
Computing and Informatics, Vol. 31, 2012, 727–741

PIPELINE IMPLEMENTATION OF PEER GROUP
FILTERING IN FPGA

Tomasz Kryjak, Marek Gorgon

Laboratory of Biocybernetics, Department of Automatics

AGH University of Science and Technology

Al. Mickiewicza 30, 30-065 Krakow, Poland

e-mail: {kryjak, mago}@agh.edu.pl

Communicated by Jacek Kitowski

Abstract. In the paper a parallel FPGA implementation of the Peer Group Fil-
tering algorithm is described. Implementation details, results, performance of the
design and FPGA logic resources are discussed. The PGF algorithm customized for
FPGA is compared with the original one and Vector Median Filtering.

Keywords: Colour image processing, reconfigurable systems, FPGA, parallel al-
gorithms

1 INTRODUCTION

Image smoothing and noise removal algorithms are the basis of many image pro-
cessing applications. Linear filtering with Gaussian mask and median filtering are
two often used methods. Both are well known and tested for gray-scale images [1].
For colour images a common approach to remove impulse noise is Vector Median
Filtering (VMF) [2] and its modifications [3, 4, 5, 6].

In this paper a parallel and pipeline implementation of the Peer Group Filter-
ing algorithm (PGF) in FPGA is presented. The PGF algorithm for colour images
was originally introduced in [7] and some modifications are presented in [8]. Ac-
cording to [7] Peer Group Filtering effectively removes impulse noise and smoothes
colour images without blurring edges and other details. Its main drawback is a high
computational complexity, therefore a parallel implementation is advisable.

Reconfigurable systems are a good platform for many image processing algo-
rithms [9, 10] although there are some limitations in direct porting algorithms from

728 T. Kryjak, M. Gorgon

software to FPGA implementation, i.e. real number operations. Floating point ope-
rations are possible to implement in FPGA resources, but may require the use of
significantly more logical resources and sophisticated methods of design [11]. There-
fore, usually some change or simplification of the algorithm is required. In this paper
several modifications to the original PGF algorithm are proposed (Section 3). Their
influence on the filtration result is examined and discussed (Section 4). Finally,
PGF algorithm and its implementation in FPGA is compared with Vector Median
Filtering.

2 PGF – PEER GROUP FILTERING

A peer group for a given point of the image (pixel) is a set composed of its neighbors,
which are similar to it on the basis of calculating the appropriate distance and
similarity metrics. The basic PGF approach for colour images was described in the
paper [7]. PGF can be divided into two basic steps: classification and replacement.
In the first step, classification, the peer group is chosen. In the second phase,
replacement, the original pixel value is substituted by a pixel value obtained from
the weighted average of the peer group members. The main purpose of averaging
over the peer group, instead of the entire window, is to avoid edge blurring. The
article describes how to customize the software version of the algorithm, so that an
effective implementation in reprogrammable FPGA hardware resources is possible.

Consider an input colour image size X × Y (720 × 576 in the described im-
plementation) in RGB colour space. Every pixel x(n) at position n is a vector
consisting of three values {R,G,B}. Let x0(n) denote a pixel vector centered in
a w × w window (w = 5). In the first step of the PGF, distances di(n) between the
central and other pixels in the window are calculated:

di(n) = ||x0(n)− xi(n)||, i = 0, . . . , k, k = w2 − 1. (1)

Originally, the use of the Euclidean norm has been proposed, although there
are some other possibilities: from the simple L1 distance (so called Manhattan) to
more complex, described in detail in [12]. The second step of PGF is sorting the
calculated di(n) values (in ascending order):

d0(n) ≤ d1(n) ≤ · · · ≤ dk(n). (2)

The next stage is impulse noise removal. First order differences between subse-
quent distances are calculated:

fi(n) = di+1(n)− di(n), i = 0, . . . , k − 1. (3)

Subsequently the first and lastM values from the series fi(n) are tested to check
if they belong to impulse noise (M was originally proposed as M = floor (w/2)):

fi(n) > α : i ≤ M ∨ i ≥ k −M. (4)

Pipeline Implementation of Peer Group Filtering in FPGA 729

The α threshold is set large for highly corrupted images and small for slightly
corrupted ones. When the fi(n) value is greater than the threshold, the pixel is
considered as impulse noise and excluded from further processing. The remaining
values are used to estimate the true peer group. It is worth noticing that the central
pixel x0(n) could also be classified as impulse noise. In this case the true peer group
is estimated by the remaining pixels from the window.

In the consecutive stage the actual peer group for the central pixel is determined.
A modification of the Fisher’s linear discriminant [13] is used. The criterion to be
maximised is:

J(i) =
|a1(i)− a2(i)|

2

s21(i) + s22(i)
, i = 1, . . . , k′ (5)

where:

• k′ – number of pixels after impulse noise removal

a1(i) =
1

i

i−1
∑

j=0

dj(n) and a2(i) =
1

(k + 1− i)

k
∑

j=i

dj(n) (6)

s21(i) =

i−1
∑

j=0

|dj(n)− a1(n)|
2 and s22(i) =

k
∑

j=i

|dj(n)− a2(n)|
2. (7)

The criterion J(i) is calculated for each i and then the i value, where J(i) is the
maximum, is found:

m(n) = argmax
i

J(i). (8)

The peer group P (n) of the size m(n) for the central pixel x0(n) is defined as

P (n) = {xi(n) | i = 0, . . . , m(n)− 1}. (9)

The final stage of the PGF algorithm is Gaussian filtering:

xnew(n) =

∑m(n)−1
i=0 gi · pi(n)
∑m(n)−1

i=0 gi
, pi(n) ∈ P (n) (10)

where gi are the standard Gaussian weights depending on the relative position of
pi(n) with respect to x0(n).

3 FPGA IMPLEMENTATION OF THE PGF ALGORITHM

The PGF algorithm is characterized by high computational complexity and long
calculation times in case of implementation on a general purpose processor (GPP).
A distance sort operation, for the context of 5× 5 size and the need to calculate the
index J(i), have a major impact on the computational complexity of this algorithm.
These operations are relatively simple and repeated for a large number of pixels per
unit of time, so the algorithm can be described as data-dominated. Such algorithms

730 T. Kryjak, M. Gorgon

are well suited to fine-grained parallelization and implementation in FPGA. The
results of PGF filtration for colour images are usually better than those obtained by
other methods (cf. Section 4). For this reason, an attempt to speed up the algorithm
by describing it as a parallel and implement it in FPGA resources is well founded.

The PGF filtration module was designed in VHDL. The entry was a colour im-
age, represented by the {R,G,B} components and the output was represented by
new {R′, G′, B′} values. Each colour component was described as an 8-bit unsigned
integer number ranging from 0 to 255. The module was designed to process images
and video with a resolution of 720× 576 pixels. The size of the context was estab-
lished as in [7], 5×5 pixels. The module was implemented on Xilinx Virtex 4 LX 200
device. Most of the logic was described in VHDL, partly by generating code using
scripts written in Matlab. Xilinx Core Generator Logic was used to implement some
of the modules, i.e. delay lines and modules implementing the division operation.

Here, implementation of each stage of the PGF algorithm in FPGA is described
and discussed in detail. Schematic diagram of the PGF module is shown in Figure 1.

3.1 Context Generation

The task of the first module was to determine the context (size 5×5) for the selected
pixel. A known solution, based on the use of delay lines, allows collecting the local
context [14, 15]. The scheme is shown in Figure 1 (in its upper part). Each pixel
is represented by 24 bits. The module consisted of three identical subsystems that
generate the context for each of 8 bits wide colour components {R,G,B}. The
subsystem was constructed of four delay lines, 720 pixels long, and 25 1 pixel delay
registers. Delay lines were implemented using Xilinx Logic Core Module RAM-
based Shift Register, which had a much shorter synthesis time and made better use
of FPGA logic resources than VHDL implementation.

To make a proper design of neighbourhood imaging operation, it is necessary to
support implementation of pixels nearer to the edge of the image, for which it is im-
possible to determine all neighbours. Various approaches are used, including special
rules along edges and corners, assuming that the image wraps around, mirroring of
the image edges or rewriting the edge pixels of the original image. In the proposed
module the last approach has been used.

3.2 Distance Calculating

When designing a module for calculating the distances, an assumption was made
that the distances between the central pixel x0(n) and its 24 neighbors will be
computed in parallel. Originally [7], the Euclidean (L2) measure of distance was
proposed, which requires the calculation of the square, square root and operations
on real numbers. Implementation of these operations in FPGA is possible; however,
it requires considerable logic resources. In the present case it was necessary to
execute 24 × 3 = 72 square operations and 24 square root calculations in parallel.

Pipeline Implementation of Peer Group Filtering in FPGA 731

R

G

B

D D D D D

D D D D D

D D D D D

D D D D D

D D D D D

Context 5x5

720 x D

720 x D

720 x D

720 x D

delay scheme

of 2D convolver

Parallel distances calculating

Pipeline distances sorting

Impulse noise removal

J, a and s calculating

Peer Group estimation

Gaussian filtering

R' G' B'

D

e

l

a

y

C

o

n

t

e

x

t
Indices Delay

Fig. 1. PGF module scheme

It was decided therefore to make a simplification and replace the proposed L2 norm
by L1 norm (the Manhattan distance):

di(n) = |x0(n)− xi(n)| i = 1, . . . , k, k = 24. (11)

3.3 Distance Sorting

Sorting of the di(n) distances is a key stage of the impulse noise removal method
introduced in the PGF algorithm. FPGA implementations of sorting algorithms
are described in several papers [16, 17]. In this work the bitonic merge sort (BMS)
algorithm was used [18]. This method is an example of a sorting network, which does
not require control logic and is straightforward to parallelize. Therefore it can be

732 T. Kryjak, M. Gorgon

implemented in FPGA very efficiently. A detailed description of the BMS algorithm
can be found in [19].

In the described module 24 distances di(n) were sorted. During the distance
sorting, it was necessary to preserve the pixel index for each pixel. For this purpose
pixels were indexed from i = 1 to 25 and the resultant indices i were sorted simul-
taneously with the distances. Most basic elements of the sorting network were two
types of comparators:

type A – input values were switched, when first input value was greater than the
second,

type B – input values were switched, when first input value was less than or equal
to the second.

Only the two types of comparators described above and additional synchronization
registers were used to implement the BMS module.

3.4 Impulse Noise Removal

The impulse noise removal method proposed in [7] was based on comparing M first
and last values from a sorted series fi(n) with a threshold α and considering as
impulse noise those pixels, whose distance to the central pixel exceeded the given
threshold. Originally, for a 5 × 5 context, the M parameter value was proposed as
M = 2. It was observed during preliminary tests that this value was too low and the
filtration results were often unsatisfactory. It was noticed that the M value should
be set depending on the level of noise in the image. It appeared that a modification
of the original PGF algorithm, which allowed changes in the M value, was necessary.
It was decided to implement the module, so that it would be possible to adjust the
value as a parameter ranging from 2 to 7.

The input data for the module were: sorted distances di(n), indices i, threshold α
and the M value. In the first stage distances between subsequent di(n) values
were calculated (Equation (3)) and then they were compared with the threshold α
(Equation (4)). Pixels, considered as impulse noise, were excluded from further
processing – they had no influence on the new pixel value.

3.5 Parallel Calculating of the a1 and a2 Values

Parallel calculating of the a1 and a2 values turned out to be a complex issue during
hardware implementation of the PGF algorithm. Simultaneous access to sums

from a1(1) = d(0), a2(1) =

24
∑

(i=1)

d(i) to a1(24) =

23
∑

(i=0)

d(i), a2(1) = d(24) (12)

was required. The described sums are illustrated in Figure 2.

Pipeline Implementation of Peer Group Filtering in FPGA 733

d1d0 d2 d3 d5d4 ... d20 d22d21 d23 d24

i=1
i=2
i=3

i=24

Fig. 2. Illustration of Equation (6)

The module was implemented as a summation tree. In the first stage sums of
the adjacent values were calculated (i.e. d(1)+d(2), d(3)+d(4), described as sum2).
In the subsequent stages, using the results from previous stages, sums of four, eight
and sixteen values were calculated (i.e. d(1)+d(2)+d(3)+d(4), described as sum4).
Between each summation stage synchronization registers R(j) were placed. In order
to ensure pipeline operation it was necessary to store all summation results – shown
schematically in Figure 3.

sum 2 R:sum2

R:d R:d R:d

R:sum2

R:sum4sum 4

R:d

R:sum2

R:sum4

R:sum8sum 8

R:d

R:sum2

R:sum4

R:sum8

R:sum16sum16

sum#(j) sum#(j-1) sum#(j-2) sum#(j-3) sum#(j-4)

Fig. 3. Summation tree for a1 and a2 calculation. R – register, j – number of a discrete
sample

Finally, the necessary sums, calculated according to Equation (6), were created
using the registered partial sums (R:d, R:sum2, R:sum4, R:sum8 and R:sum16)
and subsequently the results were divided as integer using Xilinx Logic Core Divider
Generator.

3.6 Parallel Calculating of the s1 and s2 Values

Parallel calculation of s1 and s2 values required large logical resources. In the first
step, it was necessary to calculate 600 absolute values of differences (Equation (7)).
Implementing 600 square operations in parallel would be almost impossible in the
considered FPGA device (Virtex 4 LX 200). Therefore it was decided to simplify
the calculations by ignoring this operation. Summations described in Equation (7)
were realised by means of a summation tree, like in Section 3.5.

3.7 The J(i) Criterion

The 24 J(i) criterion values were calculated in parallel. A modification to Equa-
tion (5) was required because of the square operation omitted in Equation (7). A new

734 T. Kryjak, M. Gorgon

form of the criterion was proposed:

J(i) =
s1(i) + s2(i)

|a1(i)− a2(i)|
, i = 1, . . . , k′. (13)

The change in the formula defining J(i) caused a modification of Equation (8).
Searching for the maximum was replaced by searching for the minimum. The divi-
sion was implemented using Xilinx Logic Core Divider Generator and the search for
the J(i) minimum was implemented as a binary search tree.

3.8 Peer Group Estimation and Gaussian Filtering

In the peer group estimation module, using the minimum of the J(i) criterion, pix-
els which form the true peer group were determined. Subsequently, for those pixels
a filtration with a Gaussian mask was performed (Equation (12)). The filtration con-
sisted of integer multiplication, a summation tree and division. Multiplication was
implemented using the “*” VHDL operator and resulted in FPGA DSP48 block uti-
lization (75 modules, 25 for each colour component). The division was implemented
using Xilinx Logic Core Divider Generator. The Gaussian mask coefficients were
predefined integers ranging from 0 to 63. The module’s output was represented by
new pixel values {R′, G′, B′}.

3.9 Additional Modules

In order to implement the PGF algorithm in pipeline two additional modules were
necessary: a 59 clock cycles context delay (3 sets of 25 values, each set for a colour
component) and a 46 clock cycles indices i delay (25 5-bit values). Both delays are
presented in Figure 1.

3.10 Resource Usage

The estimated resource usage for each of the described modules is presented in
Table 1. The results were obtained using the XST Synthesis tool included in Xilinx
ISE 9.2 SP 4 software. Each of the modules was synthesized separately. As the
target device the Xilinx Virtex 4 LX 200 was chosen.

After the place and route process, for the integrated PGF module, the following
resource usage was obtained: 35 202 FF (19% of Virtex 4 LX 200 logical resources),
57 152 LUTs (32%), Slices 35 424 (39%), DSP48 75 (78%). An analysis of the
results indicates that the module uses less than half of logical resources available
in Virtex 4 LX 200 device. Therefore additional logic (i.e. communication with the
host computer or image processing modules) could be implemented. Static timing
analysis after the place and route indicates that the module should work at 100MHz
clock frequency.

Pipeline Implementation of Peer Group Filtering in FPGA 735

Module LUTs FF DSP48 Slices
Estimated Max.

Frequency

Context Generator 31 320 8 352 – 2 160 321.337MHz

Distances Calculating 2 160 241 – 1 210 132.327MHz

Distances Sorting 6 361 2 761 – 3 350 173.214MHz

Impulse Noise Removal 770 380 – 390 126.984MHz

a1 and a2 calculating 9 137 11 695 – 6 622 214.362MHz

s1 and s2 calculating 23 450 9 150 – 13 010 260.484MHz

J(i) calculating 6 649 9 852 – 5 677 123.265MHz

Idices Delay 375 125 – 188 321.337MHz

Context Delay 2 400 600 – 1 200 321.337MHz

Peer Group Estimation 848 151 – 505 313.676MHz

Gaussian Filtering 1 458 1 770 75 1 101 108.483MHz

Table 1. FPGA resource usage – XST Synthesis tool (each module synthesized separately)

4 PGF IMPLEMENTATION EVALUATION

During the parallel implementation of the PGF algorithm some of its parts were
modified: the Euclidean norm was substituted by the L1 (Manhattan) norm, all the
divisions were integer and square operations in the variance (s1, s2) calculation were
omitted. Furthermore the J(i) criterion calculation was modified.

This simplification led to a difference between the results of the implementation
of the algorithm: software, described in Section 2, and hardware, customized for
FPGA, as described in Section 3. Therefore some tests were performed to examine
this differences. The main aim of the Peer Group Filtering algorithm is impulse
noise removal. For that reason, several test images were artificially corrupted with
random impulse noise. An example of a pair of original a) and corrupted b) image
is illustrated in Figure 4.

A popular method of removing noise from an image is Median Filtering. A sim-
ple Vector Median Filtering (VMF) algorithm, using the Euclidean norm in RGB
colour space, was implemented in software and the filtration results are presented for
comparison as an additional reference. Figure 5 shows a magnified selection of the
Mandrill’s eye (Figure 4). Figure 5 a) shows the original image, Figure 5 b) the noisy
image, Figure 5 c) result of the VMF filter, Figure 5 d) image filtered by the floating
point PGF version and Figure 5 e) image filtered by the customized for FPGA PGF
version.

VMF removed all impulse noise although the result is blurred (despite of the
rather small 3×3 context window). PGF gave better results than VMF. The results
of both versions of PGF algorithm are very similar. The edges are preserved quite
well and almost all impulse noise is removed. There is no difference in perceiving
by a human observer between the filtered images generated by the PGF methods.

Next to the subjective, visual assessment of the obtained images, their compa-
risons were made using objective quality measures i.e. mean absolute error (MAE)

736 T. Kryjak, M. Gorgon

(a) (b)a) b)

Fig. 4. Mandrill test image. a) original, b) corrupted with impulse noise – 5% density

(a) (b)a) b)

(c) (d) (e)c) d) e)

Fig. 5. Filtration results. a) original, b) noisy image, c) VMF 3 × 3 window, d) floating
point PGF, e) PGF customized for FPGA.

and peak signal to noise ratio (PSNR). The test was performed on seven diverse
colour test images corrupted by noise of various types and different levels: impulse
(IN: 5%, 2.5%, 1% of pixels modified), mixed impulse (5%) and Gaussian (MIG:
standard deviation 0.01 and 0.02). The results are presented in Table 2. Analysis
of MAE results leads to the conclusion that the described hardware PGF algorithm
should be considered as a new, filtering algorithm, particularly useful for FPGA
implementation but not identical to the original floating point version. The PSNR
ratio, in all cases greater than 40 dB, indicates that both filtration results are very
similar.

Pipeline Implementation of Peer Group Filtering in FPGA 737

IN 5% IN 2.5% IN 1%

Image MAE PSNR [dB] MAE PSNR [dB] MAE PSNR [dB]

1 4.32 43.66 3.64 44.41 2.88 45.41

2 1.55 48.04 1.21 49.10 0.85 50.55

3 1.51 48.22 1.09 49.57 0.73 51.16

4 1.70 47.64 1.30 48.78 0.93 50.13

5 1.43 48.17 1.15 49.14 0.84 50.38

6 3.00 45.36 2.22 46.65 1.47 48.37

7 2.47 46.23 1.79 47.63 1.08 49.73

MIG 0.01 MIG 0.02

Image MAE PSNR [dB] MAE PSNR [dB]

1 7.47 41.17 9.34 40.18

2 5.60 42.35 7.52 41.08

3 5.91 42.14 7.92 40.88

4 6.02 42.07 8.06 40.81

5 5.69 42.28 7.59 41.04

6 6.52 41.74 8.53 40.57

7 6.10 42.04 8.09 40.81

Table 2. Comparison of floating point and hardware implementations of the PGF algo-
rithm applied to 7 different noisy images with different type and level of noise

Visual assessment of images c), d) and e) presented in Figure 5 reveals that
VMF blurs the image. To evaluate how the filtrations preserve the quality of edges,
a sharpness metric based on the energy of the Laplacian of the image [20] was
applied:

EL =

∫∫
[

δ2I(x, y)

δx2
+

δ2I(x, y)

δy2

]2

dx dy; (14)

where I(x, y) – image.

Each of the images was converted to grayscale and the sharpness metric 14) was
calculated. The results presented in Table 3 indicate that the energy of Laplacian
in the PGF methods is greater than for the VMF method in all cases. The sim-
plifications that were introduced in the hardware PGF method caused a slight loss
of sharpness. The hardware method, however, provides significantly better results
than VMF filtration.

5 TARGET PLATFORM AND APPLICATION TEST

As a target platform the SGI RC 100 with two Xilinx Virtex 4 LX 200 devices was
chosen, mainly due to fast data bus between the FPGA and the host supercomputer
(Altix 4700) and the amount of available logic resources in Virtex 4 LX 200 device.
The platform is available at ACK Cyfronet AGH Krakow.

738 T. Kryjak, M. Gorgon

Image Original VMF 3× 3 VMF 5× 35 PGF Software PGF Hardware

1 6.06 4.17 2.82 5.09 4.95

2 2.73 1.50 0.91 2.17 1.92

3 2.55 1.94 1.37 2.43 2.16

4 3.07 2.02 1.47 2.63 2.46

5 1.60 1.33 1.01 1.63 1.40

6 5.57 3.71 2.56 4.72 4.46

7 4.07 2.53 1.54 3.33 3.14

Table 3. Energy of the Laplacian for different images and filtering methods

The PGF FPGA implementation was tested in a behavioral simulation using
the ModelSim 6.2 SE software. The results were consistent with a software model
of the algorithm (implemented in Matlab). The estimated maximal clock rate is
approximately 100MHz which indicates that a single 720× 576 colour image will be
processed in approximately 0.0041 s (240 frames/s). The estimated computational
power of the presented hardware processor is 248.8 GOPS (additions, subtractions,
multiplications, divisions and comparisons).

6 CONCLUSION

In this paper a parallel implementation of the Peer Group Filtering algorithm was
described. The design details of each PGF stage were presented. During porting
the algorithm from software to hardware some simplification was done: all oper-
ations were performed on integer numbers, the L1 instead of the Euclidean norm
was used and square calculations were omitted. This modification allowed to imple-
ment the PGF algorithm in the pipeline manner – new pixel values {R,G,B} were
generated every clock cycle (after an constant initial delay); however, the hard-
ware results were slightly different from those generated by the original floating
point version. Therefore some tests were performed to examine the influence of this
modification on the quality of the filtering results. In was shown that although
the software and hardware results were not the same there was no difference be-
tween those images for a human observer and only a slight difference of the filtering
quality measured using MAE and PSNR. Additionally it was shown that both im-
plementations of PGF algorithm preserve edges much better than Vector Median
Filtering.

The main contribution of this paper is a parallel implementation of the Peer
Group Filtering algorithm which differs from the original software version but pro-
vides a very similar filtering quality, utilizing the FPGA parallelism. This is the
first described FPGA implementation of PGF algorithm.

PGF is the first stage of a colour image segmentation algorithm – JSEG [21].
Further research will focus on examining the influence of the simplifications on
the final segmentation result and accelerating the whole JSEG algorithm using the
hardware-software platform – SGI RC 100 and Altix 4700 supercomputer. In addi-

Pipeline Implementation of Peer Group Filtering in FPGA 739

tion, after a few modifications, the PGF module could be used in an real-time colour
image vision system.

Acknowledgments

The authors are grateful to the Academic Computer Center Cyfronet AGH for sup-
port of this work and access to hardware resources.

This work was supported by the AGH University of Science and Technology
under Grant AGH 10.10.120.783.

REFERENCES

[1] Gonzalez, R.—Woods, R.: Digital Image Processing. Prentice Hall, New Jersey

2008.

[2] Astola, J.—Haavisto, P.—Neuvo, Y.: Vector Median Filters. Proc. of IEEE.
Vol. 78, 1990, pp. 678–89.

[3] Trahanias, P. E.—Venetsanopoulos, A.N.: Vector Directional Filters – A New
Class of Multichannel Image Process Filters. IEEE Trans. on Image Processing, Vol. 2,
1993, No. 4, pp. 528–34.

[4] Karakos, D.G.—Trahanias, P. E.: Combining Vector Median and Vector Di-
rectional Filters: The Directional-Distance Filters. Proc. of ICIP, Vol. 1, 1995,
pp. 171–174.

[5] Morillas, S.—Gregori, V.—Peris-Fajarns, G.—Latorre, P.: A Fast Im-
pulsive Noise Color Image Filter Using Fuzzy Metrics. Real-Time Imaging, Vol. 11,
2005, No. 5–6, pp. 417–428.

[6] Morillas, S.—Gregori, V.—Peris-Fajarns, G.—Sapena, A.: New Adaptive
Vector Filter Using Fuzzy Metrics. Journal of Electronic Imaging, Vol. 16, 2007, No. 3.

[7] Deng, Y.—Kenney, S.—Moore, M. S.—Manjunath, B. S.: Peer Group Filter-
ing and Perceptual Color Image Quantization. Proc. IEEE International Symposium
on Circuits and Systems (VLSI), USA 1999, Vol. 4, pp. 21–4.

[8] Camarena, J.-G.—Gregori, V.—Morillas, S.—Sapena, A.: Some Improve-
ments for Image Filtering Using Peer Group Techniques. Image and Vision Comput-
ing, Vol. 28, 2010, pp. 188–201.

[9] Wiatr, K.: Acceleration of Calculations for the Image System. WNT, Warsaw 2003
(in Polish).

[10] Gorgon, M.: Reconfigurable Architecture for Image Processing, Analysis and Digi-
tal Video Decoding. Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH, Krakow
2007 (in Polish).

[11] Wielgosz, M.—Jamro, E.—Wiatr, K.: Accelerating Calculations on the Rasc
Platform: A Case Study of the Exponential Function. Reconfigurable computing:
Architectures, tools and applications: 5th International Workshop: ARC 2009 Karl-
sruhe, Germany.

740 T. Kryjak, M. Gorgon

[12] Lukac, R.—Smolka, B.—Martin, K.—Plataniotis, K.N.—Venetsanopou-

los, A.N.: Vector Filtering for Color Imaging. IEEE Signal Processing Magazine,
Vol. 22, 2005, No. 1, pp. 74–86.

[13] Duda, R.O.—Hart, P. E.: Pattern Classification and Scene Analysis. John Wi-

ley&Sons, New York 1970.

[14] Kruse, B.: A Parallel Picture Processing Machine. IEEE Transactions on Comput-
ers, Vol. C-22, 1973, No. 12, pp. 1075–1087.

[15] Stenberg, S.R.: Pipeline Architecture for Image Processing. Multicomputers and
Image Processing, Academic Press 1982, pp. 291–305.

[16] Dong, S.—Wang, X.—Wang, X.: A Novel High-Speed Parallel Scheme for Data
Sorting Algorithm Based on FPGA. 2nd International Congress on Image and Signal
Processing (CISP ’09), pp. 1–4.

[17] Ratnayake, K.—Amer, A.: An FPGA Architecture of Stable-Sorting on a Large
Data Volume: Application to Video Signal. 41st Annual Conference on Information
Sciences and Systems (CISS ’07), pp. 431–436.

[18] Mueller, R.—Teubner, J.—Alonso, G.: Data Processing on FPGA. Very Large
Data Bases Conference, Lyon 2009.

[19] Batcher, K.E.: Sorting Networks and Their Applications. In: AFIPS Spring Joint
Computer Conference 1968.

[20] Subbarao, M.—Choi, T.—Nikzad, A.: Focusing Techniques. Journal of Optical
Engineering, Vol. 32, 1992, pp. 2824–2836.

[21] Deng, Y.—Manjunath, B. S.: Unsupervised Segmentation of Color-Texture Re-
gions in Images and Video. IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 23, 2001, No. 8, pp. 800–810.

Tomasz Kryjak received his M. Sc. degree in automatics and
robotics in 2008 from AGH University of Science and Technology
in Krakow, Poland. From 2008 on permanent position of Re-
search Assistant at the Institute of Automatics, AGH-UST. His
current research is focused on image processing and recognition,

biometrics, reconfigurable FPGA systems, hardware algorithm
acceleration and software/hardware co-design.

Pipeline Implementation of Peer Group Filtering in FPGA 741

Marek Gorgon received his M. Sc. degree in electronics and

control engineering in 1988, his Ph.D. in automatic control and
robotics in 1995 and his Dr. Sc. (habilitation) in 2007, all from
AGH University of Science and Technology in Krakow, Poland.
From 1994, on permanent position at the Institute of Automatics
AGH-UST, currently Assistant Professor. His research interests
include image processing, reconfigurable devices and systems ar-
chitecture, software-hardware co-design, DSP and FPGA devices
and applications. He is a member of IEEE Computer Society
from 2002, and a member of IEEE from 2006. He is a member

of IPC of many international conferences. He is the author of 50 technical papers and re-
ports. In 2002, 2004 and 2008 he won the Awards of the Rector of AGH-UST University.
He participated in 11 scientific and industrial research projects. He regularly reviews for
international conferences, journals, and State Committee for Scientific Research.

