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Abstract. Both the instance level knowledge and the attribute level knowledge can
improve clustering quality, but how to effectively utilize both of them is an essential
problem to solve. This paper proposes a wrapper framework for semi-supervised
clustering, which aims to gracely integrate both kinds of priori knowledge in the
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clustering process, the instance level knowledge in the form of pairwise constraints

and the attribute level knowledge in the form of attribute order preferences. The
wrapped algorithm is then designed as a semi-supervised clustering process which
transforms this clustering problem into an optimization problem. The experimental
results demonstrate the effectiveness and potential of proposed method.
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1 INTRODUCTION

When some priori knowledge including preferences about the application domain
is available, it becomes relatively easier to find a reasonable clustering for the task
at hand. The problem of how to effectively utilize available priori knowledge into
a clustering system is referred to as semi-supervised clustering, which has attracted
considerable research attention in recent years [1, 2, 3, 4, 5, 6, 7, 8].

In general, the semi-supervised clustering aims to guide clustering with available
priori knowledge so that “more accurate”, “easier to understand” result can be
achieved.

As an important kind of instance-level priori knowledge, the pairwise constraints
are usually available or can be extracted with minimal effort in many applications.
There have been a number of methods for incorporating this kind of information
into the clustering process [1, 3, 5]. Wagstaff et al. [1] proposed a semi-supervised
clustering algorithm incorporating pairwise constraints as hard constraints in 2001,
and experimental results proved constraint-based semi-supervised clustering algo-
rithm could improve clustering quality. Xing et al. [3] constructed an optimization
problem by pairwise constraints, which aims to make distances among must-link
constraints as small as possible while cannot-link constraints large enough, finally
applied new metric to corresponding clustering algorithm in 2002. Halkidi et al. [5]
proposed a clustering framework based on subjective criteria in the form of pairwise
constraints and objective criteria in the form of clustering objective validity criteria,
and provided user interaction.

More recently, another kind of priori knowledge, in the form of attribute-level
preferences constraints [9, 10], such as “an attribute ai is more important than
another attribute aj”, has also been incorporated into prototype-based clustering,
and the semi-supervised clustering is then transformed into convex optimization
problem of finding the most suitable attribute weights [11].

However, when both the instance-level and the attribute-level constraints are
available, we need a new method to simultaneously utilize both kinds of priori know-
ledge into the clustering process, especially in some applications. For example, in
document clustering, beside labels or pairwise constraints of documents, users may
point out some words are important and they are keywords. Thus, effectively incor-
porating two main priori knowledges is meaningful and essential. Wang et al. [12]
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proposed a clustering method with instance and attribute level side information
based on metric learning strategy. In order to meet the requirements of users’ inter-
active in some applications, in this paper, we present a semi-supervised clustering
framework for this problem with distance metric and soft constraints. Through the
introduction of Bregman Divergences [13], this framework is more flexible. First,
the instance-level pairwise constraints are used to obtain an initial attribute weight.
Then the attribute-level preferences knowledge are utilized to identify a set of at-
tributes so that most of prior knowledge can be respected by the corresponding
clustering result.

This paper is organized as follows. Section 2 provides the basic terminology,
and describes the notations used in this paper. Section 3 describes the algorithms
related with us. Section 4 presents the novel semi-supervised clustering method.
Section 5 validates the effectiveness of our method through experiments. In the
end, we conclude the paper in Section 6.

2 SOME NOTATIONS

This section briefly describes the concepts used in this paper. Given a set of n data
instances X = {x1, · · · ,xn} in a d dimensional space, where xi = [xi1, · · · , xid]

t, and
the desired number of clusters is k. The objective of clustering is then to obtain
a partition of X so that some kinds of clustering metric can be optimized.

Definition 1 (Pairwise Constraints [3]). For the instance pair (xi,xj), the “must-
link” set S and “cannot-link” set D constraints supplied by users can be defined as
follows:

• IF (xi,xj) belongs to the “must-link” set S, then instances xi and xj belong to
the same cluster;

• IF (xi,xj) belongs to the “cannot-link” set D, then instances xi and xj belong
to different clusters.

Definition 2 (Attribute Order Preferences [11]). The set P contains a set of at-
tribute order preferences, pi = (si, ti, δ) with the constant δ > 0. Here the (s, t, δ)
means that the attribute s is more important than the attribute t. Meanwhile,
(s, t, 0) denotes that the attribute s has a similar importance as the attribute t.

3 RELATED WORKS

3.1 Xing’s Metric Learning Method

Literature [3] applied metric learning to clustering and constructed an optimization
problem with respect to the Mahalanobis distance by pairwise constraints, which
aimed to make sure distances among must-link constraints as small as possible while
cannot-link constraints large enough.
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min
A

∑

(xi,xj)∈S

‖xi − xj‖
2
A

subject to: ∑

(xi,xj)∈D

‖xi − xj‖A ≥ 1

A � 0 (1)

Through solving this convex optimization, Xing et al. [3] made use of the learned

matrix A to obtain the rescaling data instances for xi with A
1

2xi.

d(x,y) = dA(x,y) = ‖x− y‖ =
√

(x− y)tA(x− y) (2)

When A is diagonal, the Mahalanobis distance (Equation (2)) can be trans-
formed into the Euclidean distance. Xing et al. [3] computed the corresponding
Equation (3) of this optimization problem with Newton-Raphson technique.

g(A) = g(A11, . . . , Add) =
∑

(xi,xj)∈S

‖xi − xj‖
2
A − log(

∑

(xi,xj)∈D

‖xi − xj‖A) (3)

3.2 Sun’s Semi-supervised Learning Framework

Sun et al. [11] made use of attribute order preferences to construct the following
optimization problem. Through an iterative updating procedure similar to the EM
algorithm, a satisfactory set of weights for attributes can be obtained.

min
{w,ξ},{πc}kc=1

,{µc}kc=1

1

n

k∑

c=1

∑

xi∈πc

Dw(xi, µc) + λ1

∑

p∈P

ξp − λ2Ĥ(w)

s.t.
w ∈ ∆d

ws − wt ≥ δ − ξp for all p = (s, t, δ) ∈ P

ξp ≥ 0 for all p ∈ P (4)

where

• ∆d = {w ∈ ℜd
+|w

t · 1d = 1},

• ℜd
+ denotes the set of nonnegative real numbers, and

• 1d = [1, · · · , 1︸ ︷︷ ︸
d

]t,

• ξ = [ξp] where p ∈ P .
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In the function, the first term is intra-cluster distortion of the clusters{πc}
k
c=1,

which is an objective clustering validation index, µc is a cluster representative for
each cluster πc; the second term reflects the penalty on the constraints of attribute
order preferences, which represents the attribute-level subjective criteria; the third
term is a regularization term, which guarantees the consistence of attribute weight.

4 A SEMI-SUPERVISED CLUSTERING FRAMEWORK

For supervised learning, attribute selection is an important process of identifying
the most effective attribute set for the learning task. Traditionally, two major cate-
gories of methods exist in supervised learning: the wrapper framework, which wraps
the learning algorithm inside the attribute selection process and uses the learning
performance (i.e. accuracy) to estimate the benefits of adding or removing a par-
ticular attribute; the filter framework, which selects an attribute set based on some
criterion for any learning algorithm to use before the actual learning is carried out.

For semi-supervised clustering, an attribute is a good one if it is either a good
clustering criterion by itself, or good cluster criterion when taken together with some
other attributes. In order to arrive at a suitable clustering result, the attributes set
which can satisfy user’s requirement needs to be identified. However, because of
a lacking of consistent performance evaluation criterion, the wrapper framework has
yet been fully utilized in semi-supervised clustering.

Based on the observation that when priori knowledge about the application do-
mains is available, the ratio of satisfied priori constraints by the clustering results
can be used as the indicator to guide the search for the best attribute set. In this
section, we present an effective wrapper framework for semi-supervised clustering.
As shown in Figure 1, this framework starts with a metric learning process which
utilizes the instance-level pairwise constraints to get a weighted set of attributes.
Then two attributes with the largest weights are used as the seeding set, and the
wrapper framework attempts to add each unselected attribute until terminated: for
each candidate attribute set, a novel process is called to learn a clustering crite-
rion from both the instance-level and the attribute-level constraints, and to produce
a clustering result. The attribute which leads to the biggest improvement in per-
formance is selected. This hill-climbing forward selection process iterates until the
performance of adding any attribute is less than the performance of the attribute
set already selected. Finally the resulted weighted attribute set is used in clustering
algorithm to generate the clustering result.

As our wrapper framework attempts to satisfy as much priori knowledge as
possible, we define the salient degree as the sum of the proportion of satisfied con-
straints:

salient =
|sat(S)|+ |sat(D)|)

|S| + |D|
+

|sat(P)|

|P|

where satat(∗) denotes the set of satisfied constraints in the set ∗.
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Fig. 1. The framework for semi-supervised clustering

4.1 Initialization of Attribute Weights According to Pairwise Constraints

When instance-level priori knowledge is available as the pairwise constraints S and
D, the metric learning [3] can be used to obtain a distance metric. In order to
respect the pairwise constraints as well as maintain the unification of attribute
order preferences, a regularization term can be added into distance metric. Thus,
this metric learning task can be transformed into an optimization problem as follows:

min
ω

∑

(xi,xj)∈S

Dω(xi,xj)

s.t. ∑

(xi,xj)∈D

√
Dω(xi,xj) ≥ 1, ω ≥ 0

where

Dω(xi,xj) =

d∑

k=1

ωk

vk
dφ(xik, xjk), vk =

1

n

n∑

i=1

dφ(xik, µk)

and dφ(., .) is Bregman Divergences [13]. Here, v is used to regularize distances [11],
and µ is the global mean of data points. The MOSEK optimization tool1 is utlized
to solve this problem and produce a weighted attribute set.

4.2 The Wrapper for Semi-Supervised Clustering

The weighted attribute set from the previous step indicates that: the larger the
attribute weight, the more important it is for clustering. Starting with two most
important attributes according to the weights, the wrapper framework attemptively
adds an unselected attribute, then the original attribute-level constraints are mapped
into the selected attribute sub-space, and finally each iterative step is ended by
another semi-supervised learning process which can utilize both kinds of priori know-
ledge to generate a clustering result. If the result indicates an improvement in the
salient degree, the attribute is then added. The iterative process terminated when
no attributes can be added to improve the salient degree of the clustering result.

1 http://www.mosek.com/
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4.2.1 Subspace Mapping

For selected attributes in the wrapper process, normalization is applied so that their
weights sum to 1. When the selected attribute space does not contain all attributes
involved in the attribute preferences constraints P , some attribute-level constraints
will become invalid. Therefore, it is necessary to re-establish the attribute-level priori
knowledge: for an attribute order preference p = (s, t, δ); if the attribute s or t is
not in the subspace, the corresponding preference is invalid, and we re-establish the
attribute order preference information p into (1, 1, 0). If both attributes s and t

are selected, then we alter the attribute number in attribute order preferences p to
make it accordant with the current attribute space (s → s′ and t → t′, denoting
that attribute s is corresponding to s′, attribute t is corresponding to t′ in subspace),
and δ is replaced with δ

sum(ωselected)
, here ωselected is the weight of the currently selected

attributes.

4.2.2 Wrapped Algorithm: Semi-Supervised Clustering

Wrapped algorithm is a key component in our framework, as shown in Figure 1. In
this work, we use a semi-supervised clustering algorithm as the wrapped core algo-
rithm. Similar to the method by Halkidi [5], an optimization problem is constructed
to maximize the following objective:

min
{ω,ξ},{πc},{µc}

1

n

k∑

c=1

∑

xi∈πc

Dw(xi, µc)+λ1

∑

(s,t,δ)

max(δ−(ws−wt), 0)−λ2H(w)+λ3S(C)

where C is the clustering result, with πc as the instances set for cluster c and µc as
the centroid of cluster c.

The first term is the objective clustering validity on the inter-cluster density; the
second term is a penalty term for the violation of the attribute order preferences P ;
the higher the degree of satisfaction with attribute order preferences in clustering,
the smaller the penalty value; the third term is a regularization term, which ensures
that the weights are as uniform as possible while respecting the preferences; the last
term is another penalty term for the violation of the pairwise constraints, S(C) =

1− |sat(S)|+|sat(D)|
|S|+|D|

.

5 EXPERIMENTAL EVALUATION

Four methods are selected for comparison: the k-means algorithm, Xing’s met-
ric learning method which utilizes the pairwise constraints, Sun’s semi-supervised
learning method which utilizes the attribute constraints and Wang’s method which
integrates instance and attribute level side information.

Six UCI datasets which have been previously used in semi-supervised clustering,
including iris, vowel, wdbc, pageblocks, optdigits and pendigits, are used as our
experiment data sets as Table 1.
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Dataset #Examples (n) #Attribute (d) #Clusters (k)

iris 1 520 4 3

vowel 990 10 11

wdbc 569 30 2

pageblocks 5 473 10 5

optdigits 5 620 64 10

pendigits 10 992 16 10

Table 1. Dataset characteristics

The class information of each data set is used as the ground truth for clus-
tering, then the attribute order preferences are generated as follows [11]: firstly,
the within-class distortion Θj is calculated for each attribute j (1 ≤ j ≤ d),

Θj = 1
vj

∑k
c=1

∑
xi∈πc

(xij − µcj)
2 where vj = 1

n

∑n
i=1(xij −

1
n

∑n
i=1 xij)

2. Then, the

inverse within-class distortion Γj is calculated as Γj =
∑

l 6=j Θl

Θj
. After that, a rough

estimate of the optimal attribute weights is calculated as w̃j =
Γj

∑d
l=1

Γl

, based on

which we can generate a number of attribute preferences constraints. For every
dataset in the experiment, we generate 10 different sets of instance-level pairwise
constraints by sampling instances from the same cluster or different clusters: each
set with 5% × n must-links, and 6% × n cannot-links. Then we generate 10 sets
of attribute-level preference constraints, each set contains d

2
preferences, where d is

the dimensionality.

In the experiments, we set λ1 =
d
m
, λ2 = d, λ3 = 1 to regulate the value into the

range [0, 1]. The weighted Euclidean distance φ(x) = x2 is used in metric learning.

5.1 Cluster Validity Index

We use Clustering Accuracy (ACC) and Normalized Mutual Information (NMI) as
the cluster validity indices, same as [11].

Let C present the clustering results after applying our approach to X, and B
denote the pre-specified structure. The number of items in C and B are both k.

Clustering Accuracy seems like accuracy in classification, which builds a one to
one correspondence between the clusters and the classes.

Acc(C,B) =
max

(∑k

i=1 ni,Map(i)

)

n

Here, n stands for number of instances in the dataset, while i stands for the
cluster index. Map(i) is class index corresponding to cluster index i, and ni,Map(i) is
the number of data points not only belonging to cluster i but to class Map(i).

Normalized Mutual Information is one kind of measure based on information
entropy.
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Fig. 2. The result comparison of ACC and NMI on six UCI datasets, a) ACC, b) NMI
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NMI(C,B) =
I(C;B)√
H(C)H(B)

=

∑k
i=1

∑k
j=1 nij log

n·nij

ni·n′
j√∑k

i=1 ni log
ni

n

∑k
j=1 n

′
j log

n′
j

n

.

Here, H presents the entropy, and I computes the mutual information. We
use ni to express the object number in the ith cluster, n′

j denotes the one in the jth

cluster. nij denotes the item number included in ith and jth cluster.

5.2 Comparison on Cluster Validity Index

The comparison starts with a randomly selected pairwise constraints set, together
with a randomly selected attribute preference constraints set; each compared algo-
rithm was running on the same sets of priori knowledge. We run 100 trials, and the
average ACC and NMI were calculated.

Dataset k-means Xing’s method Sun’s method Wang’s method

iris 5.6119e−021 0.0683 7.2607e−009 0.5960
vowel 1.4284e−006 0.1739 0.0013 0.2270

wdbc 2.8497e−006 5.2538e−004 0.0364 9.5153e−004
pageblocks 2.5014e−021 1.1882e−008 2.0162e−018 2.2514e−011
pendigits 8.6469e−015 0.0367 4.4041e−012 0.0142
optdigits 2.6210e−005 0.0168 2.9640e−004 0.0010

Statistics 6.0480e−004 0.2581 0.0244 0.3655

Table 2. The t-Test on ACC

Dataset k-means Xing’s method Sun’s method Wang’s method

iris 2.7228e−020 0.0494 1.0041e−008 0.3355

vowel 0.0013 0.0032 0.1396 5.1072e−004
wdbc 4.4990e−006 0.0282 0.2885 0.0108

pageblocks 4.9297e−018 2.9924e−013 6.9877e−017 2.2578e−014
pendigits 3.0438e−013 0.2834 4.3073e−011 0.3432
optdigits 7.0695e−005 0.0556 0.0011 4.8727e−004

Statistics 7.2948e−004 0.0972 0.0821 0.1863

Table 3. The t-Test on NMI

Figure 2 gives a comparison in the averageACC and NMI for the proposed frame-
work, Xing+k-means [3], Sun’s framework [11] and Wang+k-means [12]. Obviously
we can see that the proposed framework which incorporates two kinds of know-
ledge effectively outperforms Xing’s method, Sun’s framework and Wang’s method.
The accuracy has a small increase over the datasets of iris, vowel, wdbc and page-

blocks, while there is an significant improvement over the data sets of optdigits and
pendigits. As the attribute order preferences are randomly selected, the quality of
attribute preference constraints set is not always fine. Thus, Wang’s method based
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Fig. 3. Clustering accuracy versus different knowledge in pageblocks dataset, a) pairwise,
b) attribute order
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Fig. 4. Clustering accuracy versus different knowledge in optdigits dataset, a) pairwise,
b) attribute order
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Fig. 5. Clustering accuracy versus different knowledge in wdbc dataset, a) pairwise, b) at-
tribute order
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on metric learning is worse than our method which combines distance-based and
constraint-based approaches; it demonstrates the semi-supervised clustering com-
bining distance-based and constraint-based approaches is better than those only
based on distance-based one.

Tables 2 and 3 are the t-test comparing our approach versus competing me-
thods with ACC and NMI index. The t-test indicates that the improvement by the
proposed framework is statistical.

5.3 Clustering Accuracy Versus Knowledge

Here we evaluate the effect of increasing amount of priori knowledge on the clustering
accuracy. First, we keep the number of attributes order preferences at d

2
, while

increasing the number of pairwise constraints from 5%×n to 50%×n. Second, we
keep the number of pairwise constraints at 5%× n pairs of must-links and 6%× n

pairs cannot-links, while increasing the number of attribute order preferences from 1
to 128 (25 on pageblocks dataset, because its maximum number of preferences is 25).
The experimental results (Figures 3, 4 and 5) show our method with little additional
prior knowledge can achieve better clustering quality than Xing’s method and Sun’s
framework.

6 CONCLUSION

This paper presents an effective semi-supervised clustering method for incorporat-
ing instance level and attribute level information. This method uses selecting and
weighting through incorporating attribute level information into results with pair-
wise instance level information. The experimental results validate our method.
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