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Abstract. Online social networks provide large amount of valuable data and may
serve as research platforms for various social network analysis tools. In this study,
we propose a mathematical model for efficient exploration of an online social net-
work. The goal is to spend minimal amount of time searching for characteristics
which define a sub-network of users sharing the same interest or having certain com-
mon property. We further develop an efficient hybrid method (HEA), based on the
combination of an Evolutionary Algorithm (EA) with Local Search procedure (LS).
The proposed mathematical model and hybrid method are benchmarked on real-size
data set with up to 10 000 users in a considered social network. We provide optimal
solutions obtained by CPLEX solver on problem instances with up to 100 users,
while larger instances that were out of reach of the CPLEX were efficiently solved
by the proposed hybrid method. Presented computational results show that the
HEA approach quickly reaches all optimal solutions obtained by CPLEX solver and
gives solutions for the largest considered instance in very short CPU time.
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1 INTRODUCTION

The concept of network has been widely used in the literature for describing online
friendships and connections between users of online social sites. The studies on
Twitter [18], blog sites [17, 25], Facebook and LinkedIn [8, 14, 20] use the model of
network to represent the users of a social site, connections and interactions between
them. Online social networks offer the opportunity to a user to create its own profile
and connect to other users’ profiles on different ways: via declaration, acceptance,
friendship, appreciation (“like”), depreciation (“dislike”), etc. These networks may
be open to everybody, or built around a particular group of people which share the
same interest or certain common characteristic [6].

Enormous global popularity of online social network sites has initiated numerous
studies and methods investigating different aspects of their use. The development
of automated data collection and visualization processes have also contributed to
the increased interest in research concerning online social networks. For example,
the study by Lewis et al. [20] concerns interests and connections between univer-
sity students on Facebook. Lerman and Ghosh in [19] investigate how the news
spreads along networks of Twitter and Digg users, while Bruns et al. [7] deal with
tracking topical discussions on blogs. Several hyperlink analysis methods have been
developed, representing a part of webometrics, which measures and analyzes activ-
ity in cyberspace [30]. Several softwares have been introduced for exploring online
social networks: Gephi – an open source software for exploring and manipulating
networks [4], SocSciBot – a software designed to collect data on organizational hy-
perlink networks on the web [33], IssueCrawler – another software that enables the
collection and analysis of hyperlink data, and is popular in the humanities and social
sciences [34], etc.

As different events and themes provoke varying interactions and conversations,
it is proposed that an analysis would help studies of online social networks by fur-
ther examining the dynamics of links and information flow. Communications and
interactions between users (represented by nodes) can be used to identify a sub-
network of the initial online social network, i.e. the group of users having certain
common interest. Similarly, connections among different online social networks sites
can be found through hyperlinks. Concepts and models from network-based studies
in optimization theory and applications may be adapted for research into online
networks, such as facility location models [11, 28], hub networks [3, 9], network flow
models [2, 5] and covering models [16, 29].

In this paper, we present a mathematical model for efficient analysis of an on-
line social network, providing new information on linking behaviors and information
flow within this network. We consider an online social network with large number
of users exchanging some information. The goal is to design an efficient search stra-
tegy, which will help to identify nodes that exchange information containing certain
keywords, which further may indicate that identified nodes belong to the same in-
terest group. The proposed model may be used in various social behavior studies,
market research, political marketing and also in security purposes, such as discov-
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ering sexual harassment, child pornography, mobbing, bullying in the cyberspace
etc.

Our idea is to focus attention on the nodes in the network which exchange the
largest amounts of information flow. Among them, we identify certain number of
control points and consider the flow which goes from/to these nodes. The goal is to
decide which nodes will be chosen as control ones, such that maximal time needed
to search the information flow from/to a chosen control node is minimized. Once
we identify the sub-network of control nodes, we consider the flow that departs or is
destined to the chosen control nodes and search it by using certain keywords. The
choice of a keyword (one or more) depends on the nature and scope of the research
on the considered online social network.

The proposed model is benchmarked on three generated data sets containing
instances with different number of nodes. The CPLEX 12.1 solver is used to solve
instances to optimality, but it only provided optimal solutions for instances of smaller
size. In order to solve instances of real-life dimensions, we designed a hybrid evolu-
tionary based method - HEA. The proposed HEA successfully combines an efficient
local search heuristic and an evolutionary algorithm approach. The conducted com-
putational experiments show the robustness and efficiency of the HEA approach
when solving the instances from all three considered benchmark sets, especially the
ones of real-life dimensions.

The remainder of the paper is organized as follows. In Section 2, we formu-
late the problem and present its mathematical formulation. Section 3 explains in
detail all important aspects of the proposed hybrid algorithm HEA. In Section 4,
we present and discus computational results on the generated small, medium and
large-scale benchmark sets. In Section 4, we present optimal solutions obtained
by CPLEX 12.1 solver on the small-size problem instances with up to 100 users.
We further provide results of the proposed HEA on all three generated benchmark
sets, in which the largest considered instances involve up to 10 000 user nodes. Fi-
nally, in Section 5, we draw out some conclusions and propose ideas for the future
work.

2 PROBLEM DESCRIPTION
AND MATHEMATICAL FORMULATION

We consider the set I = {1, . . . , n} of n users in a network. By W = [wij] we
denote the data flow matrix n× n, where wij ≥ 0 is the number of data flow units
that originate from user i and are directed to user j. For each i ∈ I, we calculate
Gi =

∑
j∈I wij +

∑
j∈I,i 6=j wji, representing the the sum of data flow units that are

received or sent by a node i. Note that in general case, wii 6= 0 and flow preservation
equality

∑
j∈I wij =

∑
j∈I wji does not hold necessarily for each i ∈ I.

User nodes i ∈ I are sorted in descending order according to the assigned
flows Gi. In this way, we obtain the array ik, k = 1, . . . , n, where Gi1 ≥ Gi2 ≥
. . . ≥ Gin holds. We consider only the first m ≤ n members of the sorted array
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and obtain the subset J = {i1, . . . , im}, J ⊆ I. Parameter m depends on n in
a pre-determined way (m = n/2, m = n/3, m = n/4, . . . ) and it may be varied.

In this study, we have chosen m ≤ n nodes from I that exchange the largest
amount of flow to obtain J ⊆ I. However, the subset J may be derived from I re-
garding some other criterion, such as: incoming or outcoming data flow, geographical
position of user nodes, the frequency of exchanging information, etc. A combina-
tion of two or more criteria may also be considered, depending on the situation in
practice.

We further introduce the following notation:

• p is the number of control nodes to be chosen among the nodes from J ;

• T = [tij] is matrix n×n, where tij > 0 is the time needed to search through one
unit of data flow which originates from user i and is directed to user j;

• α ∈ (0, 1) is the parameter which reflects a faster search through the data flow
between chosen control nodes from J ;

• bk, k ∈ I is the capacity of a node k, i.e. the maximal time that can be spent in
searching through the incoming data to a node k.

The goal of the problem is to determine locations for exactly p control nodes,
such that the maximal time needed to search the flow through the chosen control
nodes is minimized.

The formulation uses binary decision variables:

yj =

{
1 if j is chosen as control node,

0 otherwise,

for each j ∈ J and a non-negative decision variable z, representing the upper limit
on the time needed to search the flow in the sub-network of control nodes.

Using the notation above, the mathematical formulation of the can be written
as:

min z (1)

subject to: ∑
j∈J

yj = p (2)

∑
i∈I

wiktikyk + (α− 1)
∑
i∈J

wiktikykyi ≤ bk, ∀k ∈ J (3)

∑
i∈I

(wiktik + wkitki)yk + (α− 1)
∑
l∈J

(wkltkl + wlktlk)ykyl − αwkktkkyk ≤ z, ∀k ∈ J

(4)
yj ∈ {0, 1}, ∀j ∈ J (5)

z ≥ 0. (6)
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By objective function (Equation (1)) we minimize the maximal time needed
to search the flow through an established control node. Constraint (Equation (2))
indicates that exactly p control nodes are established. Constraints (Equation (3))
ensure that the time spent in searching through the incoming data to each control
node is limited. By constraints (Equation (4)), we impose the lower bounds on the
value of objective variable z. Constraints (Equation (5)) reflect the binary nature of
decision variables yj, while (Equation (6)) denotes that continuous variable z takes
a non-negative value.

Note that capacity constraint (Equation (3)) will be satisfied if yk = 0, i.e. node
k ∈ J is not chosen as control one. If yk = 1, it means that k ∈ J is control node
and the left side L of constraint (Equation (3)) can be written as:

L =
∑
i∈I\J

wiktik +
∑
i∈J

wiktik + (α− 1)
∑
i∈J

wiktikyi

=
∑
i∈I\J

wiktik +
∑

i∈J,yi=0

wiktik +
∑

i∈J,yi=1

wiktik + (α− 1)
∑

i∈J,yi=1

wiktik

=
∑
i∈I\J

wiktik +
∑

i∈J,yi=0

wiktik + α
∑

i∈J,yi=1

wiktik

Therefore, if yk = 1, the constraint (Equation (3)) reduces to

∑
i∈I\J

wiktik +
∑

i∈J,yi=0

wiktik + α
∑

i∈J,yi=1

wiktik ≤ bk (7)

Example 1. Consider a network I with n = 10 user nodes. Flow matrix W and
cost matrix T are given by

W =



68 1 25 59 65 0 82 62 96 28
92 0 0 93 22 0 0 48 72 70
0 100 95 0 0 34 65 12 69 45
58 60 42 79 0 91 89 0 43 49
6 30 51 0 0 49 24 55 41 77
9 40 24 39 0 30 34 0 59 0
78 0 87 46 73 30 74 13 91 37
68 75 53 51 25 31 0 8 58 54
46 0 0 22 23 7 14 1 63 11
25 49 96 3 92 75 0 22 100 85


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and

T =



0.1 0.4 0.3 0.9 0.8 0.8 0.1 0.8 0.7 0.7
0.8 0.3 0.8 0.3 0.7 0.1 0.1 0.7 0.3 0.4
0.9 0.6 0.5 0.1 0.1 0.9 0.9 0.6 0.8 0.3
0.4 0.8 0.4 0.9 0.9 0.2 0.5 0.5 0.3 0.3
0.3 0.7 0.4 0.3 0.8 0.1 0.8 0.8 0.1 0.6
0.8 0.1 0.9 0.8 0.9 0.7 0.2 0.2 0.8 0.2
0.8 0.9 0.1 0.7 0.8 0.1 0.5 0.8 0.6 0.1
0.2 0.4 0.2 0.5 0.8 0.6 0.2 0.6 0.5 0.3
0.9 0.2 0.4 0.6 0.1 0.8 0.2 0.1 0.1 0.9
0.7 0.6 0.2 0.9 0.5 0.2 0.1 0.1 0.3 0.9


.

Exactly m = 4 nodes which exchange the largest amounts of flow are to be
identified, representing potential locations for p = 2 control nodes. Parameter α =
0.5 denotes reductions when exploring the data traffic between the chosen control
nodes.

For each node i ∈ I we calculate the amount of flow that goes from/to node i and
obtain the array G = (G1, G2, . . . , Gn) = (936, 752, 893, 903, 633, 582, 911, 644, 879,
1 003) (see Figure 1). The array of nodes sorted according to the assigned amount of
flow (in decreasing order) is: 10, 1, 7, 4, 3, 9, 2, 8, 5, 6. Since m = 4, the nodes 10,
1, 7 and 4 will be chosen for the subset J ⊂ I.

1 2 3 4 5

6 7 8 9 10

G1 = 936 G2 = 752 G3 = 893 G4 = 903 G5 = 633

G6 = 582 G7 = 911 G8 = 644 G9 = 879 G10 = 1 003

Figure 1. The set of nodes I with corresponding amounts of data flow Gi

Capacity constants bk have direct impact on optimal solution of the prob-
lem. Different values for capacities bk may lead to different optimal solutions on
the same problem instance. In some cases, the solution may not exist due to
lower value of one or more bk. Considering the capacity constraint Equation (3)
and the inequality Equation (7), we conclude that bk should be chosen such that∑

i∈I\J wiktik + α
∑

i∈J wiktik ≤ bk holds for every k = 1, . . . , n, in order to provide

feasibile solution of the problem, even in the worst case (when all yk = 1, k ∈ J).
If bk, k = 1, . . . , n are larger than the values on the left side of this inequality, the
problem reduces to uncapacitated case.

In order to demonstrate the impact of the capacity constants bk on the solution
of the problem, we have considered different values of bk in our example and solved
the obtained problems to optimality, if possible.
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a) Let bk = 240 for every k = 1, . . . , n. In this case, the obtained optimal solu-
tion indicates that control nodes are located at 4 and 7 and the corresponding
objective function value is 396.85.

b) Let bk = 200 for every k = 1, . . . , n. In optimal solution, nodes 7 and 10 are
chosen as control ones, and the objective function value is 408.55.

c) Let (b1, . . . , bn) = (140, 210, 170, 230, 190, 200, 120, 140, 150, 190). In optimal so-
lution for this case, control nodes are located at 10 and 4 and objective value is
426.5.

d) Let bk = 180 for every k = 1, . . . , n. In this case, the problem has no feasible
solution.

Optimal solutions for the cases a), b) and c) are presented in Figure 2 (from left
to right).

2

3 5

6

89

7 1

10 4
2

3 5

6

89

7 1

10 4
2

3 5

6

89

7 1

10 4

(a) (b) (c)

Figure 2. Optimal solution for cases a), b) and c)

3 PROPOSED HYBRID EVOLUTIONARY ALGORITHM

Evolutionary algorithm is an optimization technique based on the imitation of the
natural process of evolution [15]. However, there are many situations in which a pure
evolutionary algorithm does not perform particulary well. The main drawbacks
of a pure EAs are the slow convergence and the possibility of finishing in a local
optimum. One of the strategies for speeding up the convergence and avoiding a local
optimum trap is to incorporate other exact or heuristic methods into the pure EA.
Various hybridizations of the EA with other methods have been proposed in the
literature: [1, 10, 12, 22, 26, 27, 32, 31], etc.

In this paper, we propose an efficient hybrid method (HEA) based on combining
the evolutionary approach with a local search improvement procedure. The role
of the evolutionary part in the proposed HEA is to direct the search to promising
regions of a search space. Once promising regions with high quality solutions have
been identified, a local search method is applied in order to determine the best
solutions in these regions. Solutions generated by the means of evolutionary opera-
tors are subject to the local search procedure. Improved solutions will enter a new
generation only if they satisfy a fitness quality criteria.
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The basic scheme of the proposed HEA approach is presented in Algorithm 1.

Algorithm 1 The basic structure of the HEA

1: Read Input()
2: Generate initial population()
3: while not Termination criteria do
4: Fitness function calculation()
5: Selection()
6: Recombination()
7: Local search procedure()
8: end while
9: Write output()

After generating the initial population, a greedy procedure has been used in
order to evaluate fitness function of individuals, representing potential solutions
of the problem. In each generation of the HEA, the worst 1/3 of the population
is replaced, while the remaining 2/3 of the population are directly passed to the
next generation. The chromosome and the objective function value of the best
individual are saved and updated when an improvement is obtained. A tournament
selection operator with different number of tournament participants is used. As
a recombination operator, we use a modified crossover operator that is adopted
to the problem under consideration. Simple and efficient Local search procedure
is applied in order to improve newly-generated individuals. Among the improved
individuals we choose the best fitted ones to enter new generation. Several additional
strategies have been applied in order to increase the efficiency of the proposed hybrid
algorithm. The HEA uses a combination of two termination criteria: the algorithm
stops if the maximal number of 50 000 generations is reached or no improvement of
the best individual is achieved through 5 000 consecutive generations.

3.1 Evolutionary Part of the HEA

The proposed HEA algorithm uses the binary representation of solutions. Each
solution is represented by a binary string (chromosome) of length m = |J |. Each bit
in a chromosome corresponds to one potential control node from J . If the bit on the
kth position in the chromosome takes the value of 1, it means that a control node is
located at the node on the kth position in the sorted array of nodes from J regarding
the amount of data flow, and 0 otherwise. The values of binary variables yk, k =
1, 2, . . . ,m are obtained from the chromosome. For example, chromosome chr =
(0, 0, 1, 1) corresponds to optimal solution of the problem presented in Example 1
with n = 8, m = 4 and p = 2. Control nodes are located at nodes at positions 3
and 4 in the sorted array of nodes in J , which gives us the values of variables yk:
y3 = y4 = 1 and y1 = y2 = 0. Since the sorted array of nodes in J is 10, 1, 7, 4, it
means that the nodes with indices 4 and 7 from the initial set of user nodes I are
chosen as control ones.
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The initial indices of established control nodes are easily obtained by taking the
first m members of the sorted vector (i1, i2, . . . , im, im+1, . . . , in) of nodes in I and
calculating the product of vector (i1, i2, . . . , im) and vector representing a genetic
code (y1, . . . , ym), which is defined as (i1, i2, . . . , im) ∗ (y1, . . . , ym) = (i1 · y1, i2 ·
y2, . . . , im · ym). In our example, (10, 1, 7, 4) ∗ (0, 0, 1, 1) = (0, 0, 7, 4), which gives us
the indices of chosen control nodes.

The fitness function of an individual is equal to its objective function and it is
calculated in the following way. From an individual’s chromosome, we first obtain
the locations of established facilities (and therefore, the values of variables yk) and
then check whether the chromosome is correct or not. A chromosome is labeled as
“correct”, if the following two conditions are satisfied:

1. there exist exactly p ones in the chromosome;

2. inequality
∑

i∈I wiktikyk + (α − 1)
∑

i∈J wiktikyiyk ≤ bk is satisfied for each es-
tablished control node k ∈ J .

The objective function of a “correct” chromosome chr is then calculated as
follows:

max
k∈J

∑
i∈I

(wiktik + wkitki)chr(k)

+ (α− 1)
∑
l∈J

(wkltkl + wlktlk)chr(k)chr(l)− αwkktkkchr(k) (8)

where chr(k), chr(l) represent the bit values in chromosome chr at positions k and l,
respectively. Chromosomes that are not “correct” are excluded from the population
by setting their fitness to ∞. In this way, selection operator will prevent them to
enter the new generation.

The initial population, numbering 300 individuals, is generated randomly by
uniform distribution, which ensures good diversity of the genetic material. In order
to provide better quality of the genetic material in the initial population, individuals
in the initial population are created with exactly p ones in the genetic code. For
generating an individual’s genetic code, we first choose a random value by uniform
distribution i1 ∈ {1, 2, . . . ,m} and set the bit value at position i1 to 1. In the
same way, we randomly choose i2 ∈ {1, 2, . . . ,m} \ {i1}, i3 ∈ {1, 2, . . . ,m} \ {i1, i2},
. . . , ip ∈ {1, 2, . . . ,m} \ {i1, . . . ip−1} by uniform distribution and set bit values at
positions i2, . . . , ip to 1. Remaining m− p bits in the individual’s genetic code take
the value of 0.

A steady-state generation replacement scheme with elitist strategy is used, which
means that only 1/3 of individuals are replaced in every generation, while the best
2/3 of individuals are directly passing in the next generation. Elite individuals pre-
serve highly fitted genes and do not need recalculation of fitness function, which
provides additional time savings. In order to preserve the diversity of genetic ma-
terial in the population, we discard duplicate individuals from the population and
limit the appearance of individuals with the same fitness but different chromosomes
to some constant [35].
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As a selection method, we used the Fine Grained Tournament Selection, in-
troduced in [13]. Instead of having an integer tournament size, as in the classic
tournament selection, the Fine Grained Tournament Selection operator depends on
real parameter F representing the “desired tournament size”. In this HEA im-
plementation, F takes the value of 5.4, while the size of each tournament to be
performed is chosen from the set {bF c, dF e}.

Individuals that are tournament winners are further subjected to the modified
crossover operator. We randomly choose the pairs of parent-chromosomes that will
exchange their genetic material and produce two offspring-chromosomes.

The exchange of genetic material of parent-chromosomes chr1 and chr2 is per-
formed by repeating steps 1–3 exactly m/2 times:

1. Randomly choose a bit position i ∈ {1, 2, . . . ,m}, such that chr1(i) = 1 and
chr2(i) = 0;

2. Randomly choose a bit position j ∈ {1, 2, . . . ,m}, such that chr1(j) = 0 and
chr2(j) = 1;

3. Parent-chromosomes chr1 and chr2 exchange bits on the chosen positions i and j.

The probability that a chosen pair of parent-chromosomes will exchange bits and
create two offspring-chromosomes is set to 1/ 3

√
k, where k is the current number of

HEA iterations. If no bit exchange occurs, offspring-chromosomes remain identical
to their parents. Note that the proposed crossover operator preserves exactly p ones
in the offspring’s genetic codes. Therefore, created offspring will always satisfy the
first conditions to be labeled as “correct” individuals (see the definition above). The
probability of crossover decreases as the MA progresses, since we want to increase
the impact of local search procedure in later stages of the MA.

However, it may happen that one or both offsprings do not satisfy the second
condition for “correct” individual, i.e. capacity condition. This directly depends on
the chosen values of capacities bk. If the values of bk are “tight”, the possibility
to create infeasible offspring increases, while for “loose” values of bk the offsprings
are more likely to be “correct”. Offsprings that are not correct are excluded from
the population by setting their fitness to infinity in the fitness function calculation
part.

3.2 Local Search Procedure

Evolutionary-based algorithms, as nature-inspired optimization methods, often
make use of local search procedures for refining solutions that are generated during
the evolutionary exploration of the search space. At initialization part, the EAs
generally try to capture a global picture of the search space, and later, during the
search process, they successively focus the search on more promising regions of the
search space. However, the EAs are usually not so effective concerning the exploita-
tion of the accumulated search experience, that is, finding the best solutions in these
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high quality areas. On the other side, the strength of local search lies in the ca-
pability of quickly finding better solutions in the neighborhoods of given starting
solutions. The success of a hybridization of EA and local search method for solv-
ing different combinatorial optimization problems is in the fact that EA is good in
identifying promising areas of the search space in which local search methods can
then quickly determine the best solutions [23, 21, 24], etc.

In this paper, we exploit this idea and after the evolutionary phase, we apply
a local search method that is adopted to the problem under consideration. The local
search procedure LS is applied on each individual in each HEA generation, providing
additional improvements of solutions and preventing the EA to converge to a local
optimum. In the proposed Local search procedure, we first randomly choose two
bits on the positions r and s in an individual’s chromosome chr, having different
values. If, for example, chr(s) = 1 and chr(r) = 0, it means that the sth node is in
the sorted array of nodes from J is chosen as the control one, while the rth node ir
is not. We try to exchange established control node is ∈ J with non-established one
ir ∈ J , looking for an improvement of the fitness function. This step is repeated as
long as we obtain an improvement of the individual’s fitness value. Only in the case
that the new fitness value is better than the previous one, we perform necessary
changes in the individual’s genetic code and obtain a new, improved individual. By
exchanging two bits with different values in each iteration of the LS procedure, we
ensure that the number of bits with the value of 1 remains the same. In this way, we
preserve the feasibility of individuals, since the number of established control nodes
is fixed to p. The basic scheme of the implemented LS procedure is represented by
Algorithm 2.

Algorithm 2 Local search heuristic

1: for all chr ∈ population do
2: while exists improvement for chr do
3: Randomly choose bit position r in the chr, such that chr(r) = 0
4: Randomly choose bit position s in the chr, such that chr(s) = 1
5: Apply procedure Exchange(chr, r, s)
6: end while
7: end for

Note that the fitness evaluations of newly created individuals within LS cycles
is the most time-consuming part of the LS and it may significantly affect the total
running time of the HEA. Therefore, we apply a strategy for decreasing the com-
putational complexity of calculating fitness values of new individuals. Conducted
computational experiments showed that this strategy provides significant running
time reductions. The basic concept of the applied strategy is shown in Algorithm
3. The array {

∑
ik
}, ik ∈ J stores the values of the sum (6) for each ik ∈ J , while

the procedure RestoreValues restores previous values of the parameters in the case
of unsuccessful exchange of bits.
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Algorithm 3 Exchange bits on positions r and s in chromosome chr

1: Exchange(chr, r, s)
2: chr(r) = 1
3: chr(s) = 0
4: for all ik ∈ J , ik 6= ir do
5: if chr(k) = 1 then
6:

∑
ik

=
∑

ik
+(α− 1)(wiriktirik + wikir tikir) + (1− α)(wikistikis + wisiktisik)

7: end if
8: end for
9:
∑

ir
=
∑

k∈I(wkir tkir +wirktirk)+(α−1)
∑

il∈J(wiriltiril +wilir tilir)chr(l)−αwirir tirir
10: max = 0
11: for all ik ∈ J do
12: if

∑
ik
> bik then

13: return
14: end if
15: end for
16: for all ik ∈ J do
17: if chr(k) = 1 and

∑
ik
> max then

18: max =
∑

ik
19: end if
20: end for
21: if max < fitness(chr) then
22: fitness(chr) = max
23: else
24: RestoreValues()
25: return
26: end if

4 COMPUTATIONAL RESULTS

All computational experiments were carried out on an Intel Core i5-2430M on
2.4 GHz with 8 GB DDR3 RAM memory under Windows 7 operating system. The
HEA implementation was coded in C] programming language. On each instance
from the considered data set, the HEA was run 15 times with different random
seeds.

In order to verify the quality of the HEA solutions, optimization package CPLEX,
version 12.1, is used to solve considered instances to optimality, if possible. We have
imposed the time limit of 2h on CPLEX 12.1 runs as an additional stopping criterion
(if CPLEX 12.1 does not find optimal solution within this time, it will stop). The
CPLEX 12.1 has been run in the same computational environment as the proposed
HEA.

We have generated three sets of instances for our computational experiments:
small-size S, medium-size M and large-scale L. The values of parameters n, m for
each data set are presented in Table 1.
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Data set n = |I| m = |J |
Small-size data set (S) 50, 100 10, 20, 25

Medium-size data set (M) 200, 500, 750 50, 100

Large-scale data set (L) 1 000 ≤ n ≤ 10 000 100 ≤ m ≤ 1 000

Table 1. Data sets used in our computational experiments

Parameters p, α and input data wij, tij and bj are chosen in the following way:

• p ∈ [bm/4c, d3m/4e] and p ∈ N ;

• α ∈ (0, 1);

• wij ∈ U [0, 1 000];

• tij ∈ U [0, 1];

• bj ∈
[
0.95

∑
i∈J wijtij, 1.05

∑
i∈J wijtij

]
.

The notation used for column headings in Tables 3–5, presented in the remaining
part of this section, is given in Table 2.

Notation Description

S, M , L Instance type according to problem dimension
(Small, Medium, Large);

n, m, p Instance parameters
n = |I|, m = |J |, p =number of control nodes to be located;

Opt.Sol. Optimal solution obtained by CPLEX 12.1 solver;

t Total CPLEX 12.1 running time (in seconds);

N Number of nodes that CPLEX 12.1 used to obtain optimal solution;

Best.Sol. The best value of the HEA method, with mark Opt
in cases when the HEA reached optimal solution Opt.Sol.;

tHEA Average running time in which the HEA reaches
the best/optimal solution (in seconds);

gen Average number of the HEA generations;

agap Average gap of the HEA’s solution
from the optimal/best one (in percents);

σ Standard deviation of the HEA’s solution
from the optimal/best one (in percents).

Table 2. Notation used for presenting computational results

In Table 3, we present optimal solutions for 40 small-size tested instances, ob-
tained by CPLEX 12.1 solver and the best results of the proposed HEA approach.
On this small size data set, the average running time for the CPLEX 12.1 is 73.76
seconds, while the average number of nodes is around 7 325. The column Best.Sol.
in Table 3 shows that the proposed HEA approach reaches all optimal solutions
previously obtained by CPLEX 12.1 solver, while values in the next column t(s)
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Instance CPLEX HGA

S n m p Opt.Sol. t(s) Nodes Best.Sol. t(s) gen agap(%) σ(%)

1 50 10 4 778.679 0.499 12 Opt 0.001 1.6 0.000 0.000
2 50 10 4 813.398 0.453 24 Opt 0.001 1.6 0.000 0.000
3 50 10 3 839.637 2.730 3 Opt 0.001 2.7 0.000 0.000
4 50 10 3 822.243 1.030 15 Opt 0.001 1.8 0.000 0.000
5 50 10 3 824.441 0.515 22 Opt 0.001 1.5 0.000 0.000
6 50 10 4 787.199 0.374 5 Opt 0.001 1.6 0.000 0.000
7 50 20 5 815.970 2.871 65 Opt 0.001 1.8 0.000 0.000
8 50 20 8 826.540 0.530 0 Opt 0.001 9.2 0.000 0.000
9 50 20 6 807.579 2.657 684 Opt 0.031 29.7 0.000 0.000

10 50 20 5 755.736 1.881 117 Opt 0.001 10.0 0.000 0.000
11 50 20 9 783.302 1.896 217 Opt 0.032 27.2 0.000 0.000
12 50 20 9 698.674 92.124 22 930 Opt 0.237 291.6 0.000 0.000
13 50 20 9 693.408 82.102 21 011 Opt 0.050 66.7 0.000 0.000
14 50 25 7 739.710 5.284 2 371 Opt 0.125 165.3 0.000 0.000
15 50 25 7 770.558 8.772 6 319 Opt 0.015 6.1 0.000 0.000
16 50 25 8 788.215 0.718 0 Opt 0.047 52.2 0.000 0.000
17 50 25 9 800.313 2.137 0 Opt 0.094 114.6 0.000 0.000
18 50 25 13 841.682 1.092 3 Opt 0.125 133.9 0.000 0.000
19 50 25 8 803.185 5.320 67 Opt 0.125 126.3 0.000 0.000
20 50 25 9 725.758 1 667.653 120 779 Opt 0.329 376.1 0.021 0.037

21 100 10 2 1 570.551 0.491 25 Opt 0.001 1.6 0.000 0.000
22 100 10 2 1 572.681 0.358 7 Opt 0.001 1.8 0.000 0.000
23 100 10 3 1 681.155 0.359 1 Opt 0.001 1.4 0.000 0.000
24 100 10 2 1 616.928 1.576 7 Opt 0.001 1.1 0.000 0.000
25 100 10 3 1 699.255 0.483 20 Opt 0.001 1.8 0.000 0.000
26 100 10 4 1 650.381 2.408 24 Opt 0.001 1.3 0.000 0.000
27 100 20 12 1 639.001 2.110 147 Opt 0.040 41.3 0.000 0.000
28 100 20 6 1 589.776 3.572 2 285 Opt 0.062 75.8 0.000 0.000
29 100 20 5 1 612.034 0.826 3 Opt 0.016 15.2 0.000 0.000
30 100 20 9 1 533.836 6.974 2 971 Opt 0.062 63.9 0.000 0.000
31 100 20 9 1 596.712 4.618 2 439 Opt 0.078 92.0 0.000 0.000
32 100 20 6 1 628.994 1.420 18 Opt 0.047 55.4 0.000 0.000
33 100 20 5 1 593.550 6.525 2 830 Opt 0.015 12.7 0.000 0.000
34 100 20 5 1 600.571 3.276 368 Opt 0.025 33.8 0.000 0.000
35 100 25 7 1 556.700 17.289 7 079 Opt 0.012 11.9 0.000 0.000
36 100 25 14 1 643.188 2.699 106 Opt 0.124 134.9 0.000 0.000
37 100 25 9 1 623.482 487.461 25 049 Opt 0.016 8.4 0.000 0.000
38 100 25 13 1 629.059 14.197 8 175 Opt 0.247 249.6 0.016 0.029
39 100 25 11 1 553.270 507.190 68 504 Opt 0.203 197.6 0.009 0.017
40 100 25 9 1 641.288 5.912 442 Opt 0.094 92.7 0.000 0.000

Average: 73.760 7 325 Opt 0.057 62.8 0.001 0.002

Table 3. Results and comparisons on small-size data set
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Instance HGA

M n m p Best.Sol. t(s) gen agap(%) σ(%)

1 200 50 14 3 156.864 3.466 2 916.1 0.011 0.007
2 200 50 14 3 116.857 1.525 1 258.2 0.010 0.007
3 200 50 23 3 263.851 3.077 2 252.0 0.007 0.008
4 200 50 15 3 345.737 1.231 1 094.1 0.000 0.000
5 200 50 23 3 070.048 3.549 2 597.5 0.019 0.012
6 200 50 21 2 988.851 2.818 1 913.4 0.017 0.011
7 200 50 22 3 301.607 3.613 2 203.8 0.013 0.009
8 200 50 16 3 302.545 2.076 1 401.1 0.000 0.000
9 200 100 37 2 784.410 15.702 5 345.2 0.105 0.073

10 200 100 46 3 226.742 21.926 6 752.1 0.003 0.004
11 200 100 43 2 979.639 14.878 4 401.0 0.050 0.043
12 200 100 47 3 084.362 11.859 3 489.6 0.052 0.039
13 200 100 30 2 953.714 11.715 3 997.9 0.102 0.072
14 200 100 29 2 877.726 13.695 4 351.3 0.077 0.061
15 200 100 33 3 202.683 23.886 6 934.1 0.083 0.097

16 500 50 14 8 267.820 2.188 1 555.3 0.001 0.002
17 500 50 14 8 294.660 1.290 902.4 0.000 0.000
18 500 50 13 8 100.883 1.678 1 221.8 0.013 0.010
19 500 50 22 8 244.840 2.898 1 678.2 0.007 0.005
20 500 50 24 8 168.218 3.958 2 243.3 0.022 0.025
21 500 50 23 8 309.416 3.671 2 136.7 0.002 0.001
22 500 50 23 8 071.615 3.797 2 165.3 0.018 0.018
23 500 100 39 8 156.389 40.611 10 826.3 0.069 0.045
24 500 100 26 8 083.815 12.657 4 521.0 0.027 0.042
25 500 100 33 7 707.815 25.287 6 657.1 0.077 0.050
26 500 100 30 8 112.250 13.616 3 605.1 0.019 0.016
27 500 100 30 8 077.388 17.730 5 217.1 0.036 0.032
28 500 100 42 7 982.338 23.616 5 351.2 0.040 0.028
29 500 100 32 8 149.878 28.015 7 502.1 0.001 0.001
30 500 100 32 8 134.182 16.475 5 604.6 0.107 0.062

31 750 50 14 12 289.425 2.608 1 880.7 0.000 0.000
32 750 50 19 12 495.038 2.403 1 304.1 0.000 0.000
33 750 50 17 12 396.373 3.716 1 474.8 0.001 0.000
34 750 50 20 12 349.432 3.329 1 355.8 0.001 0.001
35 750 50 14 12 299.174 3.656 1 878.8 0.002 0.002
36 750 100 35 12 168.721 15.591 4 020.6 0.061 0.042
37 750 100 35 12 216.957 33.509 8 518.7 0.002 0.003
38 750 100 47 11 965.588 25.638 5 583.5 0.047 0.029
39 750 100 38 12 076.371 16.906 4 912.4 0.042 0.031
40 750 100 49 12 069.514 28.816 5 523.7 0.030 0.024

Average: 11.717 3 713.7 0.029 0.023

Table 4. Results on medium-size data set
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Instance HGA

L n m p Best.Sol. t(s) gen agap(%) σ(%)

1 1 000 200 91 16 017.265 38.383 4 708.7 0.019 0.015
2 1 000 200 79 15 956.093 21.642 3 046.8 0.059 0.047
3 1 000 200 75 15 593.404 20.157 2 923.9 0.001 0.001
4 1 000 200 57 16 030.064 24.108 3 996.9 0.138 0.110
5 1 000 200 55 15 872.746 17.578 2 990.9 0.109 0.087
6 1 000 200 93 15 565.459 16.097 2 088.9 0.032 0.026

7 1 500 200 54 24 008.552 33.034 5 348.5 0.029 0.023
8 1 500 200 99 24 520.548 23.500 2 658.8 0.005 0.004
9 1 500 200 73 23 758.690 39.017 5 407.4 0.039 0.032

10 1 500 200 84 23 709.244 32.491 4 091.2 0.049 0.040
11 1 500 300 88 24 651.022 115.382 11 071.6 0.009 0.007
12 1 500 300 105 24 439.681 75.675 6 533.0 0.075 0.060

13 2 000 300 88 32 302.890 91.877 8 443.5 0.022 0.017
14 2 000 300 103 32 880.564 160.157 13 335.5 0.046 0.037
15 2 000 300 112 32 314.458 61.211 4 756.9 0.053 0.042
16 2 000 300 131 31 812.982 45.326 3 159.7 0.026 0.021
17 2 000 300 99 32 600.049 91.841 7 766.4 0.052 0.042
18 2 000 300 134 32 943.928 105.467 7 284.6 0.136 0.109

19 3 000 300 134 47 729.246 63.281 4 096.8 0.064 0.051
20 3 000 300 101 48 909.602 99.736 7 891.7 0.067 0.054
21 3 000 500 202 46 657.849 158.655 6 201.5 0.015 0.012
22 3 000 500 223 46 824.343 232.612 8 502.1 0.046 0.037
23 3 000 500 178 48 055.138 198.754 8 480.8 0.025 0.020
24 3 000 500 225 48 052.535 238.323 8 675.3 0.030 0.024

25 5 000 500 215 79 883.412 236.939 8 406.5 0.033 0.026
26 5 000 500 173 80 022.878 114.822 4 706.5 0.037 0.029
27 5 000 500 142 81 317.030 143.221 6 748.7 0.028 0.022
28 5 000 500 194 82 172.654 272.711 10 201.8 0.022 0.018
29 5 000 500 211 82 503.239 381.215 11 265.1 0.004 0.003
30 5 000 500 214 80 363.777 255.135 8 999.3 0.049 0.039

31 7 500 1 000 291 123 298.725 1 414.616 29 200.4 0.009 0.007
32 7 500 1 000 374 122 422.884 896.066 15 020.2 0.013 0.010
33 7 500 1 000 310 118 628.789 454.943 8 391.4 0.041 0.033
34 7 500 1 000 412 121 882.770 2 151.378 33 211.7 0.034 0.028
35 7 500 1 000 358 122 463.333 1 502.836 26 304.5 0.064 0.055

36 10 000 1 000 447 159 862.069 1 018.791 14 059.3 0.103 0.127
37 10 000 1 000 443 160 085.880 881.016 12 486.9 0.069 0.089
38 10 000 1 000 426 160 990.792 2 679.971 33 520.7 0.077 0.093
39 10 000 1 000 445 159 899.115 1 054.745 15 064.5 0.024 0.035
40 10 000 1 000 322 161 158.793 1 039.416 19 190.0 0.114 0.137

Average: 412.553 10 005.973 0.047 0.042

Table 5. Results on large-scale data set
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indicate that corresponding HEA running times are extremely short. The aver-
age running time of the HEA for solving small-size instances presented in Table 3
is 0.057 seconds, which is significantly shorter (around 1 294 times) compared to
the CPLEX 12.1. The average gap and standard deviation values are 0.001 % and
0.002 %, which indicates that the proposed HEA provides optimal solutions almost
every time within 15 runs with different random seeds.

For the medium size and large-scale data sets mentioned above, no optimal
solution is found due to memory or time limit imposed on CPLEX 12.1. In cases
when no optimal solution is obtained by CPLEX 12.1, the proposed HEA method
provides solutions that are presented in Table 4 (medium size instances) and Table 5
(large-scale instances).

As can be seen from Table 4, the HEA quickly reaches its best solutions for
medium-size instances. The average CPU time of the HEA for the medium-size
data set is 11.717 s, while the average number of HEA generations is less than 3 714.
The average gap and standard deviation are 0.029 % and 0.023 %, respectively, which
indicates good stability of the algorithm within all HEA runs.

As expected, for L-type instances involving up to n = 10 000 user nodes, the
HEA needed longer execution time, compared to M-type and S-type instances. The
reason is in the fact that the Exchange procedure within Local search method is
applied more often, due to significantly larger number of nodes in J for large-scale
instances. The values in the last row of Table 5 show that the average HEA running
time over all L-type instances was 412.553 s. while the average gap of the HEA
solution from the best-known one is agap = 0.047 % and the standard deviation is
σ = 0.042 %. The longest HEA run on the largest considered instance with 10 000
nodes is under 45 min and the average running time on all considered instances with
10 000 nodes is around 22 min, while the values of agap and σ are still low.

The presented results of computational experiments on all three data sets clearly
demonstrate the robustness of the proposed hybrid evolutionary-based algorithm
with respect to both solutions’ quality and running times. The results on L-type
instances indicate obvious potential of the HEA for real-life applications.

5 CONCLUSIONS

In this study, we deal with the problem of efficient exploration of data flow within
an online social network. We propose the mathematical model of the problem and
benchmark it on three data sets containing instances with up to 10 000 user nodes.
Since instances with more than 100 user nodes could not be solved to optimality
by CPLEX solver, we have designed a hybrid metaheuristic method HEA in order
to tackle real-life problem dimensions. In the EA part, binary representation of so-
lutions, an efficient fitness function and fine-grained tournament selection operator
are used. A modified crossover operator adopted to the problem under considera-
tion is implemented. An efficient Local search heuristic is proposed to improve the
solutions generated by the EA and help in preventing the convergence to a local
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optimum. Execution time of the LS heuristic is decreased by implemented strategy
for exchanging bits in solution’s chromosome. The results of exhaustive computa-
tional tests on small, medium and large data set show efficiency and stability of
the proposed HEA method. Small and medium-size instances were solved in less
than 0.6 and 12 seconds respectively (in average), while average gap and standard
deviation were almost 0 for small instances and under 0.3 % for medium ones. In
average, the HEA needed less than 413 seconds of CPU time to solve large-size
instances, while low values of average gap 0.047 % and standard deviation 0.042 %
indicate algorithm’s stability. Presented experimental results clearly indicate that
the proposed HEA represents a promising metaheuristic method for this and similar
problems related to online social networks involving large number of users.
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