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Abstract. Many real world problems deal with ordering of objects instead of clas-
sifying objects, although most of research in data analysis has been focused on the
latter. One of the extensions of classical rough sets to take into account the ordering
properties is dominance-based rough sets approach which is mainly based on sub-
stitution of the indiscernibility relation by a dominance relation. In this paper, we
address knowledge measures and reduction in incomplete fuzzy information system
using the approach. Firstly, new definitions of knowledge granulation and rough
entropy are given, and some important properties of them are investigated. Then,
dominance matrix about the measures knowledge granulation and rough entropy is
obtained, which could be used to eliminate the redundant attributes in incomplete
fuzzy information system. Lastly, a matrix algorithm for knowledge reduction is
proposed. An example illustrates the validity of this method and shows the method
is applicable to complex fuzzy system. Experiments are also made to show the
performance of the newly proposed algorithm.

Keywords: Incomplete fuzzy information system, dominance relation, knowledge
granulation, rough entropy, knowledge reduction

1 INTRODUCTION

The rough sets theory proposed by Pawlak [10, 11, 12] has been studied intensively
and obtained results have played an important role in data analysis and knowledge
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processing. Because of its usefulness, rough set approaches have been used in pat-
tern recognition [14], medical informatics [6], market decision analysis [15], kansei
engineering and so on [25]. The classical rough sets are defined using the indiscerni-
bility relation, i.e., an equivalence relation. This implies that it can only be used to
process information systems with discrete data. However, in the real world, we may
face cases when some attribute values are fuzzy. For example, as with temperature,
wind and outlook etc., the weather forecast attributes such as decision tables, its
temperature would be able to get hot, medium, cool, and so fuzzy.

At present, many researchers extended the classical rough set model in fuzzy
environment [3, 9, 19, 17]. They put forward a variety of fuzzy rough sets and
rough fuzzy set model. It is noteworthy that these works just assume that all the
attributes of fuzzy information systems are conventional properties, not taking into
account the different attributes of the relationship between the values of the partial
order. To address this problem, Greco et al. introduced the concept of dominance
relation into fuzzy information system [4, 21]. It is proposed that the rough fuzzy
set model is based on dominance relation [3]. This rough fuzzy approach is different
from the classical rough fuzzy and fuzzy rough techniques, because it is based on
different fuzzy membership of the partial order relation. Concepts of knowledge
granulation, knowledge entropy and knowledge uncertainty measure are given in
ordered information systems by Xu et al. [20], and some important properties of
them are investigated. Yang and Wei et al. [18] present a general framework for
the study of dominance based rough set model in the incomplete fuzzy information
systems. Soon, their another paper is to further investigate the dominance based
rough set in incomplete interval-valued information system, which contains both
incomplete and imprecise evaluations of objects. However, they are confined to
traditional methods for the measure of knowledge.

In this paper, we investigate incomplete fuzzy information system (IFIS) with
some unknown attribute values. We believe that the unknown attribute value is just
missing, but it is there. Each individual object has the potential to yield complete
information by appropriate means. Therefore, in IFIS, the unknown attribute values
can be considered as any other known attribute values are comparable. According
to this explanation, a new fuzzy rough set model is built. Based on this model,
we address knowledge granulation and rough entropy of rough set in IFIS, thus to
knowledge reduction.

In the next section, IFIS and its extended dominance relations are reviewed. In
Section 3, knowledge granulation is defined and rough entropy of rough set based
on dominance relations is proposed in IFIS, and we get a number of conclusions.
In Section 4, after giving knowledge reduction algorithm based on dominance ma-
trix, an example shows all reducts are enumerated by the matrices associated with
IFIS. In Section 5, our method is compared with the existing algorithms by the
UCI database for attribute reduction. Finally, we present our conclusions in Sec-
tion 6.
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2 BASIC NOTIONS

In this section, we introduce some basic terminology and notations which will be
used throughout the paper.

2.1 Incomplete Fuzzy Information System

The fuzzy set theory can be thought of as an extension of traditional crisp sets
in which each element must either be or not be in a set. Formally, the process
by which individuals from a universal set 0 are determined to be either members
or non-members of a crisp set can be defined by a characteristic or discrimination
function. This kind of function can be generalized such that the values assigned
to the elements of the universal set fall within specified ranges, referred to as the
membership function µA(v), by which a fuzzy set A is usually defined. This function
is represented by

µA : 0→ [0, 1]

where [0, 1] denotes the interval of real numbers from 0 to 1, inclusive. The function
can also be generalized to any real interval and is not restricted to [0, 1].

The scalar cardinality of a fuzzy set A defined on a finite universal set 0 is the
summation of the membership grades of all the elements of 0 in A. Thus,

|A| =
∑
v∈0

µA(v).

A complete information system S is a 4-tuple S = 〈U,AT, V, f〉, where U is
a non-empty finite set of objects called the universe and AT is a non-empty finite
set of attributes such that a : U → Va for any a ∈ AT , i.e. f(x, a) ∈ Va, where Va is
called the domain of attribute a. When the precise values of some of the attributes
in an information system are not known, i.e. are missing or known partially, such
a system is called an incomplete information system.

In an incomplete information system, the values of a ∈ AT are subsets of Va; if
f(x, a) is a normalized fuzzy subset of Va for each x ∈ U , then the system is called
an incomplete fuzzy information system (IFIS) and is still denoted without confusion
by S = 〈U,AT, V, f〉. The fuzzy set f(x, a) ∈ F (Va) may be seen as a possibility
distribution on Va, and the quantity f(x, a)(v), v ∈ Va thus represents the degree of
possibility of state v. We assume here that at least one of the states of Va is fully
possible for each a ∈ AT , i.e. v ∈ Va such that f(x, a)(v) = 1. Thus some states are
more possible than others.

The IFISs are generalizations of incomplete information systems and complete
information systems. A complete information system is an extreme form of an IFIS
with partial knowledge in which the knowledge of each object with respect to each
attribute is complete, i.e. for some v ∈ Va, f(x, a)(v) = 1 and f(x, a)(s) = 0,∀s 6= v,
whereas an incomplete information system with missing values is another extreme
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form of IFIS with partial knowledge in which the knowledge of some objects (with
missing values) is complete ignorance, i.e. f(x, a)(v) = 1,∀v ∈ Va.

Example 1. [19] Table 1 illustrates an exemplary IFIS S = 〈U,AT, V, f〉, where
U = {1, 2, . . . , 8}, AT = {a, b, c}, Va = {H,N,L}, Vb = {R, S, T}, Vc = {m,n, p}.

According to the above statement, it is easy to see that attribute values a(7), b(3)
and c(3) are missing, a(4) does not take H as value, b(6) does not take T as value,
and c(6) does not take n as value. The knowledge of a(1), a(3), a(5), b(1), b(4), b(7)
and c(4) is complete.

U a b c

1 1/H 1/S 1/m + 0.1/p

2 1/H + 0.3/N 1/S + 0.4/T 1/m + 0.5/n

3 1/H 1/R + 1/S + 1/T 1/m + 1/n + 1/p

4 1/N + 1/L 1/T 1/n

5 1/N 1/R + 0.6/S 0.7/m + 1/p

6 0.1/H + 0.4/N + 1/L 1/R + 1/S 1/m + 1/p

7 1/H + 1/N + 1/L 1/T 1/n + 0.2/p

8 0.8/N + 1/L 0.7/S + 1/T 0.8/m + 1/n

Table 1. Exemplary IFIS

In IFIS, the membership grades of two fuzzy sets can be used to compare the
objects. Therefore, we can define the scalar cardinality of attributes to the system:

|f(x, a)| =
∑
v∈Va

f(x, a)(v), f(x, a)(v) 6= 1 and f(x, a)(v) 6= 0.

When the precise values for some of the objects on some fuzzy attributes are not
known, i.e. unknown values (symbol “∗” is used to express unknown value), the
fuzzy information system is still referred to as an IFIS. In this paper, an IFIS is still
recorded as S = 〈U,AT, V, f〉, at this time V = [0, 1] ∪ {∗}.

Table 2 is an IFIS, of which U = {x1, x2, . . . , x10}, attribute set AT = {a1, a2,
a3, a4}.

2.2 Dominance Relation

Definition 1. Let S = 〈U,AT, V, f〉 be an IFIS, B ⊆ AT . The dominance relation
in terms of B is defined as R≥B = {(x, y) ∈ U2|∀a ∈ B, f(x, a) ≥ f(y, a) ∨ f(x, a) =
∗ ∨ f(y, a) = ∗}. [xi]

≥
B is called a dominance class of object xi, if [xi]

≥
B = {xj ∈

U |(xj, xi) ∈ R≥B} = {xj ∈ U |∀a ∈ B, f(xj, a) ≥ f(xj, a) ∨ f(xi, a) = ∗}, U/R≥B =
{[xi]≥B|xj ∈ U}. U/R

≥
B is a classification for the object set on the attribute set B.

It can be verified easily that the dominance relation satisfies the properties as
follows.
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U a1 a2 a3 a4
x1 0.9 ∗ 0.2 0.7

x2 0.9 0.2 0.2 0.1

x3 0.1 0.1 0.1 0.9

x4 0.0 0.9 ∗ 0.8

x5 0.1 0.1 1.0 0.8

x6 ∗ 0.2 0.9 0.1

x7 0.0 0.1 0.9 0.2

x8 0.9 0.9 0.1 1.0

x9 0.8 0.4 1.0 1.0

x10 0.0 1.0 0.2 ∗

Table 2. An IFIS with unknown values

Property 1. Let S be an IFIS and B,C ⊆ AT . Then

1. R≥B is reflexive and transitive, not necessarily symmetric. So, it is no longer
an equivalence relation;

2. B ⊆ C ⇒ R≥C ⊆ R≥B;

3. B ⊆ C ⇒ [xi]
≥
C ⊆ [xi]

≥
B;

4. xj ∈ [xi]
≥
C ⇒ [xj]

≥
B ⊆ [xi]

≥
C ;

5. [xj]
≥
B ⊆ [xi]

≥
B ⇔ f(xj, a) = f(xi, a)(∀a ∈ B);

6. |[xi]≥B| ≥ 1, for any xi ∈ U , where | · | denotes cardinality of [xi]
≥
B;

7. U/R≥B constructs a cover of U , that is, [xi]
≥
B 6= ∅ and ∪xi∈U [xi]

≥
B = U for any

xi ∈ U .

In order to better describe the classification in IFIS, the following definition is given.

Definition 2. Let S = 〈U,AT, V, f〉 be an IFIS, and B,C ⊆ AT .

1. U/R≥B = U/R≥C , if [xi]
≥
B ⊆ [xi]

≥
C and [xi]

≥
B ⊇ [xi]

≥
C for any xi ∈ U ;

2. U/R≥B ⊆ U/R≥C , if [xi]
≥
B ⊆ [xi]

≥
C for any xi ∈ U . It is said U/R≥B is finer than

U/R≥C ;

3. U/R≥B ⊂ U/R≥C , if [xi]
≥
B ⊆ [xi]

≥
C for any xi ∈ U and [y]≥B 6= [y]≥C . It is said U/R≥B

is indeed finer than U/R≥C .

Clearly, by Property 1 and the above definition, you can get U/R≥AT ⊆ U/R≥B im-
mediately for S = 〈U,AT, V, f〉 and B ⊆ AT .

In terms of dominance classes of B, the pair of lower and upper approximation
operators can be defined by

R≥B(X) = {xi ∈ U |[xi]≥B ⊆ X}

R≥B(X) = {xi ∈ U |[xi]≥B ∩X 6= ∅}.
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An element x ∈ U belongs to the lower approximation of X if all its dominance
elements belong to X. It belongs to the upper approximation of X if at least one
of its dominance elements belongs to X.

Like Pawlak approximation space, it is also to have many similar properties. For
details, please refer to literature [3].

Example 2. Table 2 gives an IFIS. As a result, by the definition of the dominance
relation, we have

[x1]
≥
AT = {x1},

[x2]
≥
AT = {x1, x2, x6},

[x3]
≥
AT = {x3, x8, x9},

[x4]
≥
AT = {x4, x8, x9},

[x5]
≥
AT = {x5, x9},

[x6]
≥
AT = {x4, x6, x9},

[x7]
≥
AT = {x4, x5, x7, x9},

[x8]
≥
AT = {x8},

[x9]
≥
AT = {x9},

[x10]
≥
AT = {x1, x10}

Furthermore, if A = {a1, a2, a3}, B = {a1, a2} then

[x1]
≥
A = [x2]

≥
A = {x1, x2, x6},

[x3]
≥
A = {x1, x2, x3, x5, x6, x8, x9},

[x4]
≥
A = {x1, x4, x8, x9},

[x5]
≥
A = {x5, x9},

[x6]
≥
A = {x4, x6, x9},

[x7]
≥
A = {x4, x5, x7, x9},

[x8]
≥
A = {x1, x8},

[x9]
≥
A = {x9},

[x10]
≥
A = {x1, x10},

as well as

[x1]
≥
B = [x2]

≥
B = {x1, x2, x6, x8},

[x3]
≥
B = {x1, x2, x3, x5, x6, x8, x9},

[x4]
≥
B = {x1, x4, x8, x9},
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[x5]
≥
B = {x1, x2, x3, x5, x6, x8, x9},

[x6]
≥
B = {x1, x2, x4, x6, x8, x9, x10},

[x7]
≥
B = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10},

[x8]
≥
B = {x1, x8},

[x9]
≥
B = {x1, x8, x9},

[x10]
≥
B = {x1, x10}.

Obviously, we can see from the above that U/R≥AT ⊆ U/R≥A ⊆ U/R≥B, that is, U/R≥A
to be finer than U/R≥B, U/R≥AT should be finer than U/R≥A.

3 KNOWLEDGE GRANULATION AND ROUGH ENTROPY

3.1 Knowledge Granulation

In this section, knowledge granulation and rough entropy in IFIS are introduced.
They have some very useful properties.

Definition 3. Let S = 〈U,AT, V, f〉 be an incomplete fuzzy information system.
The granulation of knowledge B ⊆ AT is defined as follows:

GK(B) =
n∑

i=1

|[xi]≥B|
|U |2

.

Example 3. For Example 2, one can calculate the granulation of knowledge A and
B: GK(A) = 1/100(3 + 3 + 7 + 4 + 2 + 3 + 4 + 2 + 1 + 2) = 0.31, GK(B) =
1/100(4 + 4 + 7 + 4 + 7 + 7 + 10 + 2 + 3 + 2) = 0.50.

A simple result can be easily obtained by Definition 3.

Property 2. Let S = 〈U,AT, V, f〉 be an IFIS, B ⊆ AT . Then,

1. GK(B) achieves its maximum value 1 if and only if U/R≥B = U ;

2. GK(B) achieves its minimum value 1/U if and only if U/R≥B = {x1, x2, . . . , x|U |}.

This shows that we have 1/U ≤ GK(B) ≤ 1 when R≥B is a dominance relation
with respect to B. The granulation can also represent the discernibility ability of
knowledge: the smaller GK(B), the stronger its discernibility ability.

Theorem 1. Let S = 〈U,AT, V, f〉 be an IFIS, and B1, B2 ⊆ AT . If U/R≥B1
⊂

U/R≥B2
, then GK(B1) < GK(B2).

Proof. Since U/R≥B1
⊂ U/R≥B2

, we have that [xi]
≥
B1
⊆ [xi]

≥
B2

for any xi ∈ U and

there exists some xj ∈ U such that |[xj]≥B1
| < |[xj]≥B2

|. According to Definition 3 and

Property 1, it holds that
∑n

i=1

|[xi]
≥
B1
|

|U |2 <
∑n

i=1

|[xi]
≥
B2
|

|U |2 , that is, GK(B1) < GK(B2).

This completes the proof. 2
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Corollary 1. Let S = 〈U,AT, V, f〉 be an IFIS, and B1, B2 ⊆ AT . If B1 ⊆ B2,
then GK(B1) < GK(B2).

Corollary 1 states that the granulation decreases as dominance classes become
smaller through finer classification.

Theorem 2. Let S = 〈U,AT, V, f〉 be an IFIS, and B1, B2 ⊆ AT . If U/R≥B1
=

U/R≥B2
, then GK(B1) = GK(B2).

Proof. |[xi]≥B1
| = |[xi]≥B2

| for any xi ∈ B1, B2, since U/R≥B1
= U/R≥B2

. By Definition
3 we can deduce that GK(B1) = GK(B2). This completes the proof. 2

Theorem 3. Let S = 〈U,AT, V, f〉 be an IFIS, and B1, B2 ⊆ AT . If U/R≥B1
⊆

U/R≥B2
and GK(B1) = GK(B2), then U/R≥B1

= U/R≥B2
.

Proof. Since GK(B1) = GK(B2), we have that
∑n

i=1

|[xi]
≥
B1
|

|U |2 =
∑n

i=1

|[xi]
≥
B2
|

|U |2 for any

xi ∈ U . From U/R≥B1
⊆ U/R≥B2

, it follows that [xi]
≥
B1
⊆ [xi]

≥
B2

and 1 ≤ |[xi]≥B1
| ≤

|[xi]≥B2
| such that |[xi]≥B1

| = |[xi]≥B2
|. Therefore U/R≥B1

= U/R≥B2
. This completes the

proof. 2

Corollary 2. Let S = 〈U,AT, V, f〉 be an IFIS, and B1, B2 ⊆ AT . If B1 ⊆ B2 and
GK(B1) = GK(B2), then U/R≥B1

= U/R≥B2
.

Example 4. We can obtain U/R≥A = U/R≥B in Example 2 and calculate the gran-
ulation GK(A) = 0.31, GK(B) = 0.50, that is, GK(A) < GK(B) in Example 3.
However, if let B′ = {a1} and B′′ = {a2}, then

[x1]
≥
B′ = [x2]

≥
B′ = {x1, x2, x6, x8},

[x3]
≥
B′ = {x1, x2, x3, x5, x6, x8, x9},

[x4]
≥
B′ = [x6]

≥
B′ = [x7]

≥
B′ = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10},

[x5]
≥
B′ = {x1, x2, x3, x4, x5, x6, x8, x9},

[x8]
≥
B′ = {x1, x2, x6, x8},

[x9]
≥
B′ = {x1, x2, x6, x8, x9}.

[x1]
≥
B′′ = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10},

[x2]
≥
B′′ = [x6]

≥
B′′ = [x8]

≥
B′′ = {x1, x2, x4, x6, x8, x9, x10},

[x3]
≥
B′′ = [x5]

≥
B′′ = [x7]

≥
B′′ = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10},

[x4]
≥
B′′ = {x1, x4, x8, x10},

[x10]
≥
B′′ = {x1, x10}.

One can get that GK(B′) = 0.71 and GK(B′′) = 0.69. It is easy to see that
U/R≥B′ ⊇ U/R≥B′′ is not true, despite GK(B′) > GK(B′′). So, the converse of
Theorem 1 is not true.
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3.2 Rough Entropy

The concept of rough entropy has been introduced in rough set, rough relational
databases and incomplete information system [1, 7, 8]. Now we introduce a new
definition of rough entropy of knowledge in IFIS.

Definition 4. Let S = 〈U,AT, V, f〉 be an IFIS, B ⊆ AT . The roughness of rough
set X ⊆ U with respect to knowledge B is defined by

βB = 1−
|R≥B(X)|

|R≥B(X)|
.

It can be seen from Definition 4 that the roughness of rough set is between 0 and 1.
We can take this fact one step farther to get the following theorem.

Theorem 4. Let S = 〈U,AT, V, f〉 be an IFIS, and B1, B2 ⊆ AT . If U/R≥B1
⊆

U/R≥B2
, then βB1 ≤ βB2 for any X ⊆ U .

Example 5. Considering a rough set of X = {x1, x2, x8, x9} about knowledge A =
{a1, a2, a3} and B = {a1, a2} in Example 2, respectively, we have that R≥B(X) =

{x8, x9}, R≥B(X) = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}, βA(X) = 1 − 2/10 = 8/10;

R≥B(X) = {x8, x9}, R≥B(X) = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}, βB(X) = 1− 2/10
= 8/10. Thus, βA(X) = βB(X).

Notice that, in Example 5, B ⊂ A, but the same roughness can be obtained for the
rough set X. Therefore, it is necessary for us to introduce a more accurate measure
for rough sets in IFIS.

Definition 5. let S = 〈U,AT, V, f〉 be an IFIS, B ⊆ AT . The rough entropy of
X ⊆ U about knowledge B is defined as follows: EB(X) = βB(X)GK(B).

Example 6. In Example 5, rough entropy of X = {x1, x2, x8, x9} about knowledge
A = {a1, a2, a3} and B = {a1, a2} are: EA(X) = βA(X)GK(A) = 8

103
× 31 = 0.248,

EB(X) = βB(X)GK(B) = 8
103
× 50 = 0.40. Then, we have that EA(X) < EB(X).

It is clarified that this rough entropy of rough set is more accurate than the others.

Theorem 5. Let S = 〈U,AT, V, f〉 be an IFIS, and B1, B2 ⊆ AT . If U/R≥B1
=

U/R≥B2
, then EB1 ≤ EB2 for any X ⊆ U .

Proof. This follows immediately from Theorem 4 and Definition 5. This completes
the proof. 2

Corollary 3. Let S = 〈U,AT, V, f〉 be an IFIS, B1, B2 ⊆ AT . If B2 ⊆ B1, then
EB1 ≤ EB2 for any X ⊆ U .

Obviously, rough entropy can represent the discernibility ability of knowledge: the
smaller E(X), the stronger its discernibility ability.
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4 DOMINANCE MATRIX AND MATRIX ALGORITHM
FOR REDUCTION OF KNOWLEDGE

Attribute reduction is a very important part of the rough set theory. However, the
cost of reduct computation is highly influenced by the size of object set and attribute
set, so enhancing the reduct computation efficiency is one of the major problems.
This section proposes a reduction algorithm reducing the time cost by dominance
matrix.

4.1 Dominance Matrix

Definition 6. Let S = 〈U,AT, V, f〉 be an IFIS, B ⊆ AT,U = {x1, x2, . . . , xn}.
A dominance matrix of system S with respect to B is defined as

MB = (mij)n×n =

{
1, xj ∈ [xj]

≥
B

0, other
i, j = 1, 2, . . . , n.

MB is also called l level dominance matrix of S if |B| = l.

Definition 7. The intersection of the dominance matrices MB and MC is defined
as follows: for any B,C ⊆ AT on the S = 〈U,AT, V, f〉, MB ∩MC = (mij)n×n ∩
(m′ij)n×n = (min{mij,m

′
ij})n×n.

Property 3. Given S = 〈U,AT, V, f〉 and B,C ⊆ AT ; if MB,MC are two domi-
nance matrices, we have

1. mii = 1, i = 1, 2, . . . , n;

2. if B,C ⊆ AT , then MB∪C = MB ∩MC .

Property 3 can be obtained directly from Definition 6 and 7.

Definition 8. Let S = 〈U,AT, V, f〉 be an IFIS, B ⊆ AT ; a dominance matrix MB

with B. |MB| is the dominance cardinality of B if it indicated that the number of
non-zero elements, that is, a total number of the value 1.

Theorem 6. Let S = 〈U,AT, V, f〉 be an IFIS; B ⊆ AT . Then |MB| =
∑n

i=1 |[xj]
≥
B|,

GK(B) = 1
|U |2 |MB|.

Proof. According to the definition of the dominance matrix, for B ⊆ AT , we
have that {mi1 ,mi2 , . . . ,min} corresponds to {x′i1 , x

′
i2
, . . . , x′in} = [xj]

≥
B, where x′ik ={

xj , xj∈[xj ]
≥
B

∅, other . Therefore, |MB| =
∑n

i=1 |[xj]
≥
B|. It holds that GK(B) = 1

|U |2 |MB|. This

completes the proof. 2

Definition 9. Given two n-dimensional n×1 vectors α = {e1, e2, . . . , en}T and β =
{b1, b2, . . . , bn}T (T denotes transpose), α is smaller than β if ei ≤ bi (i = 1, . . . , n).
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Definition 10. Let MA = {α1, α2, . . . , αn}T and MB = {β1, β2, . . . , βn}T be a ma-
trix, where αi and βi (i = 1, . . . , n) are n-dimensional n× 1 vectors. MA is smaller
than MB if αi ≤ βi (i = 1, . . . , n), denoted by MA ≤MB.

4.2 Matrix Algorithm for Reduction of Knowledge

Definition 11. Let S = 〈U,AT, V, f〉 be an IFIS. B ⊆ AT is a reduct of AT if
GK(B) = GK(AT ). If there is not b ∈ B such that GK(B−{b}) = GK(AT ), B is
one of the maximum reducts about AT .

Let S = 〈U,AT, V, f〉 be an IFIS, U = {x1, x2, . . . , xn}, AT = {a1, a2, . . . , am},
B ⊆ AT , MB = {β1, β2, . . . , βn}T and MAT = {γ1, γ2, . . . , γn}T . We design a greedy
algorithm for reduction of knowledge based on the dominance matrix.

Matrix algorithm on knowledge reduction in IFIS

Input: IFIS S = 〈U,AT, V, f〉.
Output: One reduct B of AT .

Step 1. Compute the dominance matrix MAT = {γ1, γ2, . . . , γn}T of AT .

Step 2. Compute the first level matrix for every al ∈ AT (1 ≤ l ≤ m): M{al} =

M
(l)
{al} = {τ (l)1 , τ

(l)
2 , . . . , τ (l)n }T of AT .

For i = 1 to n do

If 0 6= τ
(l)
i ≤ γi, then let τ

(l)
i = 0, and the new matrix is denoted by FM

(l)
{al},

FM
(l)
{ai} = {τ (l)1 , τ

(l)
2 , . . . , τ (l)n }T , al ∈ AT , (1 ≤ l ≤ m) is called the first-level

reduct matrix.

Come to the next step.

Step 3. If FM
(l)
{ai} = 0 then output a first-level reduct {al}. Otherwise, go to the

next step.

Step 4. All second-level dominance matrices are obtained by intersection of the

non-0 first-level reduct matrices on step 2: M
(2)
{alas}, M

(2)
{alas} 6= M

(1)
{al}, M

(2)
{alas} 6=

M
(1)
{as}, l 6= s, l, s = 1, 2, . . . , n.

Find all of the second-level reducts by the method used in Step 2.

Step 5. Repeat Step 4 to obtain to the third-level and more reducts, until M
(k)
B = 0

(1 ≤ k ≤ m), B ⊆ AT .

The time complexity of this algorithm is O(|U |22|A|).

Example 7. Table 3 presents an IFIS S = 〈U,AT, V, f〉, where U = {x1, x2,
x3, x4, x5, x6, x7, x8, x9}, AT = {a1, a2, a3, a4}. We demonstrate the effectiveness
of our algorithms using it.
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U a1 a2 a3 a4
x1 0.1 0.2 0.1 0.1

x2 0.1 ∗ 0.3 0.1

x3 0.3 0.2 0.3 ∗
x4 0.1 0.2 ∗ 0.1

x5 ∗ 0.2 0.1 0.3

x6 0.3 0.1 ∗ 0.3

x7 0.3 0.2 ∗ ∗
x8 0.3 0.1 0.2 0.3

x9 0.2 0.3 ∗ 0.2

Table 3. An IFIS for Example 7

Step 1: Construct the dominance matrices.

MAT =



1 1 1 1 1 0 1 0 1
0 1 1 1 0 1 1 0 1
0 0 1 0 0 0 1 0 0
1 1 1 1 1 0 1 0 1
0 0 1 0 1 1 1 1 0
0 0 1 0 1 1 1 1 0
0 0 1 0 1 0 1 0 0
0 0 1 0 1 1 1 1 0
0 0 0 0 0 0 0 0 1



M{a1} =



1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
0 0 1 0 1 1 1 1 0
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
0 0 1 0 1 1 1 1 0
0 0 1 0 1 1 1 1 0
0 0 1 0 1 1 1 1 0
0 0 1 0 1 1 1 1 1



M{a2} =



1 1 1 1 1 0 1 0 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 0 1
1 1 1 1 1 0 1 0 1
1 1 1 1 1 0 1 0 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 0 1
1 1 1 1 1 1 1 1 1
0 1 0 0 0 0 0 0 1


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M{a3} =



1 1 1 1 1 1 1 1 1
0 1 1 1 0 1 1 0 1
0 1 1 1 0 1 1 0 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
0 1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 1 1



M{a4} =



1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
0 0 1 0 1 1 1 1 0
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
0 0 1 0 1 1 1 1 0
0 0 1 0 1 1 1 1 1


Steps 2 and 3: Construct the first-level reduct matrices and output reducts. Com-

pare their rows of M{a1}, M{a2}, M{a3} and M{a4} to MAT . Find that there is no

0 6= τ
(l)
1 ≤ γi. Values of row 1 and 4 are the same for M{a2} and MAT . Values of

row 2 are the same for M{a3} and MAT . Values of row 6 and 8 are the same for
M{a4} and MAT . Therefore, we can see that there is no first-level reduct.

Thus, the first-level reduction matrices are

FM
{1}
{a1} =



1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
0 0 1 0 1 1 1 1 0
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
0 0 1 0 1 1 1 1 0
0 0 1 0 1 1 1 1 0
0 0 1 0 1 1 1 1 0
0 0 1 0 1 1 1 1 1



FM
{1}
{a2} =



0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 0 1
1 1 1 1 1 1 1 1 1
0 1 0 0 0 0 0 0 1


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FM
{1}
{a3} =



1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0
0 1 1 1 0 1 1 0 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
0 1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 1 1



FM
{1}
{a4} =



1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 1 1 1


.

Step 4 and 5: Get the second-level and more dominance matrices, reducts.

M
{2}
{a1,a2} = FM

{1}
{a1} ∩ FM

{1}
{a2} =



0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1
0 0 1 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 1 1 0
0 0 1 0 1 0 1 0 0
0 0 1 0 1 1 1 1 0
0 0 0 0 0 0 0 0 1



M
{2}
{a1,a3} = FM

{1}
{a1} ∩ FM

{1}
{a3} =



1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 1 0 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
0 0 1 0 1 1 1 1 0
0 0 1 0 1 1 1 1 0
0 0 1 0 0 1 1 1 0
0 0 1 0 1 1 1 1 1


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M
{2}
{a1,a4} = FM

{1}
{a1} ∩ FM

{1}
{a4} =



1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
0 0 1 0 1 1 1 1 0
1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 1 1 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 1 1 1



M
{2}
{a2,a3} = FM

{1}
{a2} ∩ FM

{1}
{a3} =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 1 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 0 1
0 1 1 1 0 1 1 1 1
0 1 0 0 0 0 0 0 1



M
{2}
{a2,a4} = FM

{1}
{a2} ∩ FM

{1}
{a4} =



0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 1 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1



M
{2}
{a3,a4} = FM

{1}
{a3} ∩ FM

{1}
{a4} =



1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0
0 1 1 1 0 1 1 0 1
1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 1 1 1



Compared with MAT , there is no second-level reduct. Using the same method we

can get FM
(2)
{a1,a2,a3}. Values of each row of FM

(2)
{a1,a3,a4} are 0. The loop is stopped.

Therefore, we can see that a reduct of AT is {a1, a2, a3}.
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5 RESULTS OF EXPERIMENTS

In Table 4, results of experiments on six well-known data sets from the UCI Machine
Learning Repository are cited [2]. The Matrix and IFSPA-IVPR [13] algorithm have
been implemented using MATLAB for the databases. From the table, it is evident
that Matrix algorithm produces reduct for large data sets with more attributes. The
performance analysis of the Matrix and the IFSPA-IVPR is also depicted in Figure 1.
(Note: at. = attributes, mv. = missing values, I-I. = IFSPA-IVPR, Mx. = Matrix)

Data set Instances No. of at. No. of mv. I-I. Mx.

Car 8 4 5 2 2

Hepatitis 155 19 167 6 5

Heart (Switzerland) 123 13 273 5 6

Soybean (Large) 307 35 705 10 9

Water− treatment− data 527 38 592 7 7

Echocardiogram 74 13 132 2 2

Table 4. Comparative analysis of Matrix and IFSPA-IVPR algorithm
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Figure 1. Performance analysis of the Matrix and the IFSPA-IVPR

6 CONCLUSIONS

Dynamic data, noise data and defect data, etc., make the analysis results instable
and uncertain. It limits the application of rough set theory. In this paper, we de-
fine granulation of knowledge from the view of information, use rough entropy of
attributes to define the significance of the attributes in IFIS, and discuss some impor-
tant properties of them. From these properties, it can be shown that these measures
which are proposed provide important approaches to measuring the discernibility
ability of different knowledge in IFIS. As an application of the granulation and the
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rough entropy, we proposed definition of dominance matrix. A greedy algorithm
based on the dominance matrix for knowledge reduction is proposed for finding the
maximum reduct in IFIS. The time complexity of this algorithm is O(|U |22|A|). The
importance of the maximum reduct is due to its potential for speeding up data
process and improving the quality of classification. These new approaches may be
helpful for rule evaluation and knowledge discovery in incomplete fuzzy information
systems.

REFERENCES

[1] Beaubouef, T.—Petry, F. E.—Arora, G.: Information-Theoretic Measures of
Uncertainty for Rough Sets and Rough Relational Databases. Information Sciences
1998, No. 109, pp. 185–195.

[2] Blake, C. L.—Merz, C. J.: UCI Repository of Machine Learning Databases.
Irvine, University of California 1998. Availaible on: http://www.ics.uci.edu/

mlearn/.

[3] Greco, S.—Matarazzo, B.—Slowinski, R.: Fuzzy Rough Sets and Multiple-
Premise Gradual Decision Rules. International Journal of Approximate Reasoning,
Vol. 41, 2006, No. 2, pp. 179–211.

[4] Greco, S.—Matarazzo, B.—Slowinski, R.: Rough Approximation by Domi-
nance Relations. International Journal of Intelligent Systems, Vol. 17, 2002, No. 2,
pp. 153–171.

[5] Greco, S.—Matarazzo, B.—Slowinski, R. S.: Rough Approximation of a Pre-
ference Relation by Dominance Relations. European Journal of Operational Research,
Vol. 117, 1999, No. 1, pp. 63–83.

[6] Li, H. L.—Chen, M.H.: Induction of Multiple Criteria Optimal Classification Rules
for Biological and Medical Data. Computers in Biology and Medicine, Vol. 38, 2008,
No. 1, pp. 42–52.

[7] Liang, J.Y.—Xu, Z. B.: The Algorithm on Knowledge Reduction in Incomplete
Information Systems. International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, Vol. 10, 2002, No. 2002, pp. 95–103.

[8] Liang, J.Y.—Shi, Z. Z.: The Information Entropy, Rough Entropy and Knowledge
Granulation in Rough Set Theory. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, Vol. 12, 2004, No. 1, pp. 37–46.

[9] Mieszkowiez, R.A.—Rolka, L.: Fuzziness in Information Systems. Electronic
Notes in Theoretical Computer Science, Vol. 82, 2003, No. 4, pp. 164–173.

[10] Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer
Academic Publishers, Boston 1991.

[11] Pawlak, Z.: Rough Sets and Intelligent Data Analysis. Information Sciences,
Vol. 147, 2002, No. 1, pp. 1–12

[12] Pawlak, Z.—Skowron, A.: Rudiments of Rough Sets. Information Sciences,
Vol. 177, 2007, No. 1, pp. 3–27.



650 Q. Wu

[13] Qian, Y.H.—Liang, J.Y.—Pedrycz, W.—Dang, C.Y.: An Efficient Accelera-
tor for Attribute Reduction from Incomplete Data in Rough Set Framework. Pattern
Recognition, Vol. 44, 2011, pp. 1658–1670.

[14] Swiniarski, R.W.—Skowron, A.: Rough Set Method in Feature Selection and
Recognition. Pattern Recognition Letters, Vol. 24, 2003, No. 6, pp. 833–849.

[15] Shen, L.X.—Loh, H.T.: Applying Rough Sets to Market Timing Decisions. Deci-
sion Support Systems, Vol. 37, 2004, No. 4, pp. 583–597.

[16] Shao, M.W.—Zhang, W.X.: Dominance Relation and Rules in an Incomplete
Ordered Information System. International Journal of Intelligent Systems, Vol. 20,
2005, pp. 13–27.

[17] Wang, X.X.—Tsang, E.C.C.—Zhao, S.Y. et al.: Learning Fuzzy Rules from
Fuzzy Samples Based on Rough Set Technique. Information Sciences, Vol. 177, 2007,
No. 20, pp. 4493–4514.

[18] Wei, L.H.—Tang, Z.M.—Yang, X.B.—Zhang, L. L.: Dominance-Based
Rough Set Approach to Incomplete Fuzzy Information System. Proceedings of the
2008 IEEE International Conference on Granular Computing, GrC 2008, Hangzhou,
China, August 2008, pp. 632–637.

[19] Wu, W.Z.—Zhang, W.X.—Li, H. Z.: Knowledge Acquisition in Incomplete
Fuzzy Information Systems via the Rough Set Approach. Expert Systems, Vol. 20,
2003, No. 5, pp. 280–286.

[20] Xu, W.H.—Zhang, X.Y.—Zhang, W.X.: Knowledge Granulation, Knowledge
Entropy and Knowledge Uncertainty Measure in Ordered Information Systems. Ap-
plied Soft Computing, Vol. 9, 2009, pp. 1244–1251.

[21] Yang, X.B.—Yang, J.Y.—Wu, C. et al.: Dominance-Based Rough Set Approach
and Knowledge Reductions in Incomplete Ordered Information System. Information
Sciences, Vol. 178, 2008, No. 4, pp. 1219–1234.

[22] Yee, L.—Wu, W.Z.—Zhang, W.X.: Knowledge Acquisition in Incomplete Infor-
mation Systems: A Rough Set Approach. European Journal of Operational Research,
Vol. 168, 2006, No. 1, pp. 164–180.

[23] Yang, X.B.—Yu, D. J.—Yang, J.Y.—Wei, L.H.: Dominance-Based Rough Set
Approach to Incomplete Interval-Valued Information System. Data and Knowledge
Engineering, Vol. 68, 2009, No. 11, pp. 1331–1347.

[24] Yang, X.B.—Wei, L.H.—Yu, D. J.—Yang, J.Y.: Rough Fuzzy Set in Incom-
plete Fuzzy Information System Based on Similarity Dominance Relation. Recent
Patents on Computer Science, Vol. 2, 2009, pp. 68–74.

[25] Zhai, L.Y.—Khoo, L. P.—Zhong, Z.W.: A Dominance Based Rough set Ap-
proach to Kansei Engineering in Product Development. Expert Systems with Appli-
cations, Vol. 36, 2009, No. 1, pp. 393–402.



Knowledge Granulation, Rough Entropy and Uncertainty Measure in IFIS 651

QiangWu is an Assistant Professor at the Department of Com-
puter Science and Technology of Shaoxing University in Zhejing
(China). He attained his Ph. D. in computer in 2008 at Shanghai
University (China). His current research interests include formal
concept analysis and rough set theory.


