
Computing and Informatics, Vol. 31, 2012, 713–726

MILLER ANALYZER FOR MATLAB:
A MATLAB PACKAGE FOR AUTOMATIC
ROUNDOFF ANALYSIS

Attila Gáti

Óbuda University
Bécsi út 96/b
1034 Budapest, Hungary
e-mail: gati.attila@phd.uni-obuda.hu

Communicated by János Fodor

Abstract. We give a first report on our new software, Miller Analyzer for Matlab,
which is an automatic roundoff error analyzer that extends the work of Miller et
al. Using the original work of Miller, the analyzed numerical algorithm had to be
expressed in a special, greatly simplified programming language. The main disad-
vantage of Miller’s software is its own programming language and its restrictions.
We have eliminated this drawback by creating a Matlab interface to the method of
Miller. Applying the operator overloading based implementation technique of au-
tomatic differentiation, we have provided a means of analyzing numerical methods
given in the form of Matlab m-functions. This new way of defining the analyzed
numerical method is more flexible, and the integration into the Matlab environ-
ment makes the use of the software easy. Our work can be useful in analyzing the

numerical stability of algorithms that use only the four basic real (not complex)
arithmetic operations and square root. At the end of the paper, we discuss two
such examples.

Keywords: Automatic roundoff analysis, numerical stability, automatic differenti-
ation, Matlab, operator overloading

Mathematics Subject Classification 2010: 65G50, 65G99, 68N19, 68N20,
68W99

714 A. Gáti

1 INTRODUCTION

We present a new Matlab package for automatic roundoff error analysis, based on
the method developed by Webb Miller, and originally implemented in Fortran lan-
guage by Webb Miller and David Spooner in 1978. Our software provides all the
functionalities of the work by Miller and extends its applicability to such numerical
algorithms that were complicated or even impossible to analyze with Miller’s method
before. As the analyzed numerical algorithm can be given in the form of a Matlab
m-file, our software is easy to use. We give a first report on our software, Miller
Analyzer for Matlab, which is hopefully useful for numerical people to analyze the
effects of rounding errors.

More information on the use of the software by Miller and its theoretical back-
ground can be found in [10, 11, 12, 14, 15]. The software is in the ACM TOMS
library with serial number 532 [13]. Using Miller’s method, one can analyze the
stability of numerical methods executed in floating point arithmetic. The software
was intended to help algorithm designers seeking numerically stable algorithms or
users doing initial testing of a new algorithm proposed for use. The basic idea of
Miller’s method is as follows. Given a numerical algorithm to analyze, a number
ω (d) is associated with each set d (d ∈ R

n) of input data. The function ω : Rn → R

measures rounding error, i.e., ω (d) is large exactly when the algorithm applied
to d produces results which are excessively sensitive to rounding errors. A nume-
rical maximizer is applied to search for large values of ω to provide information
about the numerical properties of the algorithm. Finding a large value of ω can
be interpreted as the given numerical algorithm is suffering from a specific kind of
instability.

The software performs backward error analysis. The value ω (d) · u (where u is
the machine rounding unit) can be interpreted as the first order approximation of
the upper bound for the backward error. The computation of the error measuring
number is based on the partial derivatives of the output with respect to the input
and the individual rounding errors. An automatic differentiation algorithm is used
to provide the necessary derivatives.

In the book by Miller and Wrathall [15], the potential of the software is clearly
demonstrated through 14 case studies. The answers of the software are consistent
in these cases with the well known formal analytical and experimental results. The
program shows correctly the stability properties of algorithms such as the Gaussian
elimination without pivoting and with partial pivoting, the Gauss-Jordan elimina-
tion, the Cholesky factorization, the classical and modified Gram-Schmidt meth-
ods, the application of normal equations and Householder reflections for linear least
squares problem and so on. We used the software package to examine the stability
of some ABS methods [1], namely the implicit LU and several variants of the Huang
method [6]. The results agreed with the already known facts about the numerical
stability of the algorithms. The program has shown that implicit LU is numerically
unstable and that the modified Huang method has better stability properties than
the original Huang method.

Miller Analyzer for Matlab 715

The numerical method to be analyzed must be expressed in a special, greatly
simplified Fortran-like language. We can construct for-loops and if-tests that are
based on the values of integer expressions. There is no way of conversion between
real and integer types, and no mixed expressions (that contain both integer and real
values) are allowed. Hence we can define only straight-line programs, i.e., where the
flow of control does not depend on the values of floating point variables. To analyze
methods with iterative loops and with branches on floating point values, the possible
paths through any comparisons must be treated separately. This can be realized by
constrained optimization. We confine search for maximum to those input vectors
by which the required path of control is realized. The constraints can be specified
through a user-defined subroutine. Higham mentions the special language and its
restrictions as the greatest disadvantage of the software [9]: “. . . yet the software
has apparently not been widely used. This is probably largely due to the inability
of the software to analyse algorithms expressed in Fortran, or any other standard
language”.

We have eliminated this drawback by creating a Matlab interface to the method
of Miller. Applying the operator overloading based implementation technique of
automatic differentiation [8, Chapter 5], we have provided a means of analyzing
numerical methods given in the form of Matlab m-functions. In our framework,
we can define both straight-line programs and methods with iterative loops and
arbitrary branches. Since the possible control paths are handled automatically,
iterative methods and methods with pivoting techniques can also be analyzed in
a convenient way. Miller originally used the direct search method of Rosenbrock
for finding numerical instability. To improve the efficiency of maximizing, we added
two more direct search methods [7]: the well known simplex method of Nelder
and Mead, and the so called multidirectional search method developed by Virginia
Torczon [17].

In Section 2 we give precise definitions of the concepts straight-line program
and computational graph. Two functions can be associated with each straight-line
program: the program function and the program function with presence of rounding
errors. The software of Miller can handle only straight-line programs, and uses the
Jacobian of these functions to compute the error function ω. A detailed discussion
of the formulation of the program function and the program function with presence
of rounding errors is also given in Section 2. We extended Miller’s approach to non
straight-line programs by operator overloading based automatic differentiation. In
Section 3 we discuss the basic idea of the operator overloading approach, and we
specify the above program functions (with and without rounding errors) in that gen-
eralized case. Once we have the required Jacobian, we compute the error measuring
number ω in the same way as Miller did, which is summarized in Section 4. Some
technical details about our new software are given in Section 5. Two examples can
be found in Section 6.

716 A. Gáti

2 STRAIGHT-LINE PROGRAMS, COMPUTATIONAL GRAPHS

AND AUTOMATIC DIFFERENTIATION

Miller’s error analyzer treats rounding errors in a machine independent manner.
The analysis is not tuned to a particular form of machine number or a particu-
lar numerical precision, instead it employs a model of floating point numbers and
rounding errors. We use the standard model of the floating point arithmetic, which
assumes that the relative error of each arithmetic operation is bounded by the ma-
chine rounding unit, and we ignore the possibility of overflow and underflow. The
IEEE 754/1985 standard of floating point arithmetic guarantees that the standard
model holds for addition, subtraction, multiplication, division and square root. Un-
fortunately it is not true for the exponential, trigonometric and hyperbolic functions
and their inverses. Hence we limit ourselves to numerical algorithms that can be
decomposed to the above mentioned five basic operations and unary minus, which
is considered error-free.

The roundoff error analyzer method of Miller is based on the first order deriva-
tives of the output with respect to the input and the belonging rounding errors.
Our main improvement concerns the automatic differentiation method computing
the values for the Jacobian. In order to describe the applied techniques precisely,
we need to make clear the concepts of a straight-line program and a computational
graph and their role in the applied automatic differentiation method.

First, we introduce the notion of a straight-line program. Informally, a numer-
ical algorithm is a straight-line program if it does not contain branches depending
directly or indirectly on the particular input values, and the loops are traversed
a fixed number of times. With the loops unrolled, taking the appropriate branches
at if-tests and inlining the subroutines – i.e., inserting the content of a subroutine
in the place of its call –, one could create an equivalent program containing only
sequence of real assignment statements to every straight-line program. By defining
straight-line programs and computational graphs, we follow [2, Section 2] with slight
modifications.

Now we give the formal definition of a straight-line program Π. Let m, n and t
be natural numbers and introduce X = {x1, x2, . . . , xn}, V = {v1, v2, . . . , vm} and
{←,+,−,×,÷, sqrt} disjoint sets of n, m and six symbols, respectively, and let
S = {s1, s2, . . . , st} be a set of t real numbers. We shall call the elements of S
constants, the elements of X inputs and the elements of V intermediate results
of the straight-line program Π. A computational sequence C is an m-tuple with
elements of the form vλ ← v′λ ◦λ v′′λ or vλ ← sqrt v′λ or vλ ← −v′λ (1 ≤ λ ≤ m,
◦λ ∈ {+,−,×,÷}), where v′λ and v′′λ are either elements of V with lower index than
λ, or arbitrary elements of the set S ∪X. A straight-line program of length m with
n inputs, t constants and k outputs is an ordered quintuple Π = (S,X, V, T, C),
where S ⊂ R, and X, V are disjoint sets of symbols as above with t, n, m elements,
respectively. T is a subset of V with cardinality k, and C is a computational
sequence of length m. The elements of T are the outputs of the straight-line pro-
gram Π.

Miller Analyzer for Matlab 717

An interpretation of the straight-line program Π in the domainR of real numbers
is a mapping J : X → R. If J can be extended to a mapping S ∪X ∪ V → R (for
convenience also denoted by J) in such a way that J (s) = s for every s ∈ S, and
for every 1 ≤ λ ≤ m the identity

J (vλ) =

J (v′λ) ◦λ J (v′′λ) if cλ = vλ ← v′λ ◦λ v′′λ√
J (v′λ) if cλ = vλ ← sqrt v′λ

−J (v′λ) if cλ = vλ ← −v′λ
(1)

is defined and holds, then we call the interpretation consistent (cλ denotes the entry
of C with index λ). It is obvious that there exists at most one consistent way to
extend a given mapping J , and such an extension exists unless we encounter values
for which any of the prescribed operations are undefined (attempting to division
by zero or taking the square root of a negative number). A consistent interpreta-
tion on R gives rise to a finite sequence of real numbers: J (x1), J (x2) , . . . , J (xn),
J (v1), J (v2) , . . . , J (vm). The numbers di = J (xi) are the actual input values,
and wj = J (vj) are called intermediate values. If T = {vj1, vj2, . . . , vjk}, then
the interpretation results k outputs p1 = wj1, p2 = wj2 , . . ., pk = wjk . We also
say that the interpretation computes the outputs p1, p2, . . . , pk from the inputs
d1, d2, . . . , dn.

Let Π = (S,X, V, T, C) be a straight line program. We associate to Π a labeled
directed acyclic graph G (Π) whose set of nodes is S∪X ∪V . The elements of S∪X
represent nodes that are not the starting point of any edges, and the corresponding
elements of S ∪ X will also be the label of these nodes. The nodes labeled by
elements of S are called constant nodes whereas the nodes labeled by elements of
X are called input nodes. The elements of the set V are the arithmetic nodes
of G. If vλ ← v′λ ◦λ v′′λ is an element of the computational sequence C, then G
contains two edges from the node vλ to v′λ and v′′λ, and the node vλ is labeled by
◦λ. Analogously, if cλ is of the form of vλ ← sqrt v′λ or vλ ← −v′λ an edge goes from
vλ to v′λ, and vλ is labeled by sqrt and −, respectively. Finally we add k additional
nodes (output nodes) labeled by the elements of T . G contains an edge from each
output node to the arithmetic node giving the value of that output. We call G (Π)
the computational graph associated to the straight-line program Π.

A given computational graph may be associated to different straight-line pro-
grams, which, however, compute the same outputs. Hence from now on, we consider
the straight-line program and its computational graph equivalent.

We define the program function of the straight-line program on domain R as
follows. Let D be the set of all vectors d ∈ R

n for which the corresponding interpre-
tation J (xi) = di, (i = 1, 2, . . . , n) is consistent. For every d ∈ D the consistent in-
terpretation computes the output vector p ∈ R

k resulting in a function P : D→ R
k.

This mapping will be called the program function of the straight-line program on
domain R.

Let Π = (S,X, V, T, C) be a straight-line program as above, and let δ ∈ R
m be

the vector of rounding errors hitting each operation in C. The standard model of

718 A. Gáti

floating point arithmetic guarantees that |δj | ≤ u for all j = 1, 2, . . . , m, where u is
small positive number, the machine rounding unit. An interpretation of the straight-
line program Π on the domain R in the presence of error vector δ is a mapping
J : X → R. If J can be extended to a mapping Ĵ : S ∪X ∪ V → R in such a way
that Ĵ (s) = s for every s ∈ S, and for every 1 ≤ λ ≤ m the identity

Ĵ (vλ) =

(
Ĵ (v′λ) ◦λ Ĵ (v′′λ)

)
· (1 + δλ) if cλ = vλ ← v′λ ◦λ v′′λ√

Ĵ (v′λ) · (1 + δλ) if cλ = vλ ← sqrt v′λ
−Ĵ (v′λ) if cλ = vλ ← −v′λ

(2)

is defined and holds, then we call the interpretation consistent.

Let D̂ be the set of all pairs (d, δ) of vectors d ∈ R
n, δ ∈ R

m for which the
corresponding interpretation J (xi) = di (i = 1, 2, . . . , n) is consistent in the presence

of rounding errors δ. For every (d, δ) ∈ D̂ the consistent interpretation computes

the output vector p̂ ∈ R
k resulting in a function R : D̂ → R

k, the program function
of the straight-line program on domain R with presence of rounding errors. It is
obvious that for all d ∈ D, (d, 0) ∈ D̂ also holds, and P (d) = R (d, 0).

The analysis of the effects of rounding errors on the evaluation of P at d0 ∈ D
in floating point arithmetic according to the computational sequence C is based on
the derivatives of R at (d0, 0) ∈ D̂ with respect to the entries of d and δ. According
to the straight-line program representation and Equation (2), the function R is
decomposed into the composition of ϕλ (1 ≤ λ ≤ m) elementary functions. For all
1 ≤ λ ≤ m ϕλ has the form:

ϕλ (x, y, ε) = (x ◦λ y) (1 + ε) if cλ = vλ ← v′λ ◦λ v′′λ
ϕλ (z, ε) =

√
z (1 + ε) if cλ = vλ ← sqrt v′λ

ϕλ (x) = −x if cλ = vλ ← −v′λ

where x, y, z, ε ∈ R, z ≥ 0, |ε| ≤ u. The required derivatives of R are evaluated
by automatic (sometimes also called algorithmic) differentiation techniques, i.e.,
knowing the elementary functions and their derivatives, we apply systematically the
chain rule of calculus according to the dependence relation given by the computa-
tional graph to build the derivatives of the composition function R. The applied
automatic differentiation algorithm requires the differentiability of the elementary
functions. Thus we have to restrict the domains of the functions P and R to ensure
that no square root of zero will be encountered in (1) and (2) (except the case of
v′λ being a constant, which is not a practical implementation of P). Let J : X → R

be a consistent interpretation of the straight-line program Π in the domain R. We
call the interpretation differentiable if for every entry of the computational sequence
of C with the form vλ ← sqrt v′λ the corresponding identity J (vλ) =

√
J (v′λ) holds

with J (v′λ) > 0.

Miller Analyzer for Matlab 719

3 THE OPERATOR OVERLOADING BASED DIFFERENTIATION

Now, we briefly discuss the technique of automatic differentiation that we have
applied in our software. To fully understand this section, the reader should be
familiar with the object oriented concept of operator overloading and the way it can
be used to implement automatic differentiation tools. For the required information
please consult [8, Chapter 5].

The software by Miller has its own programming language. The analyzed nu-
merical algorithm must be expressed in that simplified, Fortran-like language. The
restrictions of the language guarantee that the defined program can be converted to
an equivalent formal straight-line program. A software module called the minicom-
piler compiles the given algorithm into a straight-line program as the first step of
analysis.

The problem is that programs containing iterative loops that may be traversed
variable number of times and branches that modify calculation according to various
criteria cannot be handled by the Miller’s minicompiler. On the other hand the
straight-line program and the computational graph is still an accurate model of such
a program as it is executed upon a given d input vector. Loops can be unrolled,
and only certain branches of the program are actually taken in each given case. By
executing any numerical program, we can record the arithmetic operations occurred
in the form of a computational sequence as an execution trace of all the operations
and their arguments. With the nomination of the input and output variables, we
get a straight-line program, for which the derivatives can be calculated in the same
way as by Miller’s approach. Of course, for different input data we may get different
straight-line programs by tracing the execution.

Let d ∈ R
n be a vector of input data upon which a given numerical algorithm

can be executed without any arithmetic exceptions and run-time errors. Tracing
the execution we get a straight-line program Πd = (Sd, X, Vd, Td, Cd) with program
functions Pd in exact arithmetic and Rd in the presence of rounding error. Under
our assumptions the interpretation J (xi) = di, (i = 1, 2, . . .n) will be consistent,
and if it is also differentiable, then we can calculate the Jacobian of function Rd at
(d, 0) ∈ R

n+md.
The basic idea of operator overloading approach of automatic differentiation is

that we use a special user defined class instead of the built-in floating point type,
for which all the arithmetic operators and the square root function are defined
(overloaded). Upon performing the operations on the variables of that special type,
in addition to computing the floating point result of the operation, the appropriate
entry (node) is also added to the computational sequence (graph). Such a class must
contain at least two fields (data members): the actual floating point value as in the
case of ordinary variables and an identifier that identifies the entry (node) in the
computational sequence (graph) corresponding to the given floating point value.

We have developed a Matlab interface for automatic differentiation, which over-
loads the arithmetic operators and the function sqrt for Matlab vectors and matrices
of class real (complex arithmetic is not supported). By executing the m-file code of

720 A. Gáti

the analyzed numerical algorithm using our special class instead of class real, we get
the required computational sequence as a trace of execution. Our approach is much
the same as the overloaded automatic differentiation libraries ADMAT (developed
by Coleman and Verma [3, 18]) and MAD (by Shaun A. Forth [4]). The main dif-
ference is that unlike these toolboxes we also calculate the partial derivatives with
respect to the rounding errors in addition to the derivatives with respect to the
inputs.

4 MEASURING THE EFFECTS OF ROUNDING ERRORS

The reasonable use of our software requires a basic understanding of how we can
measure the effects of rounding errors based on the Jacobian. We compute the error
function ω in the same way as Miller did, which can be summarized as follows.

As stated earlier, let P : D → R
k (D ⊆ R

n) be the program function of

a straight-line program on domain R and R : D̂ → R
k (D̂ ⊆ R

n ×R
m) the program

function with presence of rounding errors. In our case the straight-line program
arises from an execution trace upon a specified d ∈ R

n input vector. Assume that P
is continuously differentiable at d and R is continuously differentiable at (d, 0); we
can measure the effects of rounding errors occurred by executing the corresponding
computational sequence at d in floating point arithmetic as follows.

Our software can compute several error measuring numbers, but for brevity we
shall consider only the approximation of the normwise backward error, which will be
denoted by ω (d). For a deeper insight on the error measuring methods, the reader
should consult Miller [14, Section 2, 10, 12] or Miller and Wrathall [15, Chapter 4].
By backward error analysis we compare the effects of rounding errors with the ef-
fects of perturbing the input data. ω (d) is the smallest number for which R (d, δ) =
P (d+ π) holds for some π ∈ R

n satisfying ‖π‖
∞
≤ ω (d) · ‖d‖

∞
· u whenever

‖δ‖
∞
≤ u. As δ varies over the m-dimensional cube Km

∞
= {δ ∈ R

m : ‖δ‖
∞
≤ u},

the computed value R (d, δ) varies over the set {R (d, δ) : ‖δ‖
∞
≤ u}. For the set of

data perturbations

Kn
∞

= {π ∈ R
n : ‖π‖

∞
≤ ω (d) · ‖d‖

∞
u}

the exact outputs form the set {P (d+ π) : π ∈ Kn
∞
}. For the number ω (d)

{R (d, δ) : ‖δ‖
∞
≤ u} ⊆ {P (d+ π) : ‖π‖

∞
≤ ω (d) · ‖d‖

∞
· u} , (3)

but the two sets have common boundary points. To make ω easy to compute,
we apply linear approximation to P and R: R (d, δ) ≈ R (d, 0) + Aδ, P (d+ π) ≈
P (d) + Bπ, where A = [∂Ri/∂δj (d, 0)]

k,m

i=1,j=1
and B = [∂Pi/∂πj (d)]

k,n

i=1,j=1
are the

Jacobians. Since R (d, 0) = P (d), we can approximate ω (d) by applying the first
order approximations to (3) as the smallest positive number for which

{Aδ : ‖δ‖
∞
≤ 1} ⊆ {Bπ : ‖π‖

∞
≤ ω (d) · ‖d‖

∞
} (4)

Miller Analyzer for Matlab 721

holds. The use of maximum norm makes the value ω (d) difficult to evaluate, so we
work with Euclidean norm instead. Let DL = diag (‖d‖

∞
) be the n-by-n diagonal

matrix with diagonal elements ‖d‖
∞
. Then

{Bπ : ‖π‖
∞
≤ ω (d) · ‖d‖

∞
} = {BDLπ : ‖π‖

∞
≤ ω (d)}

and we calculate ω (d) as the smallest positive number that makes

{Aδ : ‖δ‖
2
≤ 1} ⊆ {BDLπ : ‖π‖

2
≤ ω (d)} (5)

true. According to (5) ω (d) can be found by solving the k-by-k generalized eigen-
value problem: AATx = λBDLD

T
LB

Tx, and ω (d) will be the largest such eigenvalue.
We apply direct search methods to maximize the function ω (d). Finding large

values can be interpreted that the analyzed numerical method is numerically unsta-
ble. In addition to the Rosenbrock method originally applied by Miller in [13], we
extended the software so that it can also use the multidirectional search method by
Torczon [17] and the well known simplex method of Nelder and Mead.

5 MILLER ANALYZER FOR MATLAB

Miller Analyzer for Matlab is a mixed-language software. We kept several routines
from the work of Miller et al. [13], which was written in Fortran. These routines per-
form automatic differentiation using graph techniques on the computational graph,
compute error measuring numbers from the derivatives and do the maximization of
the error function. The interface between Matlab and the Fortran routines is imple-
mented in C++. The source has to be compiled into a Matlab MEX file, and it is
to be called from the command prompt of Matlab. The integration into the Matlab
environment makes the use of the program convenient. Matlab provides an easy
way of interchanging vectors and matrices with the error analyzer software, and we
can immediately verify the results either by testing the analyzed numerical method
or by applying some kind of a posteriori roundoff analysis upon the final set of data
returned by the maximizer.

Applying the operator overloading technology of Matlab (version 5.0 and above,
for details see Register [16]), we have provided a much more flexible way of defining
the numerical method to analyze, than the minicompiler did. This new way is
based on a user-defined Matlab class called cfloating, on which we have defined
all the arithmetic operators and the function sqrt. The functions defining these
operators compute the given arithmetic operations and create an execution trace
of the operations as a computational sequence. To analyze a numerical method,
we can implement it in the form of Matlab m-file using cfloating type instead of
the built-in floating point type. However, the cfloating class can do more than
the original compiler since it does not only register the floating point operations,
but also computes their results. During execution the value of real variables are
available, which through the overloading of relational operators makes it possible to

722 A. Gáti

define numerical methods containing branches based on values of real variables and
iterative loops (i.e., algorithms that are not straight-line).

Still, this is not yet enough to analyze the numerical stability of such algorithms,
because unlike the minicompiler the generated computational graph may depend on
the input data.

Algorithm 1 The original algorithm

1: Compilation
2: Generating the computational graph
3: repeat
4: for data d required by the maximizer
5: Computing partial derivatives
6: Evaluating of ω (d)
7: until (stopping criterion of the maximizer)

Algorithm 2 The new approach
1: repeat
2: for data d required by the maximizer
3: Generating the computational graph
4: Computing partial derivatives
5: Evaluating of ω (d)
6: until (stopping criterion of the maximizer)

Algorithm 1 gives the high level pseudocode of the original program of Miller.
Statements (1) and (2) are performed by the minicompiler. As the analyzed method
is guaranteed to be straight-line, the generated computational graph is independent
from the floating point input vector. The loop given in statements (3)–(7) is executed
by the error analyzer program. The program computes the partial derivatives and
the stability measuring number for every d input set of data required by the maxi-
mizer. The program terminates if the stopping criterion of the numerical maximizer
is fulfilled. Algorithm 2 illustrates our new approach. In this case the compila-
tion phase is omitted since the Matlab interpreter executes the m-file directly. The
problem is that the generated computational graph is not necessarily independent
from the input data. Therefore, the process that builds the computational graph
had to be inserted into the main loop (Algorithm 2, statement (3)). In this way
our program is able to analyze the numerical stability of algorithms that are not
straight-line.

6 GAUSSIAN ELIMINATION: AN EXAMPLE

Using the original version of the method [13], Miller analyzed the numerical stability
of Gaussian elimination solving the linear system Ax = b (A ∈ R

n×n, b ∈ R
n)

Miller Analyzer for Matlab 723

without pivoting and with partial pivoting (for details see [14, Section 4] and [15,
Chapter 5.2]). Our software, which is available on http://phd.uni-obuda.hu/

images/milleranalyzer.zip, can easily reproduce the results obtained by Miller.
For details about the use of the software see our User’s Manual [5].

We consider first the procedure without pivoting.

Algorithm 3 Gaussian elimination

1: function b = gauss(A, b)
2: % Gaussian elimination
3: [n,m] = size(A);
4: assert(n==m, ‘A is not a square matrix!’);
5: m = numel(b);
6: assert(n==m, ‘b must have as many elements as the columns of A!’);
7: %
8: % Elimination
9: for k = 1:n− 1
10: for i = k + 1:n
11: amult = A(i, k)/A(k, k);
12: A(i, k + 1:n) = A(i, k + 1:n)− amult ∗ A(k, k + 1:n);
13: b(i) = b(i)− amult ∗ b(k);
14: end

15: end
16: %
17: % Back substitution
18: for i = n : -1 : 1
19: b(i) = (b(i)− A(i, i+ 1:n) ∗ b(i+ 1:n))/A(i, i);
20: end

Algorithm 3 shows an m-file implementation appropriate for analysis. The soft-
ware can easily find linear systems for which ω is extremely large. We fixed the size
of the problem at n = 4. Started from a randomly chosen data set, the Rosenbrock
method located:

A ≈

0.7447 0.1774 0.5546 −0.0404
0.7136 0.1681 0.5303 0.9408
0.7440 0.8149 0.9112 0.5309
1.0416 0.1674 −0.6000 0.7108

 , b ≈

0.8414
−0.4787
0.3505
−0.2878

 ,

where ω (A, b) ≈ 2.1283e+011. Matlab’s condition estimation function gives
cond (A) ≈ 5.6179, so Gaussian elimination without pivoting can be unstable at
very well-conditioned data.

Consider Algorithm 4 implementing Gaussian elimination with row interchanges
(partial pivoting). Partial pivoting is performed from line (10) to (13). In line (10)
we find the pivoting element with maximal absolute value using the built-in Matlab
functions max and abs. On the other hand, the function value is designed especially

724 A. Gáti

Algorithm 4 Gaussian elimination with partial pivoting

1: function b = gpp(A, b)
2: % Gaussian elimination with partial pivoting
3: [n,m] = size(A);
4: assert(n==m, ‘A is not a square matrix!’);
5: m = numel(b);
6: assert(n==m, ‘b must have as many elements as the columns of A!’);
7: %
8: % Elimination
9: for k = 1:n− 1
10: [maxval,maxi] = max(abs(value(A(k:n, k))));
11: maxi = maxi + k − 1;
12: A([k,maxi] , k:n) = A([maxi, k] , k:n);
13: b([k,maxi]) = b([maxi, k]);
14: for i = k + 1:n
15: amult = A(i, k)/A(k, k);
16: A(i, k + 1:n) = A(i, k + 1:n)− amult ∗ A(k, k + 1:n);
17: b(i) = b(i)− amult ∗ b(k);
18: end

19: end
20: %
21: % Back substitution
22: for i = n:− 1:1
23: b(i) = (b(i)− A(i, i+ 1:n) ∗ b(i+ 1:n))/A(i, i);
24: end

to work with variables of cfloating type. If B is a cfloating array, C = value (B)
returns the floating point value of B, and C will be a built-in typed double array
with the same size as B. Automatic (implicit) conversion of cfloating to double is
not allowed, but with value we can make explicit conversion. After we have gained
access to the floating point values, we can use the function abs, which is not defined
on cfloating type. Being the row index of the pivoting element determined, we
interchange the appropriate rows in lines (12) and (13). For Algorithm 4 and n = 4
the maximizer was not able to push ω above 6.0, which is in accordance with the
well-known fact that the Gaussian elimination with partial pivoting is backward
stable.

REFERENCES

[1] Abaffy, J.—Spedicato, E.: ABS Projection Algorithms: Mathematical Tech-
niques for Linear and Nonlinear Equations. Prentice-Hall, Inc., Upper Saddle River,
NJ USA, 1989.

Miller Analyzer for Matlab 725

[2] Castaño, B.—Heintz, J.—Llovet, J.—Mart́ınez, R.: On the Data Struc-

ture Straight-Line Program and Its Implementation in Symbolic Computation. Math.
Comput. Simul., Vol. 51, 2000, No. 5, pp. 497–528.

[3] Coleman, T.F.—Verma, A.: ADMAT: An Automatic Differentiation Toolbox for

Matlab. Tech. Rep., Computer Science Department, Cornell University 1998.

[4] Forth, S.A.: An Efficient Overloaded Implementation of Forward Mode Auto-
matic Differentiation in Matlab. ACM Trans. Math. Softw., Vol. 32, 2006, No. 2,

pp. 195–222.

[5] Gáti, A.: Miller Analyser for Matlab, User’s Manual. Available on: http://phd.

bmf.hu/images/milleranalyzer.zip.

[6] Gáti, A.: Automatic Error Analysis With Miller’s Method. Miskolc Math. Notes,
Vol. 5, 2004, No. 1, pp. 25–32.

[7] Gáti, A.: The Upgrading of the Miller-Spooner Roundoff Analyser Software. In:
A. Pethő and M. Herdon (Eds.): Proceedings of IF 2005, Conference on Informatics
in Higher Education, Debrecen, 2005, University of Debrecen, Faculty of Informatics
(in Hungarian).

[8] Griewank, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. No. 19 in Frontiers in Appl. Math. SIAM, Philadelphia, PA, USA,
2000.

[9] Higham, N. J.: Accuracy and Stability of Numerical Algorithms. Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, USA, 1996.

[10] Miller, W.: Computer Search for Numerical Instability. J. ACM, Vol. 22, 1975,
No. 4, pp. 512–521.

[11] Miller, W.: Software for Roundoff Analysis. ACM Trans. Math. Softw., Vol. 1,
1975, No. 2, pp. 108–128.

[12] Miller, W.: Roundoff Analysis by Direct Comparison of Two Algorithms. SIAM
Journal on Numerical Analysis, Vol. 13, 1976, No. 3, pp. 382–392.

[13] Miller, W.—Spooner, D.: Algorithm 532: Software for Roundoff Analysis [z].
ACM Trans. Math. Softw., Vol. 4, 1978, No. 4, pp. 388–390.

[14] Miller, W.—Spooner, D.: Software for Roundoff Analysis, II. ACM Trans. Math.
Softw., Vol. 4, 1978, No. 4, pp. 369–387.

[15] Miller, W.—Wrathall, C.: Software for Roundoff Analysis of Matrix Algo-
rithms. Academic Press, New York 1980.

[16] Register, A.H.: A Guide to Matlab Object-Oriented Programming. Chap-
man&Hall/CRC, 2007.

[17] Torczon, V.: On the Convergence of the Multidirectional Search Algorithm. SIAM
Journal on Optimization, Vol. 1, 1991, No. 1, pp. 123–145.

[18] Verma, A.: ADMAT: Automatic Differentiation in Matlab Using Object Oriented
Methods. In: M. E. Henderson, C.R. Anderson, and S. L. Lyons (Eds.): Object Ori-
ented Methods for Interoperable Scientific and Engineering Computing, Proceedings
of the 1998 SIAM Workshop, Philadelphia, 1999, SIAM, pp. 174–183.

726 A. Gáti

Attila G

�

ati received the M. Sc. degree in business economics

and the B. Sc. (summa cum laude) degree in computer science
from the University of Miskolc, Hungary, in 2000 and 2003, re-
spectively. He is currently pursuing the Ph.D. degree at the
Doctoral School for Applied Information Science of the Univer-
sity of Óbuda under the supervision of Aurél Galántai and László
Horváth. From 2006 to 2008, he was an assistant lecturer in the
Department of Analysis, University of Miskolc. Since 2008, he
has been with the R&D division at ARH corporation, Hungary,
as a researcher and algorithm developer working in the field of
image processing and computer vision.

