The intersection, subtraction and union operations are
represented as mathematical multiplication, subtraction and addition, respectively.

In our implementation of concave volume clipping, multiple planar volume clip-
ping must be first performed to limit texture coordinates to the normalized range,
and then some additional convex objects, such as polyhedrons and spheres, are used
to actually cut away and keep parts of volume using different combination of Boolean
operations.

Bounding box clipping object C 0

(A polyhedron formed by six planes )

clipping 

object 

C1

Intersect /Subtract

clipping 

object 

C2

clipping 

object 

Cn

Intersect /

Subtract /Union

Intersect /

Subtract /Union

Fig. 2. Hierarchical structure of clipping objects

Figure 2 shows the hierarchical structure of clip objects in our method. The clip
object of the bounding box C0 lies in the top of the hierarchical structure. It is
responsible for preventing 3D texture coordinates out of the bounding box. In our
method, we do not consider arbitrarily shaped objects, such as voxelized objects,
to reduce memory consumption. These common analytical convex objects have
compact representation and very little memory consumptions; so they can be easily
implemented on GPU. Since Boolean operations of convex objects can approximate
arbitrary objects, convex objects are used for concave volume clipping to simplify
and speed up our method. All the additional clip objects from C1 to Cn can be
polyhedrons, spheres and other convex objects. Additional clip objects from C1
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to Cn can only perform intersection and subtraction operations with the top clip
object C0. And any of additional clip objects can perform intersection, union and
subtraction with another one of additional clip objects. Equation 2 describes this
hierarchical structure of Boolean operations in mathematical form.

C0

〈

×
−

〉



C1

〈 ×
−
+

〉

C2

〈 ×
−
+

〉

. . .Cn

〈 ×
−
+

〉



 (2)

For the sake of simplicity, analysis of priorities of Boolean operations is not
taken into account. Latter Boolean operations are performed just on results of
former operations. For example, Equation (3) describes that C2 is subtracted from
C1 to produce a result R1, and an intersection Boolean operation of the result R1
and C3 is then performed, resulting in a result R2, at last intersection operation
of the result R2 and C0 is performed. In fact, Equation (3) is just the same as
Equation (4). Our method does not analyze priorities of Boolean operations, thus
it can efficiently improve the performance of Boolean operation on GPU.

(C1−C2 ×C3)×C0 (3)

((C1−C2)×C3)×C0 (4)

Each clip object used in our method is convex, so each ray has no more than
two points of intersection with any convex clip object and a rendering segment can
fully encode information about rendering. By making use of rendering segments,
we can convert the three basic Boolean operations in 3D object space into 1D ray
space, and implement an interactive concave volume clipping on GPU. After several
Boolean operations are performed, each ray may be divided into several separate
rendering segments for volume integral. Each rendering segment has start and end
points determined by parameters ts and te, respectively. As shown in Figure 3,
subtraction operations are performed between a polyhedron and two spheres, ray
R1 has three rendering segments, including (t1, t2), (t3, t4) and (t5, t6), ray R2 has
only one rendering segment (t7, t8), while ray R3 has no rendering segment.

t1

t2

t3

t4
t5

t6

R1

R2

R3

t1

t7

t8

Fig. 3. Rendering segments
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For each ray, a table seg of rendering segments is created to save rendering
segments. Before we analyze a new 1D Boolean operation of current object, let us
suppose that the current ray already has n rendering segments in the table seg. The
ith entry in the rendering segment table is represented by a 2D vector seg[i], and
seg[i].x and seg[i].y denote the parameters of start and end points, respectively.

3.1 Intersection Operation

If the current ray does not intersect the current clip object, we immediately set the
number n of rendering segments in the table seg to zero. Thus all the rendering
segments in the table seg are quickly deleted to early terminate subsequent process-
ing. Otherwise, we must compute two points of intersection between the ray and
the clip object. The two points can be determined by scalar parameters ts and te,
respectively. The value pair (ts, te) is called an incoming rendering segment. Ac-
cording to Figure 4, we consider all possible cases of the incoming rendering segment
(ts, te) and ith rendering segment (seg[i].x, seg[i].y). The intersection operation can
be represented by Equation (5).

In case 1, the incoming rendering segment is empty due to no intersection be-
tween the current ray and current clip object, i.e. (ts, te) = ϕ. All the rendering
segments for the current ray are deleted by simply setting the number n of rendering
segments to zero.

In case 2, if the incoming segment meets te ≤ seg[i].x or ts ≥ seg[i].y, i.e.
(ts, te) ∩ seg[i] = ϕ, we directly delete the ith rendering segment, but still need
to process the remainder rendering segments in the table seg. In case 3, the two
rendering segments must have common portion, i.e. (ts, te) ∩ seg[i] 6= ϕ. The ith

rendering segment is modified as follows.
If te < seg[i].y then seg[i].y = te
If ts > seg[i].x then seg[i].x = ts







Delete seg[i], ∀i if (ts, te) =
Delete seg[i] if (ts, te) ∩ seg[i] =
seg[i]← (ts, te) ∩ seg[i] if (ts, te) ∩ seg[i] 6=

(5)

3.2 Subtraction Operation

Subtraction operations are more complicated than intersection operations. Figure 5
illustrates all possible cases for the incoming rendering segment (ts, te) and the ith

rendering segment (seg[i].x, seg[i].y). It can also be represented by Equation (6).
In case 1, the current ray does not intersect the current clip object, i.e. (ts, te) =

ϕ, so the incoming rendering segment is empty. In this case, we ignore the clip object
with subtraction operations to immediately terminate searching the table seg. All
the rendering segments for the current ray are kept unchanged.

In case 2, both the start point ts and the end point te of the incoming segment are
located in the same outside of the ith rendering segment seg[i], i.e. (ts, te)∩ seg[i] =
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ith segment

seg[ ].i x seg[ ]i .y

case 2: no common portion

ith segment

seg[ ]i .x seg[ ]i .y

incoming segment

incoming segment

ith segment

seg[ ]i .x seg[ ]i .y

case 3:  common portion

incoming segment

ith segment

seg[ ]i .x seg[ ]i .y

incoming segment

ith segment

seg[ ]i .x seg[ ]i .y

incoming segment

ith segment

seg[ ]i .x seg[ ]i .y

incoming segment

ts

ts

ts

ts

ts

ts

te

te

te

te

te

te

case 1: incoming segment is empty

ith segment

seg[ ].i x seg[ ]i .y

delete all rendering segments

Fig. 4. Possible cases for intersection operation

ϕ. In this case, we directly ignore the ith entry of the table seg to keep the ith

rendering segment unchanged, but need to continue to search the remainder entries
of the table.

In case 3, both the start point ts and the end point te of incoming segment are
located inside the ith segment (seg[i].x, seg[i].y), i.e. (ts, te) ⊆ seg[i]. In this case,
the ith segment of (seg[i].x, seg[i].y) is replaced with (seg[i].x, ts), and at the same
time a new rendering segment (te, seg[i].y) is created and inserted into the rendering
segment table.

In case 4, one of points ts and te is inside the i
th segment seg[i], whilst another

point is outside, i.e. ts 6∈ seg[i] ∩ te ∈ seg[i] ∪ ts ∈ seg[i] ∩ te 6∈ seg[i]. In this case,
the current segment is modified by the following codes.
If te < seg[i].y then seg[i].x = te
If ts > seg[i].x then seg[i].y = ts



A Fast Accumulative Motion Orientation Model for Video Smoke Detection 559

In case 5, both the start point ts and the end point te of the incoming segment
are located outside the ith segment (seg[i].x, seg[i].y), but they are in different sides,
i.e. (ts, te) ⊇ seg[i]. One is in the side where its value is less than two values of the
ith segment. Another is located in the side where its value is greater than the two
values. The ith segment should be deleted from the table.

ith segment

seg[ ].i x seg[ ]i .y

case 2: both in the same outside

incoming segment

ts te

ith segment

seg[ ].i x seg[ ]i .y

incoming segment

ts te

ith segment

seg[ ].i x seg[ ]i .y

case 1: the incoming  segment is empty

ith segment

seg[ ].i x seg[ ]i .y

case 3: both  inside

incoming segment

ts te

ith segment

seg[ ].i x seg[ ]i .y

case 4: one inside another outside

incoming segment

ts te

ith segment

seg[ ].i x seg[ ]i .y

incoming segment

ts te

ith segment

seg[ ].i x seg[ ]i .y

case 5: both  in the different outside

incoming segment

ts te

keep  all the rendering segments unchanged

ignore current segment

Fig. 5. Possible cases for subtraction operation























Ignore seg[i], ∀i if (ts, te) =
Ignore seg[i] if (ts, te) ∩ seg[i] =
seg[i]← (seg[i].x, ts), if ts 6∈ segi ∩ te ∈ seg[i]

(te, seg[i].y) is added ∪ ts ∈ seg[i] ∩ te 6∈ seg[i]
Delete seg[i] if (ts, te) ⊇ seg[i]

(6)
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3.3 Union Operation

The bounding box must be used to prevent re-sampling coordinates out of the
normalized range and the corresponding mandatory rendering segment can be rep-
resented as a 2D vector seg0. The union operation combines the incoming segment
(ts, te) with n rendering segments in the table seg. As described in Equation (2),
an intersection operation of the union operation result and the mandatory rendering
segment seg0 must be performed at last, in order to prevent final results out of the
range [0, 1].

First, parameterized values of start and end points of all the rendering segments
and the incoming segment are sorted ascendingly. As shown in Figure 6, each
segment has a start point marked by a triangle and an end point marked by a circle.
After ascending sorting, a sorted table ST is created. In Figure 6, sorted values are
seg[0].x, ts, seg[0].y, seg[1].x, seg[1].y, seg[2].x, te, seg[2].y, seg[3].x and seg[3].y.
In order to compute resulting segments of union operation, flag table FT is created.
At the beginning, a flag value is set to zero. If a start point is encountered when
searching the sorted table ST, 1 is added to the flag value and the flag value is
stored in the corresponding entry of the flag table FT. −1 is added to the flag value
for an end point. In this way, a flag table FT is thus generated. In the case of
Figure 6, values in the flag table FT are 1, 2, 1, 2, 1, 2, 1, 0, 1, 0.

incoming segments

seg[1]ts teseg[0] seg[2] seg[3]

1 2 1 2 1 2 1 0 1 0Flag:

+1 +1 +1 +1 +1-1 -1 -1 -1 -1

Fig. 6. Union operation

Before searching the flag table FT, a flag newseg is set to 0. If the value in
the flag table FT is equal to 1 and newseg equals 0, a new segment is created, its
start point is set to the value in the corresponding entry of the sorted table ST and
the flag newseg is set to 1. Then we continue to search next value in the flag table
FT. If the value is equal to 0, the end point for the new segment is set to the value
in the corresponding entry of the sorted table ST and newseg is set to 0. The 1D
union operation is thus implemented in this way. In Figure 6, resulting segments
are (seg[0].x, seg[2].y) and (seg[3].x, seg[3].y).

Figure 7 a) was rendered without additional clip objects, except a bounding box
to limit texture coordinates to the normalized range. Figure 7b shows a resulting
image produced by the intersection Boolean operation between a polyhedron and
a sphere. Figure 7c gives the result with the subtraction operation, after two small
spheres are subtracted from a big sphere. Figure 7d illustrates experimental results
with the union operation between a polyhedron and a sphere.
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a) b) c) d)

Fig. 7. Results by Boolean operation

4 PSEUDO COLOR BASED RENDERING MODEL

Rendering models should allow users to easily recognize the orientation and shape
of clip objects. Therefore, an appropriate rendering model is very important for
enhancement of visual effects of volume clipping.

In our method, complex 3D Boolean operation is converted into 1D Boolean
operation. So each ray may have several separate rendering segments due to Boolean
operation. Each segment has two terminal points which are start and end points.

As for non-terminal points, regular transfer function and the Phong illumination
model are used, and the gradient of the 3D volume is estimated to approximate the
normal of re-samplings. The ray casting algorithm can produce translucent images
according to certain transfer functions.

Weiskopf et al. [19] used a surrounding layer of finite thickness to enable shading
on the boundary of the clip object in the texture based volume rendering. Their
approach has finite re-sampling intervals at the terminal points of each rendering
segment and can produce good results. Due to characteristics of the ray casting
algorithm, our approach also has finite equidistance intervals through all the ren-
dering segments, of course, including terminal points. For the sake of simplicity, we
can use a binary transfer function for iso-surface based volume rendering to focus on
concave volume clipping with Boolean operation. Shading at terminal points is very
important for easily recognizing shapes of clip objects. So we pay more attention to
rendering method at terminal points in the following subsections.

4.1 Re-Samplings at Terminal Points

Color of re-samplings at the terminal points is determined by the re-sampled value.
If the value v is less than a threshold v0, we think that the re-sampling is empty for
the iso-surface based ray casting and so the ray goes across the terminal points with
regular rendering method. If the re-sampled value v is greater than the threshold v0,
the ray casting processing is terminated immediately. The intensity of color for this
re-sampling is computed by the traditional window-leveling function. That is, a 2D
texturing method on iso-surfaces is performed. The window-leveling function is
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shown in Equation (7), where v is the re-sampled value, gmin and gmax are the
minimum and maximum intensities of color to be mapped, W is the window width
and L is the location of window center.

g =







gmin if v < (L−W/2)

gmin + v−(L−W/2)
W

× (gmax − gmin) if (L−W/2) ≤ v ≤ (L+W/2)
gmax if v > (L+W/2)

(7)

To enhance 3D effects, the Phong illumination model is also applied. The normal
for lighting is the real surface normal of analytical clip objects at corresponding
positions, instead of the volume gradient. In order to implement illumination effects,
the real normal of clip objects must be computed and stored for terminal points in
the Boolean operation stage.

4.2 Pseudo Color Mapping

The value computed by the window leveling function is scalar, and it can be directly
regarded as a grayscale color for illumination. To further enhance visual effects of
anatomical structures, pseudo color mapping is used. As we know, artificially color-
ing an image can reveal textures and qualities within the image that may not have
been apparent in the original gray scale images. To clearly reveal and distinguish
inner structures, the pseudo coloring method is used to enhance visual effects. The
pseudo color method colorizes the scalar value which maps to a full RGB color
range. Pseudo color can help improve image qualities that would not be readily
visible within the image’s true color.

Figure 8 shows rendered images using the pseudo color mapping method. Fi-
gure 8 a) gives results by mapping gray scale intensity values, which are computed
by the window-leveling function with W = 782 and L = 976, to different intensity
of a purple color scheme as the diffuse color. Figure 8 b) is the case of a pure
green scheme with W = 782 and L = 976. Figure 8c uses a hot metal color
scheme for the pseudo color mapping with W = 556 and L = 1 131. In Figure 8 d),
a rainbow color scheme is used for the pseudo color mapping with W = 782 and
L = 976.

Our method provides several pre-defined color schemes. The method allows users
to select an appropriate color scheme from the pre-defined schemes for rendering,
in order to obtain satisfying effects. It even allows users to generate a new color
scheme by specifying colors along a curve in the HSV chroma circle.

5 IMPLEMENTATION ON GPU

In order to speed up volume clipping, our method was implemented on GPU using
the OpenGL shading language. Most operations, including computation of points of
intersection, Boolean operations and pseudo color mapping, are performed on GPU.
Pseudo codes of the fragment shaders are listed as shown in Algorithm 1.
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a) b) c) d)

Fig. 8. Results with pseudo color mapping

Concave volume clipping on GPU

uniform sampler1D MyColorTable;

uniform sampler3D MyVolume;

uniform vec4 EyePos;

varying vec4 LightDir;

uniform ivec3 ObjectFlag[32];

uniform vec4 ObjectPara[256];

uniform float v0;

void main()

{

vec2 seg0, seg[34];

Compute points of intersection between the current ray

and the bounding box to obtain the mandatory rendering

segment seg0;

If(seg0.x>seg0.y)

{/*There is no intersection between current ray

and the bounding box*/

Discard;

}

int n=0, i=0,j=0

int m, isFirstHit;

float ts,te;

vec4 pos;

seg[j].x= seg0.x;

seg[j].x= seg0.x;

j++;

//*************Boolean operation*************

while(n<=32)

{//Maximum number of clip objects is 32.

if(ObjectFlag[n].x==0)

{/*If the object type identifier ObjectFlag[n].x is equal

to 0, the nth clip objects in the array are empty;
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In other words, the tail of the object list is reached.*/

break;

}

According to the object type identifier ObjectFlag[n].x

of the nth clip object, the number ObjectFlag[n].y

of the nth clip object parameters, which are stored

in the ith to (i+ObjectFlag[n].y-1)th entries

of the uniform array ObjectPara, are used to calculate

the incoming rendering segment (ts, te);

m=0;

while(m<j)

{//Searching the rendering segment table seg

if(ObjectFlag[n].z==1)

{//Intersection Boolean operation

According to approaches described in subsection 3.1,

intersection operation between the mth rendering

segment seg[m] and the incoming rendering segment

(ts, te) are performed to update the parameters

and entry number j of the rendering segment

table seg;

}else if(ObjectFlag[n].z==2)

{//Subtraction Boolean operation

According to approaches described in subsection 3.2,

subtraction operation between current mth rendering

segment seg[m] and the incoming rendering segment

(ts, te) are performed, resulting in updating

the parameters and entry number j of the rendering

segment table seg;

}else if(ObjectFlag[n].z==3)

{//Union Boolean operation

According to approaches described in subsection 3.3,

Subtraction operation between current mth rendering

segment seg[m] and the incoming rendering segment

(ts, te) are performed, resulting in updating

the parameters and entry number j of the rendering

segment table seg;

}

}

n++;

i=i+ObjectFlag[n].y;

}

//********Rendering all the rendering segments********

if(j==0)

{/*The number of entries in the rendering segment table is zero.
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In other words, the table is empty*/

Discard;

}else

{

m=0;

while(m<j)

{//Rendering the mth segment

ts=seg[m].x;

te=seg[m].y;

isFirstHit=0;

while(ts<te)

{

pos.xyz=EyePos.xyz+ts* LightDir;

d=texture3D(MyVolume, pos.xyz);

if(d.a<v0)

{//Voxel intensity is stored in the alpha channel

ts=ts+0.005;

}else

{

isFirstHit++;

if(isFirstHit==0)

{

Render the re-sampling using a selected

pseudo color scheme stored in the uniform

MyColorTable;

Compute light effect using the Phong model;

Composite shaded color and opacity;

}else

{

Render the re-sampling using the regular

ray casting method;

Compute light effect using the Phong model;

Composite shaded color and opacity;

}

}

}

}

}

}

In our GPU implementation, a special data structure is used as shown in Fi-
gure 9. Fixed length arrays are used since GPU shaders do not support dynamic
memory allocation. We used two fixed length arrays, which are ObjectFlag and
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ObjectPara, to pass parameters of common analytical convex clip object from CPU
to GPU using the OpenGL shading language qualifier Uniform.

ivec3 ObjectFlag [32]

0

1

2

3

31

30

29

n

x

y

z

Type identifier . 0 shands for null, 1 

polyhedrons, 2 spheres, ...

The number  of  parameters stored in the 

ith to (i+ObjectFlag [n].y-1)th entries of 

the uniform array ObjectPara

Boolean operation  type. 1, 2 and 3 stand 

for intersection , subtraction and union 

operation , respectively .

1 2 3 i i+1 i+2

i+ObjectFlag [n].y-1vec4 ObjectPara[256]

255254253252

Parameters  for the nth 

clipping object

Fig. 9. Data structures for GPU implementation

The array ObjectFlag stores three flag values which include object type, num-
ber of parameters and types of Boolean operations with other objects for all the
clip objects. These three flag values can be stored in a 3D vector. The data
type of the array is defined as a 3D integer vector. Variables ObjectFlag[n].x,
ObjectFlag[n].y and ObjectFlag[n].z stand for the object type identifier, the
number of parameters and types of Boolean operations of the nth clip object, respec-
tively. If ObjectFlag[n].x is set to 0, it means that the tail of the object flag table
is reached and the ≥ nth entries are empty. Different values of ObjectFlag[n].x,
which are greater than 0, stand for different types of analytical objects. Fox exam-
ple, if ObjectFlag[n].x is equal to 1 and 2, the nth clip object is a polyhedron and
a sphere, respectively. In our method, the maximum number of clip objects is 32.
It is enough for complicated concave volume clipping.

Different types of clip objects have different parameters. We use a uniform array
ObjectPara to store parameters for all the clip objects, and the data type of array
ObjectPara is defined as 4D float vectors. For example, a box can be represented
as 6 planes. As we know, each plane equation requires only 4 parameters; so the box
can be stored in successive 6 entries of the array ObjectPara. But for a sphere,
the center position and radius of the sphere require only one entry of the array.
ObjectPara[n].xyz stores the position of the sphere center and ObjectPara[n].w
is the radius.
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As shown in Figure 9, the two arrays must cooperate with each other. The array
ObjectFlag stores the three object flag values and ObjectPara store correspond-
ing parameters of each clip object specified by the array ObjectFlag. According to
the object type identifier ObjectFlag[n].x of the nth clip object, ObjectFlag[n].y
determines the number of parameters for the nth clip object, which are stored in the
ith to (i+ObjectFlag[n].y − 1)th entries of the array ObjectPara. For example,
parameters of the first object must be stored in the 0th to (ObjectFlag[0].y − 1)th

entries of the array ObjectPara. Parameters for the 2nd object should be stored
in the (ObjectFlag[0].y)th to (ObjectFlag[0].y +ObjectFlag[1].y − 1)th entries
of the array ObjectPara.

   

a) b) c) d)

 

e) f) g) h)

 

i) j) k) l)

Fig. 10. Boolean operations. a), b), c) and d) resulting images by intersection operation.
e), f), g) and h) resulting images by subtraction operation. i), j), k) and l) resulting
images by union operation
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6 EXPERIMENTS

We implemented the concave volume clipping method based on the GPU ray casting
using Visual C++ and OpenGL Shading Language. The experimental platform is
a desktop personal computer with a GeForce FX8600 graphics card. One of datasets
is a CT scalar dataset with the size of 512 × 512 × 112 which was scanned from
a human in a hospital. Each voxel of the human dataset has 16 bits. Another
dataset is a publicly available engine dataset downloaded from a web site [26]. The
engine dataset has 256× 256× 110 voxels. Each voxel has only 8 bits.

First, we performed the intersection operations using different clip objects. In
Figure 10 a), a resulting image was produced by the intersection Boolean operation
between a polyhedron and a sphere. The polyhedron is specified by 6 planes. The
sphere is located inside the polyhedron. By changing the position of sphere, different
results were generated as shown in Figures 10 b), c) and d).

Second, we test the subtraction operation with different clip objects. Figure 10 e)
shows the rendered image when a big sphere was subtracted from a polyhedron.
Figure 10 f) gives the resulting image when the intersection operation was performed
between a polyhedron and a big sphere, and then two small spheres were subtracted
from the result of intersection operation just performed. We changed the shape of
the polyhedron by rotating and moving clip planes, also moved the position of two
small spheres, and another resulting image was produced as shown in Figure 10 g).
Figure 10 h) also illustrates the result of intersection and subtraction combined
operations with different parameters.

Third, we test the union operation using a polyhedron and a sphere, as shown in
Figures 10 i) and j). Two resulting images are different due to different shapes and
relative positions of the polyhedron and the sphere. Figures 10 k) and l) show experi-
mental results by union operations of a polyhedron and two spheres. The difference
between the two rendered images is only due to different viewing parameters.

We also test our pseudo color mapping. Both Figures 10 i) and j) show results
of pseudo color mapping by using the hot metal color scheme. Both Figure 10 k)
and l) show resulting images using the pseudo color mapping with the rainbow color
scheme. Users can freely select a color scheme from pre-defined color schemes or
a user-defined color scheme.

We test our Boolean operation clipping approach on an engine dataset publicly
available for scientific research purpose. Figure 11 a) shows the resulting image of
the original engine dataset without volume clipping. In Figure 11 b), a resulting
image was produced by intersection Boolean operation between a polyhedron and
a sphere. Figure 11 c) gives the resulting image when a small sphere and a big
sphere were subtracted from a polyhedron. Figure 11 d) shows resulting image of
union operations using a polyhedron and a big sphere.

Table 1 lists timings with the same viewport of 512 × 512. As we can see,
the rendering speed decreases when the number of analytical clip objects increases.
When one polyhedron defined by 6 planes is used, our method can render the human
CT and the engine datasets at about 20 frames per second. When the number of
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clipping objects increases, the method can obtain about 18 to 19 frames per second.
If the original GPU ray casting is applied, the two datasets can be visualized at
about 59.9 fps due to removal of Boolean operations.

 

 a) b) c) d)

Fig. 11. Concave volume clipping of the engine dataset. a) Original dataset, b) Intersec-
tion, c) Subtraction, d) Union

Datasets Clipping objects Frame rates

The human CT
dataset with size

of 512× 512× 112

1 polyhedron 20.9 fps
2 polyhedrons 19.6 fps
2 polyhedrons, 1 sphere 19.2 fps
2 polyhedrons, 2 spheres 18.7 fps
No clipping 59.9 fps

The engine

dataset with size
of 256× 256× 110

1 polyhedron 21.2 fps
2 polyhedrons 20.1 fps
2 polyhedrons, 1 sphere 19.7 fps
2 polyhedrons, 2 spheres 19.2 fps
No clipping 59.9 fps

Table 1. Timing results with our GPU based volume clipping method

7 CONCLUSIONS

In this paper, we present a concave volume clipping approach based on GPU ray
casting. Some common analytical convex objects, such as polyhedrons and spheres,
are used to implement concave volume clipping using Boolean operations. Since
the volume integral path for convex object can be represented by an 1D rendering
segment, the complex 3D Boolean operation is easily converted into 1D Boolean ope-
ration. To enhance visual effects, a pseudo color based rendering model is proposed
and the Phong illumination model is enabled on the clipped surfaces. Experimental
results show that the three basic Boolean operations are correctly performed and
our approach can freely clip and clearly visualize volumetric datasets at interactive
frame rates. Our method can provide users an alternative method to avoid the
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difficulty of designing transfer functions and speed up exploration of 3D datasets on
GPU. In the future, we focus on modeling of the complex clip objects.
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