
Computing and Informatics, Vol. 31, 2012, 675–692

A DISTRIBUTED EVOLUTIONARY ALGORITHM
WITH A SUPERLINEAR SPEEDUP FOR SOLVING
THE VEHICLE ROUTING PROBLEM

Krunoslav Puljić, Robert Manger

Department of Mathematics, University of Zagreb

Bijenička cesta 30, 10000 Zagreb, Croatia

e-mail: {nuno, manger}@math.hr

Communicated by Vladimı́r Kvasnička

Abstract. In this paper we present a distributed evolutionary algorithm for solv-
ing the capacitated vehicle routing problem. Our algorithm consists of autonomous
processes that create heterogeneous evolutionary environments, perform evolution
on separate populations of chromosomes, and communicate asynchronously through
occasional migrations of chromosomes. The paper also presents experiments where
the algorithm has been tested on some benchmark problem instances. By mea-
suring the effects of distribution on solution quality and on computing time, the
experiments confirm that the algorithm achieves a superlinear speedup.

Keywords: Vehicle routing problem, evolutionary algorithms, distributed algo-
rithms, superlinear speedup, experiments

Mathematics Subject Classification 2010: 90C27, 90C35, 90C59, 68W15,
68W40

1 INTRODUCTION

The vehicle routing problem (VRP) [18] is an interesting combinatorial optimization
task, which occurs frequently in real-world applications. The problem deals with
scheduling a fleet of vehicles to distribute goods between depots and customers.
A set of routes for vehicles should be determined, which are in some sense optimal,
e.g. the shortest or the cheapest. Certain constraints should be taken into account,
such as customer demands or vehicle capacities.



676 K. Puljić, R. Manger

Evolutionary algorithms (EAs) [12] are a popular metaheuristics, which tries
to solve optimization problems by imitating processes observed in nature. An EA
maintains a population of “chromosomes” where each of them encodes a feasible
solution to a particular problem instance. Evolution of those chromosomes takes
place through application of evolutionary operators such as selection, crossover,
mutation, etc.

Distributed evolutionary algorithms (DEAs) [3] are a special kind of EAs, where
the population of chromosomes is divided into subpopulations placed on isolated “is-
lands”. The evolutionary processes on islands run autonomously, and they interact
only occasionally by some form of migration of chromosomes.

Since the VRP is computationally very hard, its large instances cannot be solved
to optimality, but only approximately by metaheuristics. Thus it makes sense to
consider applications of EAs to the VRP. There have been many such attempts
in recent years, but most of them have been restricted to the conventional non-
distributed form of evolution.

The aim of this paper is to explore capabilities of DEAs to solve the VRP. More
precisely, the aim is to investigate how the evolutionary process used for solving
the VRP is influenced by distribution. We expect that, apart from speeding up
the whole computation, distribution can bring some additional gains, such as more
diversity of chromosomes and better quality of solution.

The main contribution of this paper is the design of a concrete DEA for the
VRP, which has been obtained after a detailed experimental evaluation of various
design options. In accordance with our aim, the obtained algorithm is purely evolu-
tionary, i.e. it is based only on evolutionary operators and migration, and it does not
incorporate any other heuristics such as local search. The paper also presents the
final series of experiments, which confirm that the algorithm achieves a superlinear
speedup.

The paper is organized as follows. Section 2 lists preliminaries about the VRP
and EAs. Section 3 describes the overall design of our EA for the VRP and specifies
its building blocks. Sections 4 and 5 report on experiments where the implemented
algorithm has been tested on a well known library of benchmark problem instances.
Thereby Section 4 presents the results dealing with quality of solution, while Sec-
tion 5 presents measurements of computing time and speedup. Section 6 contains
a discussion that explains why our method of computing speedup is appropriate in
spite of some possible criticisms. The final Section 7 gives conclusions.

2 PRELIMINARIES

There are many variants of the VRP found in literature. In this paper we consider
the standard capacitated VRP [18], which is described as follows. Let G = (V, A)
be a complete directed graph, where V = {0, 1, 2, . . . , n} is the vertex set and A

is the arc set. Vertices i = 1, 2, . . . , n correspond to the customers, and vertex 0
corresponds to the depot. A nonnegative cost cij is assigned to each arc (i, j) ∈ A,



A Distributed EA for Solving the VRP 677

and it represents the travel cost spent to go from vertex i to vertex j. Each cus-
tomer vertex i is associated with a nonnegative demand di to be delivered, and the
depot 0 has a fictitious demand d0 = 0. A set of K identical vehicles, each with the
capacity C, is available at the depot. The CVRP consists of finding a collection of
≤ K elementary cycles in G with minimum total cost, such that:

• each cycle visits the depot vertex 0,

• each customer vertex i = 1, 2, . . . , n is visited by exactly one cycle,

• the sum of the demands di of the vertices visited by a cycle does not extend the
vehicle capacity C.

Obviously, the cycles constituting the solution to a VRP instance specify optimal
routes for the vehicles delivering goods from the depot to the customers. Thereby
the demand of each customer is satisfied and no vehicle is overloaded.

Note that the VRP can be considered as a generalization of the traveling sales-

man problem (TSP) [8]. Indeed, the TSP is a special case of the VRP where the
number of vehicles K is equal to 1, and the capacity C of the vehicle is infinite.

As already mentioned before, an EA is a randomized algorithm which maintains
a population of chromosomes. Each chromosome represents a feasible solution to
a given instance of an optimization problem. The population is iteratively changed,
thus giving a series of population versions usually called generations. It is expected
that the best chromosome in the last generation represents a near-optimal solution
to the considered problem instance.

An EA consists of many building blocks, which can be chosen and combined in
various ways. Consequently, there is a wide variety of possible EAs for the same
optimization problem. Here follows a list of most important building blocks and
design options.

• The data structure used to represent a chromosome.

• The initialization procedure that produces the initial population of chromosomes.

• The evaluation procedure used to evaluate a chromosome to give some measure
of its “goodness” or “fitness”. The goodness measure is related to the objective
function of the original optimization problem.

• The genetic operators that produce new chromosomes from old ones. There exist
unary genetic operators, called mutations, which create new chromosomes (mu-
tants) by a small random change in a single chromosome. There also exist higher
order operators called crossovers, which create new chromosomes (children) by
combining parts from several (usually two) chromosomes (parents).

• The selection procedure, used to find “good” chromosomes for crossover, or “bad”
chromosomes that will be discarded from the population.

• The termination condition, which determines when the whole evolutionary pro-
cess should be stopped.



678 K. Puljić, R. Manger

Since the VRP is so much related to the TSP, it is not surprising that most
EAs for solving the VRP are assembled from components that have originally been
designed for the TSP. Indeed, it has been quite common to represent the chromo-
some for the VRP as a permutation of customer vertices 1, 2, . . . , n, which can be
visualized as a big cycle spanning the whole graph [11]. With such representation, it
is also possible to reuse a variety of genetic operators that transform permutations
into permutations. Here are some of those operators with brief explanations given.

• Order crossover (OX) [9, 15]. One part of the child chromosome is directly
copied from the first parent, and the remaining part is constructed by following
the vertex ordering from the second parent.

• Alternating edges crossover (AEX) [14]. The child cycle is formed by choosing in
alternation arcs from the first and from the second parent, with some additional
random choices in case of infeasibility.

• Heuristic greedy or random crossover (HGreX or HRndX) [17]. The child cycle
is formed by choosing from each vertex the shorter of the two respective parent
arcs; in case of infeasibility some additional greedy or random choices are made.

• Mutation by inversion (IM) [9]. A part of the chromosome between two ran-
domly chosen positions is reversed.

• Mutation by reinsertion (RM) [11]. A randomly chosen vertex is taken out from
the chromosome and reinserted at a new randomly chosen position.

• Swap mutation (SM) [19]. Two randomly chosen vertices in the chromosome
are swapped.

Note that, contrary to the TSP, a chromosome in form of a permutation does
not determine uniquely a solution to the VRP. Namely, such chromosome must be
interpreted as a concatenation of vehicle routes, and many different combinations
of routes can produce the same concatenation. Consequently, using permutations
as chromosomes makes evaluation procedure much more complicated, since prior
to computing the objective function the permutation must be splitted into feasible
individual routes. If we insist on optimal evaluation, i.e. on such splitting that
minimizes the objective function, then the well known split procedure from [15]
must be used whose complexity per evaluation is O(n2). Another possibility is to
use a greedy splitting procedure, which is much faster but not optimal.

Apart from the mentioned components that originate from the TSP, EAs for the
VRP may also contain more general components that are applicable to any kind of
problem. Here are some examples.

• Selection is usually accomplished by tournament selection [12], where a prede-
fined number of chromosomes is picked up randomly, and then the best or the
worst of them is selected.

• The initial population is often formed by some heuristics or randomly.

• The termination condition is usually based on the elapsed time or on the number
of evaluations.



A Distributed EA for Solving the VRP 679

• Most algorithms support elitism [6], i.e. the best chromosome is never discarded.

In this paper we are dealing with DEAs, i.e. such EAs where more processes run
concurrently, each of them maintains its own subpopulation of chromosomes, and
communication is accomplished by migration of chromosomes. Obviously, DEAs
belong to a broader class of parallel EAs (PEAs) [3], i.e. EAs that use some kind of
parallel or concurrent computing.

There is a lot of papers on PEAs or even DEAs found in literature. However,
we are aware of only four papers [2, 4, 5, 13] that describe PEAs specifically for the
VRP. The algorithms from [2, 4, 5] cannot be called distributed since they use other
paradigms of parallel computing. The algorithm from [13] is not a proper EA since
it incorporates also two other heuristics. Thus we are not aware of any previous
work that completely fits in our focus of interest and describes a distributed and
purely evolutionary algorithm for the VRP.

3 ALGORITHM DESIGN

Our DEA for the VRP has been obtained after a careful experimental evaluation
of various design options. We have tried different evaluation procedures, different
crossover operators, and exclusion or inclusion of mutation or migration. Altogether
we have tested 24 variants of the algorithm in order to choose the best one. The
finally chosen variant is shown if Figure 1. Note that this pseudocode corresponds to
one process (one island), and each process executes its own copy of the same code.

In our algorithm, the chromosome is represented as a permutation of customer
vertices. The initialization procedure simply produces 30 random permutations. All
tournament selections are performed with 2 participants within a tournament. The
crossover operator is one of the following: OX, AEX, HGreX or HRndX. Mutation
is either IM, SM or RM. Evaluation is always accomplished according to the optimal
split procedure. One process executes only one crossover operator, and combines all
types of mutations. However, if there are more processes, then each of them chooses
a different crossover, thus creating a different environment for evolution. A process
is stopped after a given number of evaluations.

Note that our algorithm needs at least four processes to be fully operational.
Indeed, with that number of processes each crossover operator is performed by at
least one process. Still, in our experiments we will also use the sequential version of
the algorithm that runs with only one process. Since one process can execute only
one crossover operator, there in fact exist four different sequential versions, each
using a different crossover. We do not consider combining more crossovers within
the same process since according to our preliminary testing such version would not
produce better results.

In course of the algorithm, the population P changes due to insertions of new
chromosomes. All insertions rely on the concept of similarity. We say that two
chromosomes are similar if their goodness values differ in less than 0.5% of the
better value. Insertion “by taking into account similarity” means the following.



680 K. Puljić, R. Manger

DistributedEvolutionVRP( ) {

input the VRP instance and the EvaluationLimit;

initialize the population P with 30 chromosomes;

evaluate the whole population P;

EvaluationCount = 0; GenerationCount = 1;

while (EvaluationCount < EvaluationLimit) {

// crossover
Mother = a good chromosome from P selected by tournament;

Father = a good chromosome from P selected by tournament;

Child = crossover of Mother and Father;
evaluate Child; EvaluationCount += 1;
insert Child into P by taking into account similarity;

// mutation
Rnd = a random integer between 1 and 100;

if (Rnd == 1) { // probability 1 %

Mutant = a randomly chosen chromosome from P;

if (Mutant is not the best in P) {
mutate Mutant;
evaluate Mutant; EvaluationCount += 1;

}
}

// migration

if (GenerationCount % 50 == 0) {
Emigrant = a good chromosome from P
selected by tournament;

S = a randomly chosen population in another process;
send a copy of Emigrant to S;

scramble Emigrant;
evaluate Emigrant; EvaluationCount += 1;

}

if (Immigrant received) {
evaluate Immigrant; EvaluationCount += 1;
insert Immigrant into P by taking
into account similarity;

}
GenerationCount += 1;

}

}

Fig. 1. Pseudocode of our DEA for solving the VRP



A Distributed EA for Solving the VRP 681

• If there exists another chromosome in P that is similar to the new one, then the
better of those two “twins” is retained in P and the other one is discarded.

• If there is no similar chromosome, then the new one is retained in P , and some
other “bad” chromosome from P is selected by tournament and discarded.

It is easy to check that according to our rules the size of P always remains the
same, i.e. 30. Indeed, whenever a chromosome is inserted, another one is discarded.
Similarly, when an emigrant leaves P , it is replaced by its “scrambled” version, i.e.
by a new random chromosome.

Note also that our algorithm does not necessarily preserve the best chromosome
in P . Namely, that chromosome may migrate to another population S. Still, if the
migrant is the best within the whole algorithm, then it will surely survive in S. Thus
there is no strict elitism within one population, but there exists a form of elitism
when all populations are considered together.

As we can see, our algorithm performs a relatively intensive migration policy,
where one emigrant is sent every 50 generations, and an immigrant is received when-
ever it becomes available. The implemented migration frequency has been chosen
since it produced the best results in preliminary testing. This is in contradiction
with recommendations made by some other authors [3, 13] who claim that migra-
tions should be less intensive.

Putting it all together, our algorithm is characterized by the following properties.

• It is distributed, because it consists of more processes that work on separate data
and interact only by exchanging messages.

• It is asynchronous, namely processes do not wait one for another when they
exchange messages.

• It is purely evolutionary or non-hybrid. Indeed, it is built of evolutionary proce-
dures and operators, and it does not incorporate elements of any other heuristic
or metaheuristic.

• It is heterogeneous, in the sense that each process runs a different combination
of evolutionary procedures and operators.

4 ASSESSING THE QUALITY OF SOLUTION

In order to perform experiments, we have developed a C++ implementation of our
DEA for the VRP. Communication among processes has been realized with the
MPI library [16]. The implemented algorithm has been evaluated on 7 benchmark
VRP instances from the well known Christofides-Mingozzi-Toth collection [7]. Some
basic parameters of those instances are shown in Table 1. Experiments have been
performed on the Isabella computer cluster [10]. Up to 64 truly parallel processes
have been used.

Since our algorithm is randomized, its repeated execution on the same input
data with the same number of processes usually produces slightly different results.



682 K. Puljić, R. Manger

Problem Number Number Vehicle Cost of the
instance of customers of vehicles capacity best known

(n) (K) (C) solution

CMT01 50 5 160 524.61
CMT02 75 10 140 835.26
CMT03 100 8 200 826.14
CMT04 150 12 200 1 028.42
CMT05 199 17 200 1 291.45
CMT11 120 9 200 1 042.11
CMT12 100 10 200 819.56

Table 1. Benchmark VRP instances from the CMT collection

To amortize this effect of randomization, each experiment from our agenda has been
repeated 30 times. Consequently, all measured values reported in the forthcoming
Tables 2–5 and Figures 2–3 are in fact averages obtained over 30 repetitions. The
corresponding standard deviations are all below 0.03, thus assuring that the reported
averages are accurate and stable.

In our first round of experiments, we have solved each of problem instances with
different numbers of processes. As the termination condition, we have fixed the num-
ber of evaluations per process to 1 000 000. It means that a run with more processes
was in position to execute more evaluations. Note that the number of evaluations per
process roughly corresponds to the computing time. Thus the experiments model
a situation where one wants to improve solutions within a fixed time deadline by
engaging more computing resources and doing more work in parallel.

Problem Number of processes (p)
instance 1 4 8 12 16 24 32 64

CMT01 541.62 531.40 535.21 532.55 532.55 529.97 530.62 529.28
3.2% 1.3% 2.0% 1.5% 1.6% 1.0% 1.1% 0.9%

CMT02 871.65 862.47 858.09 857.24 857.78 854.24 855.29 853.48
4.4% 3.3% 2.7% 2.6% 2.7% 2.3% 2.4% 2.2%

CMT03 857.91 848.27 846.02 841.68 840.86 840.44 840.66 837.81
3.8% 2.7% 2.4% 1.9% 1.8% 1.7% 1.8% 1.4%

CMT04 1 104.34 1 074.14 1 073.04 1 067.62 1 062.55 1 068.14 1 062.53 1 058.43
7.4% 4.4% 4.3% 3.8% 3.3% 3.9% 3.3% 2.9%

CMT05 1 403.60 1 368.52 1 365.52 1 359.06 1 360.35 1 352.58 1 352.51 1 348.23
8.7% 6.0% 5.7% 5.2% 5.3% 4.7% 4.7% 4.4%

CMT11 1 090.55 1 064.37 1 058.49 1 056.60 1 054.83 1 053.28 1 054.46 1 052.02
4.6% 2.1% 1.6% 1.4% 1.2% 1.1% 1.2% 1.0%

CMT12 828.42 821.51 820.68 820.60 820.80 820.82 820.57 820.62
1.1% 0.2% 0.1% 0.1% 0.2% 0.2% 0.1% 0.1%

Average 4.7% 2.9% 2.7% 2.4% 2.3% 2.1% 2.1% 0.8%

Table 2. Solutions obtained with a fixed number of evaluations per process



A Distributed EA for Solving the VRP 683

The results of the first round of experiments are summarized in Table 2. The
table is organized so that each of its rows corresponds to a particular problem
instance, and each column to a particular number of processes p. Each table entry
refers to the solution obtained for the corresponding combination of problem instance
and p. The solution is described by its cost and as the relative error with respect to
the best known solution. The average error for a chosen p over all instances is also
given.

Figure 2 comprises a more detailed presentation of results for one chosen problem
instance. Each of the three graphs corresponds to a particular number of processes
and shows how the current solution for that number of processes depends on the
number of evaluations already executed per processor. The labels on the left border
of the figure denote the absolute solution cost, while the labels on the right border
refer to the relative cost compared to the best known solution.

1291

 1450

 0  200000  400000  600000  800000 1000000
1.00

1.04

1.06

S
ol

ut
io

n 
co

st

Evaluation per process

CMT05

4 processes
16 processes
64 processes

Fig. 2. Details for CMT05 – solution cost vs. number of evaluations per process

Note that Table 2 and Figure 2 include results where the number of processes is 1.
As we explained before, there are in fact four sequential versions of the algorithm.
Still, there is no confusion since any shown value refers to the version that happens
to be the best for that particular problem instance. In this way, our evaluation
of the algorithm is more strict. Namely, the results of distributed computing are
compared to the best available results obtained sequentially.



684 K. Puljić, R. Manger

The results presented in Table 2 and Figure 2 show clearly that the quality of
solution improves with more processes. This is quite plausible, namely with more
processes the algorithm executes more evaluations and is therefore able to find better
solutions. Still, we cannot be sure whether the observed improvement can only be
attributed to more computing.

In order to better understand how distribution affects the solution quality, we
have also performed a second round of experiments. Again we have solved each
problem instance repeatedly with more and more processes. But now we have fixed
the total number of evaluations in all involved processes to 4 000 000. Thereby each of
processes has been assigned roughly equal number of evaluations. Such experiments
model a situation where one is satisfied with solution quality but wants to speed up
computation by dividing the same amount of work to more computing resources that
work in parallel. The results of the second round of experiments are summarized in
Table 3. Organization of data is analogous to Table 2.

We can see from Table 3 that even in the second round of experiments the
quality of solution improves with more processes. This improvement is smaller than
in the first round, but it still exists. Since with more processes the total number
of evaluations is not increased but only redistributed, the observed improvement
cannot be attributed to more computing any more. Thus it must be a positive
effect of distribution by itself. It means that even in the first round of experiments
the improvement was only partially accomplished by more computing, while the
remaining part was due to distribution.

Problem Number of processes (p)
Instance 1 4 8 12 16 24 32 64

CMT01 537.59 531.40 535.46 533.26 533.18 530.98 531.49 533.32
2.5% 1.3% 2.1% 1.6% 1.6% 1.2% 1.3% 1.7%

CMT02 862.67 862.47 859.15 859.89 861.24 860.21 859.66 860.65
3.3% 3.3% 2.9% 2.9% 3.1% 3.0% 2.9% 3.0%

CMT03 848.42 848.27 848.12 845.01 844.79 843.09 844.82 842.01
2.7% 2.7% 2.7% 2.3% 2.3% 2.1% 2.3% 1.9%

CMT04 1 083.77 1 074.14 1 075.77 1 072.11 1 070.36 1 072.72 1 070.07 1 068.11
5.4% 4.4% 4.6% 4.2% 4.1% 4.3% 4.0% 3.9%

CMT05 1 382.29 1 368.52 1 369.77 1 364.45 1 368.48 1 362.00 1 362.14 1 363.21
7.0% 6.0% 6.1% 5.7% 6.0% 5.5% 5.5% 5.6%

CMT11 1 072.22 1 064.37 1 060.84 1 061.87 1 059.97 1 057.69 1 057.99 1 056.36
2.9% 2.1% 1.8% 1.9% 1.7% 1.5% 1.5% 1.4%

CMT12 823.79 821.51 821.13 821.17 821.03 821.21 821.15 821.20
0.5% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2%

Average 3.5% 2.9% 2.9% 2.7% 2.7% 2.5% 2.5% 2.5%

Table 3. Solutions obtained with a fixed total number of evaluations



A Distributed EA for Solving the VRP 685

5 MEASURING THE COMPUTING TIME

Apart from solution quality, in our experiments we have also measured computing
time. With such measurements it has been possible to determine the speedup of our
DEA, i.e. how much faster it runs with p processes than with 1 process.

Problem Number of processes (p)
instance 1 4 8 12 16 24 32 64

CMT01 53.25 15.97 7.98 5.68 4.11 2.82 2.10 1.17
3.33× 6.67× 9.38× 12.95× 18.91× 25.36× 45.66×

CMT02 67.85 22.53 11.38 7.72 5.57 3.74 2.86 1.56
3.01× 5.96× 8.79× 12.19× 18.13× 23.72× 43.49×

CMT03 126.63 39.58 20.02 13.10 9.51 6.41 4.85 2.60
3.20× 6.33× 9.67× 13.32× 19.77× 26.10× 48.79×

CMT04 193.65 60.37 30.21 20.34 15.00 10.03 7.56 4.04
3.21× 6.41× 9.52× 12.91× 19.31× 25.62× 47.92×

CMT05 243.32 81.37 40.41 26.58 19.71 13.16 9.89 5.18
2.99× 6.02× 9.16× 12.35× 18.50× 24.62× 47.01×

CMT11 177.79 56.37 27.58 19.32 13.84 9.29 7.00 3.69
3.15× 6.45× 9.20× 12.85× 19.13× 25.38× 48.21×

CMT12 108.63 37.93 19.79 12.72 9.25 6.26 4.71 2.54
2.86× 5.49× 8.54× 11.74× 17.37× 23.08× 42.69×

Average 138.73 44.87 22.48 15.06 11.00 7.38 5.57 2.97
3.11× 6.19× 9.18× 12.62× 18.73× 24.84× 46.25×

Table 4. Computing times for a fixed total number of evaluations

The following Table 4 shows the computing times and speedups for the second
round of experiments, thus the same round whose solutions have previously been
presented by Table 3. Organization of data is similar as in Tables 2 and 3. In each
table entry, the upper value is the total computing time in seconds, while the lower
value denoted with × is the speedup. The last row contains again average values
for a chosen p over all instances.

As we can see, the average speedup values range from 3.11 for 4 processes,
to 46.25 for 64 processes. The corresponding efficiency values [3], i.e. speedups
divided by numbers of processes, range from 78% to 72%. Thus the efficiency is
well below 100%. Indeed, because of communication costs, the algorithm running
with p processes is less than p times faster than with 1 process.

Note that the values from Table 4 are based on exact computing times measured
under condition that the algorithm with p processes must execute the same total
number of evaluations as with 1 process. One can say that such measurement is
unjust since it does not take quality of solution into account. Indeed, it is true that
the time with p processes is longer than the sequential time divided by p, but in that
longer period the algorithm also obtains better solutions. Consequently, it would



686 K. Puljić, R. Manger

Problem Number of processes (p)

instance 1 4 8 12 16 24 32 64

CMT01 53.16 2.50 2.90 1.22 0.36 0.18 0.12 0.04
21.24× 18.30× 43.72× 148.24× 296.75× 433.46× 1 424.42×

CMT02 67.54 18.75 5.77 3.83 3.59 2.51 1.56 1.15
3.60× 11.70× 17.63× 18.81× 26.89× 43.41× 58.83×

CMT03 125.77 37.22 19.41 6.50 4.24 2.60 3.12 0.88

3.38× 6.48× 19.35× 29.69× 48.34× 40.31× 142.18×

CMT04 193.28 21.35 12.01 5.83 4.27 2.92 2.15 0.95
9.05× 16.09× 33.16× 45.24× 66.11× 89.77× 203.35×

CMT05 241.91 22.64 16.58 7.47 7.49 3.50 2.78 1.82
9.08× 14.59× 32.38× 32.30× 69.03× 87.15× 132.77×

CMT11 177.04 24.72 10.05 6.53 3.18 2.10 1.69 0.66
7.16× 17.62× 27.10× 55.71× 84.22× 104.63× 267.92×

CMT12 108.41 10.89 5.70 3.48 2.27 2.29 1.31 0.70
9.96× 19.01× 31.13× 47.80× 47.28× 82.72× 155.73×

Average 138.16 20.30 10.35 4.98 3.63 3.57 1.82 0.89
9.07× 14.83× 29.21× 53.97× 91.23× 125.92× 340.74×

Table 5. Computing times needed to reach target solution quality

 0

 50

 100

 150

 200

 250

 300

 350

 0  10  20  30  40  50  60  70

A
ve

ra
ge

 s
pe

ed
up

Number of processes p

Measured values

p1.4

p

Fig. 3. Reaching a target solution quality – average speedup vs. number of processes



A Distributed EA for Solving the VRP 687

be more appropriate to compare versions of the algorithm that produce the same
solution quality.

To enable such more appropriate assessment of speedup, we have monitored the
execution of our algorithm in more detail, and recorded the exact moments when
it obtains certain solutions. In other words, we have collected the data needed to
simulate a different termination condition, which stops the algorithm when it reaches
a desired solution quality. By scanning the detailed recordings, it has always been
possible to determine the exact time when the algorithm with p processes obtains
the solution with the same relative error as the sequential algorithm performing
all 4 000 000 evaluations. It has indeed always been possible thanks to the fact
that the distributed algorithm finally achieves a better solution than the sequential
algorithm. The times determined in this way and the corresponding speedups are
given in Table 5. The same data are graphically presented by Figure 3.

As we can see from Table 5, the average speedup computed by taking into
account solution quality ranges from 9.07 for 4 processes, to 340.74 for 64 processes.
The equivalent efficiency values range from 226% to 532%. Thus, we deal here with
a superlinear speedup since its value for p processes is well above p, and the efficiency
is well above 100%. Figure 3 shows that the values from Table 5 interpreted as
a function of p can quite closely be approximated by the superlinear function p1.4.

6 DISCUSSION

In the previous section we have presented some results dealing with the speedup of
our distributed evolutionary algorithm. Since the considered algorithm is fairly com-
plex, measuring its speedup is certainly not a straightforward task. Consequently,
it would not be a surprise if some readers come up with their own ideas how the
speedup should be computed. In this section we analyze some possible criticisms
regarding our calculations and explain why we still believe that our approach is the
most appropriate.

First of all, some people would not be pleased with our definition of speedup.
Indeed, we measure the so-called weak speedup [1, 3] where a distributed algorithm is
compared to the sequential version of the same algorithm (i.e. to the same algorithm
running with the number of processes set to 1). There are some other definitions
found in literature: e.g. the strong speedup [1] where the “best known” sequential
algorithm is involved, or the orthodox speedup [1] where a distributed algorithm is
run for comparison as a set of concurrent (quasi-parallel) processes on one processor.

Obviously, the weak speedup is the most appropriate for our purposes. Namely,
our aim was to study the effects of distribution to an evolutionary process. Thus
we have to compare our distributed algorithm to its sequential version where evolu-
tion is still present but distribution is missing. The strong speedup does not make
sense because the “best known” sequential algorithm is probably not evolutionary.
Also, the orthodox speedup is not suitable since it is based on a sequential algo-
rithm that produces exactly the same results as the distributed algorithm – thus



688 K. Puljić, R. Manger

only load-balancing capabilities are measured and not any algorithmic improve-
ments.

As mentioned before, there is a slight problem with the weak speedup in our
particular case. Namely, there are in fact four versions of the sequential algorithm,
each with a different crossover operator. To overcome this problem, we have always
used the results of the version that is the best for a particular problem instance.
In this way, our assessment of speedup is more stringent, and it has a flavor of
“strongness”.

Some readers may feel that our method of computing speedup is not fair, because
the distributed algorithm can use all four crossover operators and the sequential
algorithm only one. Indeed, on the first sight it seems plausible that the sequential
algorithm, if allowed to run all four crossovers, would be able to produce better
results, thus cutting down the advantages of the distributed version.

To address this issue, let us repeat again that prior to our main experiments we
have done a lot of preliminary testing. In addition to the “plain” sequential versions
of the algorithm using one crossover each, we have also tested the “mixed” version
that picks up among four crossovers randomly with equal probability. It turned out
that for each particular problem instance one plain version is the best (not always
the same one!), while the mixed version is somewhere between the best and the
worst plain version. Thus if we based our calculations on the mixed version, the
speedups would be even larger than they are now. Consequently, our approach with
best plain versions is in fact more rigorous.

Another possible reason why our way of computing speedup may look unjust is
the following. The population size in the sequential algorithm is 30, while in the
distributed algorithm each process has a population with size 30, thus making the
total number of involved chromosomes much larger. So the sequential version seems
to be in a bad position since it must choose its final solution from a much smaller
set of available solutions.

To address the last criticism, we have done some additional testing. We have run
the sequential algorithm on our problem instances with a fixed number of evaluations
but with a varying population size. It turned out that, in general, increasing the
population size above a certain threshold has a negative effect on the solution quality;
or, differently speaking, all that really counts is the number of evaluations, not
the number of chromosomes. Consequently, our approach to computing speedup is
appropriate, and the chosen population size 30 per process seems to be just right.

The observed behavior of the sequential algorithm regarding the population size
can be explained in the following way. If the population size is large, then the given
number of evaluations is spread among many chromosomes and each chromosome
receives a small portion of processing in average; so there is a big choice of solutions,
but all of them are immature. On the other hand, if the population is smaller, then
the same number of evaluations is applied to less chromosomes and some chromo-
somes are improved several times. Thus there is a choice among a smaller number
of well developed solutions. So putting it all together, we can expect similar results
if the processing effort is the same, no matter how large is the set to be processed.



A Distributed EA for Solving the VRP 689

Problem Population size
Instance 1×30 4×30 8×30 12×30 16×30 24×30 32×30 64×30

CMT01 541.48 540.69 542.11 544.21 547.20 551.87 553.24 565.77

3.2% 3.1% 3.3% 3.7% 4.3% 5.2% 5.5% 7.8%

CMT02 865.95 867.49 878.49 885.86 888.20 890.30 893.27 910.26
3.7% 3.9% 5.2% 6.1% 6.3% 6.6% 6.9% 9.0%

CMT03 861.12 855.61 865.61 879.34 879.85 895.72 902.88 928.63
4.2% 3.6% 4.8% 6.4% 6.5% 8.4% 9.3% 12.4%

CMT04 1 107.55 1 098.94 1 106.34 1 107.31 1 124.29 1 138.22 1 154.99 1 194.28
7.7% 6.9% 7.6% 7.7% 9.3% 10.7% 12.3% 16.1%

CMT05 1 415.05 1 391.60 1 404.35 1 425.95 1 443.09 1 459.34 1 469.02 1 521.85
9.6% 7.8% 8.7% 10.4% 11.7% 13.0% 13.7% 17.8%

CMT11 1 076.57 1 084.33 1 094.40 1 103.07 1 111.23 1 119.64 1 126.01 1 143.71
3.3% 4.1% 5.0% 5.8% 6.6% 7.4% 8.1% 9.7%

CMT12 826.14 827.85 832.28 835.01 836.85 837.63 841.48 856.07
0.8% 1.0% 1.6% 1.9% 2.1% 2.2% 2.7% 4.5%

Average 4.6% 4.3% 5.2% 6.0% 6.7% 7.6% 8.4% 11.1%

Table 6. More solutions – one process, mix of crossovers, fixed number of evaluations

In reality, the performance with a larger population becomes even worse. This is
because the algorithm spends more time for the same number of evaluations since
it has to manipulate larger data sets.

Our claims about the sequential version of the algorithm are documented in more
detail by Table 6. The shown results have been obtained with the mixed sequential
version, but analogous results are also available for plain versions. The table shows
the solutions for a fixed number of evaluations and varying population size. Each
row corresponds to a particular problem instance, and each column to a particular
population size. Each solution is again described by its cost and as the relative error
versus the best known solution. The number of evaluations is fixed to 4 000 000, i.e.
it is the same as in the previous round of experiments described in Sections 4 and 5.
The population size ranges from 30 up to 64× 30, thus mimicking the total number
of chromosomes in the previous experiments with 1 or up to 64 processes.

By comparing the first column in Tables 3 and 6, we can see that the mixed
sequential version of the algorithm really produces worse results than the best of
plain versions. Mutual comparison of columns within Table 6 clearly shows that
increasing the population size does not improve the solution quality, quite contrary.

7 CONCLUSIONS

In this paper we have demonstrated that EAs for the VRP can be considerably
improved by distribution. Indeed, we have presented a distributed algorithm that,
according to very strict measurements, achieves a superlinear speedup. Thus our
algorithm not only runs faster due to parallel computing, but it also produces better



690 K. Puljić, R. Manger

results for the same total amount of computing. Such improvement is possible
because a set of heterogeneous and fairly isolated evolutionary processes can assure
more diverse search for solutions than a single process.

In this paper we were only interested in exploring the potential of evolutionary
algorithms to solve the VRP, and how that potential can be enhanced by distribu-
tion. We were not aiming to design the most competitive algorithm for the VRP
so far. Consequently, we restricted only to evolutionary operations and migration.
Otherwise it would not be possible to determine whether the obtained quality of
solution is really assured by evolution and distribution, or by other paradigms.

Of course, if we need even better quality of solution, we could still upgrade our
algorithm with additional heuristics. For instance, a better initial population could
be created by some constructive heuristics; or the subsequent populations could be
optimized by some form of local search. Then we would obtain solutions comparable
to those produced by the best available hybrid algorithms.

REFERENCES

[1] Alba, E.: Parallel Evolutionary Algorithms Can Achieve Superlinear Performance.
Information Processing Letters, Vol. 82, 2002, No. 1, pp. 7–13.

[2] Alba, E.—Dorronsoro, B.: Solving the Vehicle Routing Problem by Using Cel-
lular Genetic Algorithms. In: J. Gottlieb and G.R. Raidl (Eds.): Proceedings of the
4th European Conference on Evolutionary Computation in Combinatorial Optimiza-
tion (EvoCOP 2004), Coimbra, Portugal, April 5–7, 2004. LNCS Vol. 3004, Springer
Verlag, Berlin 2004, pp. 11–20.

[3] Alba, E. (Ed.): Parallel Metaheuristics: A New Class of Algorithms. John Wiley
and Sons, Hoboken (NJ) 2005.

[4] Alba, E.—Dorronsoro, B.: Computing Nine New Best-so-far Solutions for Ca-
pacitated VRP with a Cellular Genetic Algorithm. Information Processing Letters,
Vol. 98, 2006, pp. 225–230.

[5] Berger, J.—Barkaoui, M: A Parallel Hybrid Genetic Algorithm for the Vehicle
Routing Problem with Time Windows. Computers and Operations Research, Vol. 31,
2004, pp. 2037–2053.

[6] Choi, I.—Kim, S.—Kim, H.: A Genetic Algorithm with a Mixed Region Search for
the Asymmetric Traveling Salesman Problem. Computers and Operations Research,
Vol. 30, 2003, pp. 773–786.

[7] Diaz, B. D.: The VRPWeb. Languages and Computation Sciences Department, Uni-
versity of Malaga, 2010. Available on: http://neo.lcc.uma.es/radi-aeb/WebVRP.

[8] Gutin, G.—Punnen, A.P. (Eds.): The Traveling Salesman Problem and Its Va-
riations. Kluwer Academic Publishers, Dordrecht (NL) 2002.

[9] Hwang, H.-S.: An Improved Model for Vehicle Routing Problem with Time Con-
straint Based on Genetic Algorithm. Computers and Industrial Engineering, Vol. 42,
2002, pp. 361–369.



A Distributed EA for Solving the VRP 691

[10] Isabella Computer Cluster. University Computing Centre, Zagreb 2010. Availaible

on: http://www.srce.hr/isabella.

[11] Larranga, P.—Kuijpers, C.M.H.—Murga, R.H.—Inza, I.—Dizdare-

vic, S.: Genetic Algorithms for the Travelling Salesman Problem: A Review of Rep-

resentations and Operators. Artificial Intelligence Review, Vol. 13, 1999, pp. 129–170.

[12] Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs.
Third Edition, Springer, New York (NY) 1995.

[13] Ochi, L. S.—Vianna, D. S.—Drummond, L.M.A.—Victor, A.O.: A Parallel
Evolutionary Algorithm for the Vehicle Routing Problem with Heterogeneous Fleet.
Parallel and Distributed Processing, LNCS Vol. 1388, Springer Verlag, Berlin 1998.

[14] Pongcharoen, P.—Stewardson, D. J.—Hicks, C.—Braiden, P.M.: Apply-
ing Designed Experiments to Optimize the Performance of Genetic Algorithms Used
for Scheduling Complex Products in the Capital Goods Industry. Journal of Applied
Statistics, Vol. 28, 2001, No. 3 and 4, pp. 441–455.

[15] Prins, C.: A Simple and Effective Evolutionary Algorithm for the Vehicle Routing
Problem. Computers and Operations Research, Vol. 31, 2004, pp. 1985–2002.

[16] Quinn M. J.: Parallel Programming in C with MPI and OpenMP. McGraw-Hill,
New York (NY) 2003.

[17] Tan, K.C.—Lee, L.H.—Zhu, Q. L.—Ou, K.: Heuristic Methods for Vehicle
Routing Problem with Time Windows. Artificial Intelligence in Engineering, Vol. 15,
2001, pp. 281–295.

[18] Toth, P.—Vigo, D. (Eds.): The Vehicle Routing Problem. SIAM Monographs on
Discrete Mathematics and Applications, SIAM, Philadelphia 2002.

[19] Zhong, Y.—Cole, M.H.: A Vehicle Routing Problem with Backhauls and Time
Windows: A Guided Local Search Solution. Transportation Research Part E: Logistic
and Transportation Review, Vol. 2, 2005, pp. 131–144.

Krunoslav Pulji�
 received his B. Sc., M. Sc. and Ph.D. degrees
in mathematics from the University of Zagreb in 1999, 2004 and
2009, respectively. He is now a research assistant at the Depart-

ment of Mathematics, University of Zagreb. His research inter-
ests include combinatorial optimization, evolutionary algorithms
and object-oriented software engineering. He has published two
papers in scientific journals and two more papers in conference
proceedings. He is a member of the Croatian Mathematical So-
ciety.



692 K. Puljić, R. Manger

Robert Manger received the B. Sc. (1979), M. Sc. (1982), and

Ph.D. (1990) degrees in mathematics, all from the University of
Zagreb. For more than ten years he worked in industry, where
he gained experience in programming, computing, and design-
ing information systems. He is presently a Professor at the De-
partment of Mathematics, University of Zagreb. His current
research interests include combinatorial optimization, parallel
and distributed algorithms, and soft computing. He has pub-
lished 20 papers in international scientific journals, over 30 scien-
tific papers in conference proceedings, 10 professional papers,

and 4 course materials. He is a member of the Croatian Mathematical Society, Croatian
Society for Operations Research and of IEEE Computer Society


