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Abstract. This paper considers a genetic algorithm (GA) for a machine-job assign-
ment with controllable processing times (MJACPT). Integer representation with
standard genetic operators is used. In an objective function, a job assignment is
obtained from genetic code and for this, fixed assignment processing times are calcu-
lated by solving a constrained nonlinear convex optimization problem. Additionally,
the job assignment of each individual is improved by local search. Computational

results are presented for the instances from literature and modified large-scale in-
stances for the generalized assignment problem (GAP). It can be seen that the
proposed GA approach reaches almost all optimal solutions, which are known in
advance, except in one case. For large-scale instances, GA obtained reasonably
good solutions in relatively short computational time.
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1 INTRODUCTION

From the beginning of the industrial era, and especially from the time when Henry
Ford proposed the scheduling of works and machines, the problem of sequential
and parallel scheduling of jobs and machines arose in both theory and practice.
The assignment of jobs, machines, and workers started in the 60’s with the first
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assignment problems and their solving with modified simplex algorithms. As years
passed, more and more complicated and time and resource consuming problems
began to surface. With the era of computers and numerically controlled (CNC)
machines, these problems became more numerous and sophisticated.

Numerous papers about job assignment have been considered in literature so far
and they were mostly derived from practice. Therefore, a detailed presentation of
the work concerning job assignment is out of this paper’s scope, but some of the
new and successful ones are [32, 33].

Because of high cost of flexible manufacturing systems and their maintenance,
there arose a need for careful planning and scheduling of jobs [9]. In the early 80’s,
the consideration of processing times was first introduced. Since that period, there
has been a growing interest in these problems. Flexible manufacturing systems are
discussed in [28].

This paper explores the machine-job assignment problem with controllable pro-
cessing times represented by nonlinear functions ([1]). This problem has surfaced in
flexible manufacturing systems, where these processing times are numerically con-
trolled. These systems are constituted of groups (even large ones) of non-identical
machines, and they all have different working levels and different levels and modes
of power and control. Processing times on computer numerically controlled (CNC)
machines can be compressed by increasing the cutting speed and the feed rate at
a convex increasing cost for compression. Thus, when processing time becomes
a decision variable, one is faced with a trade-off between increasing yield and cost
of machining.

The problem of machine-job assignment with controllable processing times can
be modelled as a nonlinear mixed 0-1 maximization problem. If processing times
are disallowed, then MJACPT is reduced to a well-known and NP-hard generalized
assignment problem (GAP). Variables that represent controllable times are included
in the nonlinear part of the objective function and this part only makes the problem
considerably harder to solve.

This paper proposes to apply genetic algorithms on the linear part of the prob-
lem, which is very similar to GAP, the only difference being that in GAP, every job
must be assigned to some machine, while here some jobs can remain unassigned. This
was motivated by recent developments in genetic algorithms, especially [3, 6, 27].
Although the linear part of MJACPT problem has similarities with GAP, novel
extensions of GA for solving GAP are not applicable to MJACPT.

For example, in [6] 3 new extensions of GA for solving GAP are reported: ini-
tialization heuristic, selection and replacement of infeasible solutions, and heuristic
mutation operator. Constraint-ratio initialization heuristic is based on the fact that
in GAP, the job must be assigned without exceeding resource capacities, which is
not the case in MJACPT. Selection and replacement of infeasible solutions is based
on penalty functions of infeasible solutions. In the GA approach to MJACPT, pre-
sented in Section 4, such solutions are feasible and there is no need for any penalty
functions. Unfortunately, heuristic mutation operator, which is quite successful for
GAP (see [6]), is not directly applicable to MJACPT.
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Therefore, the proposed genetic algorithm for solving the linear part of MJACPT
is based, in general, on well documented GA approaches presented in [21, 29, 30, 31].
Modification of GA for solving MJACPT is explained in detail in Section 4. After
solving the linear part of MJACPT, there remained to solve the nonlinear part, which
was now reduced to solving a classical convex nonlinear optimization problem.

Solving a classical convex nonlinear optimization problem with the quadratic
objective function is a known problem and here it is solved by finding appropriate
Lagrangean multipliers. This can be found in many works and the reader can refer
to [24].

The content of this paper is organized in the following sections. In Section 2
the mathematical model of MJACPT from [1] is presented. A description of solving
the nonlinear part of the problem for fixed 0-1 variables is available in Section 3.
The proposed genetic algorithm (GA) method is discussed in Section 4. Finally, in
Section 5 computational and experimental results are presented.

2 MATHEMATICAL FORMULATION

The problem of machine-job assignment with controllable processing time consists
of choosing some of the jobs from n jobs and m machines and assigning them to
machines with a view to deriving the maximum profit from this assignment. The
notation will be as follows: let ci be available time for the work on the machine
i = 1, . . . , m, let pij be processing time on the machine i to which job j is assigned,
and let hij be profit from this assignment.

Processing time on CNC machines can be reduced by a specific setting of the
machine parameters. Consequently, this also leads to shortening the useful life of
these machines, which results in increased cost of exploitation. The function for
modelling this increased machine cost is given as

f(y) = kya/b, (1)

where y ≥ 0 represents time compression. Obviously, f is a convex and increasing
function of time compression. The value k is constant for a given machine, but
varies from machine to machine, therefore technical characteristics of machines are
contained in the matrix of coefficients k. Let xij be an assignment variable defined
by

xij =

{

1, if job j is assigned to machine i
0, otherwise

(2)

and let yij be a variable that depicts compression time for the same job-machine
pair. Then the machine-job assignment problem with controllable times (MJACPT)
can be formulated as a nonlinear mixed 0-1 program:

max

m
∑

i=1

n
∑

j=1

(hijxij − f
ij
(yij)) (3)
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subject to
n

∑

j=1

(pijxij − yij) ≤ ci, i = 1, . . . , m, (4)

yij ≤ xijuij , i = 1, . . . , m, j = 1, . . . , n, (5)

m
∑

i=1

xij ≤ 1, j = 1, . . . , n, (6)

xij ∈ {0, 1}, yij ≥ 0, i = 1, . . . , m, j = 1, . . . , n. (7)

Constraint (4) ensures that jobs assigned to machine i do not exceed its available
time ci; constraint (5) ensures that compression of job j on machine i is not larger
than the allowed maximum uij (uij < pij); constraint (6) ensures that one job is
assigned to at most one machine.

Note that, for fixed values of xij, part of objective function −
∑m

i=1

∑n
j=1 kijy

2
ij,

which deals with time compression, given in (3), can be modelled as a classical
convex nonlinear optimization problem. Let us call this problem FixedMJACPT.

This means that we must find, for a fixed set of variables xij, the minimum of
function

∑m
i=1

∑n
j=1 kijy

2
ij, which is a known problem in mathematical programming

and, in this paper, it has polynomial time complexity. Genetic algorithm is used for
finding an adequate set of variables xij .

Example 1. A little example is given here. Let there be m = 3 machines and
n = 5 jobs. Let coefficients hij be given in matrix H, coefficients pij in matrix P ,
coefficients uij in matrix U , and coefficients ci in vector c

H = (hij) =





17 21 22 18 24
23 16 21 16 17
16 20 16 25 24





P = (pij) =





8 15 14 23 8
15 7 23 22 11
21 20 6 22 24





U = (uij) =





5.5 12 11 7.5 5.6
11 3.5 19 17 8.6
14 15 2.3 18 11





c = (ci) =





36
34
38



 .
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Let nonlinear functions be

fij(yij) = kijy
2
ij

where all coefficients kij are equal to 0.1. Then the optimal objective function equals
≈ 114.97 and the assignment of jobs is as follows. On the first machine jobs 2, 3,
and 5 are executed; on the second machine job 1 is executed, and job 4 on the third
machine. Non-zero job compressions are y12 = y13 = y15 =

1
3
.

3 SOLUTION OF FIXEDMJACPT

BY LAGRANGEAN MULTIPLIERS

In this section, let us demonstrate how the nonlinear part of problem can be solved.
For a fixed set of variables xij, FixedMJACPT is reduced to the maximization of
a concave function with linear constraints. The solution of FixedMJACPT is later
used in GA implementation for solving MJACPT. Let the denotation of variables
and coefficients be the same as in Section 2. Then, the problem is reduced to

maxH −

m
∑

i=1

n
∑

j=1

kijy
2
ij (8)

with the following constraints

Ai −

n
∑

j=1

yij ≤ ci, i = 1, . . . , m (9)

0 ≤ yij ≤ xijuij , i = 1, . . . , m, j = 1, . . . , n (10)

where the last set of constraints is directly dependent on fixation of variables xij .
Coefficients H and Ai are calculated values of the following equalities

H =
∑m

i=1

∑n
j=1 hijxij

Ai =
∑n

j=1 pijxij , i = 1, . . . , m
(11)

for fixed values of variables xij . Now, when the theory of Lagrangean multipliers is
applied to this problem, the Lagrangean function is as follows

Φ = −

m
∑

i=1

n
∑

j=1

kijy
2
ij
+

m
∑

i=1

λi(Ai − ci −

n
∑

j=1

yij) (12)

and the solution of the optimization problem is between the solutions of the next
system of equations:

Φ′
yij

= −2kijyij + λiIndi = 0,

λi(Ai − ci −
∑n

j=1 yij) = 0, i = 1, . . . , m
, (13)
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where Indi =

{

1, Ai − ci > 0
0, otherwise

. Equations (13) are linear and can be solved

independently for every yij. It is easy to see, with consideration of the upper bounds,
that the solution is

yij =

{

min
(

uij,
λi

2kij

)

, Indi 6= 0

0, Indi = 0
, (14)

where Lagrangean coefficients are calculated from the following formulas

λi =

{

2(Ai−ci)∑n
j=1

1

kij

, Indi 6= 0

0, Indi = 0
. (15)

For more information on solving optimization problems through Lagrangean multi-
pliers see [24].

4 PROPOSED GA METHOD

Genetic algorithms are stochastic methods for searching and finding best solutions
to problems. They are motivated by processes in the natural world and to a great
extent try to emulate them. Like nature, GA works with individuals that constitute
a population. Each individual represents some solution to a problem. As in nature
we have individuals that are better suited to survival, here we have individuals that
are better at accomplishing the optimum solution and are favored for passing on to
the next generation. This passing of good qualities is accomplished with the genetic
operators of crossover and mutation. The decision as to which individual has better
qualities to be passed on to the next generation is attained by evaluating the fitness
function. This process of betterment of individuals in a population is iteratively
continued until optimum or some other stopping criterion is achieved. A detailed
description of GAs is out of this paper’s scope and it can be found in [8, 26, 30].
Extensive computational experience of various optimization problems shows that
GA often produces high quality solutions in a reasonable time. Some of the recent
applications are:

• hub location [8, 16, 17, 18, 30, 31];

• facility location [5, 12, 13, 25];

• generalized assignment [3, 6, 27];

• metric dimension of graphs [19, 20];

• biconnectivity augmentation of graphs [22, 23];

• maximally balanced connected partition of graphs [4];

• network design [14];

• discrete ordered median [29];
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• index selection [15];

• routing and carrier selection [21].

• binary sequencing [10].

Furthermore, GA is quite robust in respect of parameter choice within reasonable
bounds for a lot of different problems [4, 5, 7, 18, 19, 20, 29, 30, 31].

Detailed GA algorithm is given in the following scheme.

Input Data();
Population Init();
while not Finish() do

for index:= (Nelite + 1) to Npop do

if (Exists in Cache(index)) then
objvalueindex:= Get Value From Cache(index);

else

objvalueind:= Objective Function(index);
Put Into the Cache Memory(index, objvalueindex);
if (Full Cache Memory)) then
Remove LRU Block From Cache Memory();

endif

endif

endfor

Fitness Function();
Selection();
Crossover();
Mutation();

endwhile

Output Data();

Fig. 1. The basic scheme of this GA implementation

In this paper, encoding of individuals is an integer. Every gene is partitioned
into two parts. The first part consists of one bit, which is designated to represent
the assignment of a specified job to any of the machines. This means that a bit
is equal to 1 if

∑n
j=1 xij = 1, corresponding to a situation where only one of xij

is 1 and all others are 0, and is equal to 0 if
∑n

j=1 xij = 0, which corresponds to
a situation where all xij are 0. In the latter case, the second part of the genetic
code is ignored. In the former case, the second part of the genetic code represents
the ordinal numeral of the machine on which the job is executed.

When, for example, the rth gene is considered, this means the evaluation of the
sum

r
∑

j=1

(pij − uij)xij, r < n. (16)
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If this sum is greater than ci (capacity of the ith machine), constraint (4) is
obviously unsatisfied, so that this gene is passed over and instead, one of the suc-
cessive ones is taken into account, where the sum (16) is smaller than ci. If there
are no such genes, the job is transferred to the previous machines. If this condition
is true for every machine, then that individual was incorrect. For finding solutions
of nonlinear variables yij, i = 1, . . . , m, j = 1, . . . , n the method explained in the
previous section is used.

The objective function is evaluated following consecutive procedures.

1. In the first procedure, the values of variables xij are obtained from the genetic
code. The running time complexity of this procedure is O(n).

2. In the second procedure, the values of variables yij are calculated by solving
FixedMJACPT by using the Lagrangean method from Section 3. The running
time complexity of this procedure is O(n logn).

3. In the third procedure, LocalSearch is applied to variables obtained in proce-
dure 1, in which some of xij are changed with some other variable from the
same set, with the intention of improving the value of the objective function.
LocalSearch is repeated until there are no more improvements. The running
time complexity of any single improvement is O(n2 logn).

4. Finally, the running time complexity for calculating the objective value is O(n).

As can be seen, procedure 3 is the most time consuming and its execution
dominates the whole solving process.

The very important parts of proposed GA are: FitnessFunction, Selection,
Crossover and Mutation. In the following paragraphs, their utilization and im-
portance to the whole GA will be explained.

The function that decides the best suitability find of an individual to pass on to
the next generation is the fitness function. Values of this function are computed by
scaling objective values objind of all individuals into the interval [0, 1], so that the
best suited individual indmax gets value 1 and the worst indmin gets 0. Explicitly,

find =
objindmin

−objind

objindmin
−objindmax

. Now, individuals are arranged in a non-increasing order by

their best fitness: f1 ≥ f2 ≥ . . . ≥ fNpop
, where Npop is the number of individuals in

a population.
When GAs are used, there is a possibility of domination of elite individuals.

Elite individuals directly pass into the next generation without their substitution
by offspring in order to preserve good solutions through generations of GA. So,
elite individuals can pass into the next generation in two ways: first, because they
are elite, and second, because of the selection operator. If GAs are to give quality
results, it is necessary to have enough elite individuals for exploitation of their good
qualities and to have enough non-elite individuals so that the genetic pool from
which individuals can be chosen does not become too small. A small genetic pool
could not guarantee a population’s growth in the right direction. To prevent too
large a number of elite individuals (Nelite) and their domination, the fitness of these



A GA Approach for Solving MJACPT 835

individuals is decreased as follows:

find =

{

find − f, find > f
0, find ≤ f

; 1 ≤ ind ≤ Nelite; f =
1

Npop

Npop
∑

ind=1

find. (17)

All elite individuals, their number beingNelite, are automatically passed on to the
next generation. All non-elite individuals, their number being Nnnel = Npop−Nelite,
are subject to genetic operators. This reduces computational time, because the
objective function of elite individuals is the same in the next generation and needs
to be calculated only once, in the first generation.

Individuals with the same genetic code in a population must be avoided, so
their fitness is set to 0 in all occurrences, except the first one. Also, the number
of individuals with the same objective function, but different genetic code must be
limited by some constant Nrv. This is important, because too many of them in
a population can inhibit the occurrence of individuals with good genetic material
and point the algorithm to convergence toward local and not global optimum. To
avoid this problem, the fitness of all individuals with the same value of objective
function but different genetic material will be set to 0 except the first Nrv of them.
For a detailed explanation of Nrv constant and its use, reduction of elite individuals’
fitness and elitism ratio, see [18, 19].

Selection operators are applied to all non-elite individuals and they choose which
of these individuals will have offspring in the next generation. This is done through
tournaments. From a whole population, a predetermined number of individuals
is chosen to participate in the tournament. The number of participants is called
tournament size. The individuals are chosen randomly. The winner of the tourna-
ment is the individual with the highest value of objective function. The number
of tournaments is equal to the number of non-elite individuals Nnnel, so that ex-
actly Nnnel parents can be chosen for crossover. The same individual from a current
generation can participate in more than one tournament. In a standard tourna-
ment selection, tournament size is an integer, which can hinder the algorithm effi-
ciency.

Because of this, an improved tournament selection operator, fine-grained tour-
nament selection – FGTS [5] is implemented here for selection purposes. Here,
tournament size is a real parameter Ftour, which represents a preferable average
tournament size. In this procedure, there are two types of tournaments. One is held
k1 times, with tournament size ⌊Ftour⌋, and the other type is held k2 times, with

tournament size ⌈Ftour⌉. From here Ftour ≈
k1·⌊Ftour⌋+k2·⌈Ftour⌉

Nnnel
.

For satisfactory results of GA, it is necessary to have a good ratio between the
number of elite individuals and non-elite individuals. For example, for Npop = 150
the adequate proportion is Nelite = 100 and Nnnel = 50. Corresponding k1 and
k2 parameters in deciding tournament size are 30 and 20, respectively. Typically,
for Npop = 150 the adequate maximum of individuals with the same fitness, which
means with the same value of objective function, is Nrv = 40.
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As seen in [5, 7, 8, 29], quite numerous numerical experiments were performed
for different optimization problems, FGTS performs best with the value of Ftour set
on 5.4. Leaning on experience presented in the cited works the same value is used
in this paper. For detailed information about FGTS see [7].

In a crossover operator, chosen non-elite individuals are now randomly paired in
⌊Nnnel/2⌋ pairs for an exchange of genes with the intention of producing offspring
with potentially better suitability. Application of a crossover operator on a chosen
pair of parents produces two offsprings. In this paper, standard one point crossover
operator is used. This operator exchanges whole genes between the genetic codes
of parents to produce an offspring. The probability of realization of the crossover
operator is 85%. This means that approximately 85% pairs of individuals will
exchange genes.

In genetic algorithm, a simple mutation operator is used. This operator changes
a randomly selected gene in the genetic code of an individual at a certain mutation
rate. For improvement of GA, a modification which deals with so-called frozen
genes is also included. Sometimes it happens that all individuals in a population
have the same gene in a certain position. This kind of gene is called a frozen
gene. The problem with frozen genes is that they reduce search space and increase
the possibility of premature convergence. For example, if there are q frozen genes in
a population, then search space will be 2q times smaller. The selection and crossover
operators cannot change frozen genes, because all individuals in the population
have them in the same position. The basic mutation rate is too small to ensure
that frozen genes are changed within a reasonable time interval and also it is too
small to restore regions of search space that were bypassed because of the frozen
genes. Furthermore, an increase in mutation rate can reduce genetic algorithm to
a pure random search. For a better understanding of mutation with frozen genes
see [16, 17].

The above-mentioned improvement of GA is that the mutation rate is increased
for frozen genes only. Which genes are frozen is determined for each generation.
Then, the mutation rate for these genes is increased. In the proposed GA, the
increase is 2.5 greater than the mutation rate of the non-frozen genes.

The initialization of GA is random, which gives the population in the first ge-
neration the most heterogeneous and diversified genetic pool.

The performance of the proposed GA is improved by using the caching tech-
nique. The main idea behind this technique is to avoid the evaluation of objective
functions for individuals with the same genetic code. The values of individuals for
which the objective functions were already computed are stored by the least recently
used (LRU) caching technique into the hash-queue data structure. Because of this,
whenever an individual with the same genetic code is generated, the value of its
objective function is not computed, but is found in cache memory, which can result
in significant time saving. The number of calculated values of objective functions in
this implementation is limited to 5 000. If cache memory is full, then we remove the
least recently used cache memory block. Detailed information about caching GA
can be found in [11].
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5 EXPERIMENTAL RESULTS

All computations were executed on a Dual Double Core 2.0GHz MacPro computer
with 3 Gb RAM. The genetic algorithm was coded in C programming language.
For the first part of the experiments, instances described in [1], which can be ob-
tained from http://www.ieor.berkeley.edu/~atamturk/data/conic.sch/ were
used. These instances include different numbers of jobs (n = 50, 100, 150, 200) and
different numbers of machines (m = 1, 2, 3). For each pair of machine-job (m, n),
there is a set of five instances with various hij, kij, pij and uij .

The finishing criterion of GA is the maximum number of generations Ngen =
200. The algorithm also stops if the best individual or best objective value remains
unchanged through Nrep = 100 successive generations. Since the results of GA are
nondeterministic, the GA was run 20 times on each of the instances.

Tables 1 and 2 summarize the GA results in these instances. In the first column
the names of instances are given. An instance name carries information about the
number of jobs n, the number of machines m, and the number of generated cases
with same n and m. For example, instance CMJ2 N100 M3 ins3 is an instance
which has n = 100 jobs on m = 3 machines and it is the fourth case generated for
this n and m).

The second column provides the optimum solutions obtained by using ILOG
CPLEX Version 10.1, but these solutions could have numerical instability, as will
be explained later and in detail. The best GA values GAbest are given in the next
column.

Average times needed to detect the best GA values are given in the t column,
while ttot represents the total running times (in seconds), needed for finishing GA.
On the average, GA finished after gen generations. The solution quality in all
20 executions is evaluated as a percentage gap named agap, with respect to the
optimal solution Optsol, with standard deviation σ of the average gap. A percentage
gap agap is defined as agap = 1

20

∑20
i=1 gapi, where gapi = 100 ∗ GAi−GAbest

GAbest
and GAi

represents the GA solution obtained in the i-th run, while σ is the standard deviation

of gapi, i = 1, 2, . . . , 20, obtained by the formula σ =
√

1
20

∑20
i=1 (gapi − agap)2. The

last two columns are related to the caching: eval represents the average number of
evaluations, while cache displays savings (in percent), achieved by using caching
technique.

As can be seen in Tables 1 and 2, running time for all instances is reasonably
small. The average execution on the biggest instance is a little more than 2 minutes.

It can be seen from Tables 1 and 2 that the results of CPLEX and GA algorithms
are not identical, but vary slightly from instance to instance. Sometimes, GA has
a greater value, sometimes the CPLEX result is the greater. Because CPLEX has
implemented a lot of numerical algorithms for solving a wide range of problems,
there is a small numerical instability, which is greater than the numerical instability
executed by GA. This is due to universality of CPLEX vs. GA algorithm code, which
was written strictly for this problem.
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Instance name CPLEXsol GAbest t ttot gen agap σ eval cache
(sec) (sec) (%) (%) (%)

CMJ2 N50 M1 ins0 49.61845643 49.618457 0.060 2.0766 101 0.000 0.000 4 341 16.5
CMJ2 N50 M1 ins1 50.98362713 50.983628 0.060 1.9721 101 0.000 0.000 4 321 16.9
CMJ2 N50 M1 ins2 49.40102156 49.401021 0.055 1.8007 101 0.000 0.000 4 331 16.7
CMJ2 N50 M1 ins3 57.27832993 57.278331 0.047 1.4339 101 0.000 0.000 4 322 16.9
CMJ2 N50 M1 ins4 48.66271533 48.662717 0.056 1.4145 101 0.000 0.000 4 398 15.4
CMJ2 N50 M2 ins0 96.00463722 96.004638 0.162 2.3909 104 0.038 0.013 4 455 17.2
CMJ2 N50 M2 ins1 102.0868546 102.086855 0.088 2.5776 101 0.000 0.000 4 256 18.1
CMJ2 N50 M2 ins2 93.50524103 93.505242 0.820 3.742 122 0.032 0.039 5 227 16.7
CMJ2 N50 M2 ins3 99.57028503 99.570309 0.429 3.144 112 0.006 0.015 4 804 16.7
CMJ2 N50 M2 ins4 104.4961934 104.496326 0.081 2.452 101 0.000 0.000 4 323 16.8
CMJ2 N50 M3 ins0 150.5204773 150.520478 0.265 3.773 105 0.000 0.000 4 952 8.5
CMJ2 N50 M3 ins1 146.0709755 146.070978 0.447 3.957 110 0.000 0.000 5 150 8.9
CMJ2 N50 M3 ins2 134.3199589 134.320059 1.749 5.633 143 0.047 0.044 6 733 8.2
CMJ2 N50 M3 ins3 143.6944143 143.694416 0.263 3.707 105 0.000 0.000 4 926 9.0
CMJ2 N50 M3 ins4 142.8815256 142.881526 1.227 4.670 132 0.040 0.051 6 240 8.1
CMJ2 N100 M1 ins0 102.5891335 102.589135 0.443 14.059 101 0.000 0.000 4 509 13.3
CMJ2 N100 M1 ins1 103.9195384 103.919539 0.379 12.936 101 0.000 0.000 4 469 14.0
CMJ2 N100 M1 ins2 96.69656271 96.696563 0.547 15.792 101 0.000 0.000 4 463 14.2
CMJ2 N100 M1 ins3 105.1304131 105.130415 0.416 16.991 101 0.000 0.000 4 539 12.7
CMJ2 N100 M1 ins4 106.4550908 106.455094 0.374 11.690 101 0.000 0.000 4 579 11.9
CMJ2 N100 M2 ins0 201.2384673 201.238468 1.303 13.737 107 0.003 0.008 4 775 13.3
CMJ2 N100 M2 ins1 205.7837429 205.783802 0.651 19.941 101 0.000 0.000 4 436 14.7
CMJ2 N100 M2 ins2 196.1458415 196.145843 1.027 17.288 103 0.000 0.000 4 621 13.3
CMJ2 N100 M2 ins3 197.1896476 197.189654 1.182 20.752 103 0.000 0.000 4 626 13.1
CMJ2 N100 M2 ins4 201.8046931 201.804752 0.568 15.690 101 0.000 0.000 4 510 13.2
CMJ2 N100 M3 ins0 296.5320918 296.532094 7.553 28.480 132 0.013 0.050 6 365 5.9
CMJ2 N100 M3 ins1 291.6845401 291.685019 9.047 29.886 139 0.004 0.016 6 697 5.9
CMJ2 N100 M3 ins2 294.2433068 294.243765 14.333 36.253 156 0.025 0.025 7 505 5.9
CMJ2 N100 M3 ins3 285.7255766 285.729674 13.638 34.624 153 0.004 0.005 7 388 5.6
CMJ2 N100 M3 ins4 287.5521985 287.553312 15.842 35.680 161 0.043 0.063 7 737 5.7

Table 1. GA results on smaller instances

Because of these discrepancies, some additional tests and checks were run. With
the changing of parameters in CPLEX, some results were improved, but the error
was in a similar range with previous parameters. In some cases, solutions were even
worse. Because of this, solutions with the default set of CPLEX parameters were
presented in all cases. In most cases, values for xij in CPLEX and GA were identical.
For those instances, yij were obtained with the method for solving FixedMJACPT,
which is exact for any predetermined decimal, and for these sets of xij and yij
values of objective function were calculated. The result was identical with GA
solutions, so the conclusion is that discrepancies were due to a rounding off error in
CPLEX.

In cases where solution sets of xij in CPLEX and GA algorithms were not
identical, it was concluded that the variations were due to a rounding off error
which disallowed some xij in the optimal CPLEX solution. Those xij could be put
in equations of type (4) and boundary ci might be reached only if rounding was
allowed with a greater number of decimals. This is particularly the case in instance
CMJ2 N200 M3 ins2, where GA result is greater than the maximum obtained by
CPLEX for the amount of approximately 0.04. This instance was especially checked
and the GA result was exact up to the 13th decimal, whereas the CPLEX result
deviates already on the 2nd decimal.
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Instance name CPLEXsol GAbest t ttot gen agap σ eval cache
(sec) (sec) (%) (%) (%)

CMJ2 N150 M1 ins0 158.498732 158.498733 1.133 37.556 101 0.000 0.000 4 630 10.9
CMJ2 N150 M1 ins1 156.6469826 156.646985 1.208 29.210 101 0.000 0.000 4 640 10.7
CMJ2 N150 M1 ins2 145.304105 145.304127 1.471 48.870 101 0.000 0.000 4 590 11.7
CMJ2 N150 M1 ins3 155.0724027 155.072406 1.116 39.004 101 0.000 0.000 4 678 10.0
CMJ2 N150 M1 ins4 159.1373384 159.138165 1.398 51.548 101 0.000 0.000 4 605 11.4
CMJ2 N150 M2 ins0 308.380354 308.380356 6.716 48.632 112 0.000 0.000 5 113 11.5
CMJ2 N150 M2 ins1 306.4666165 306.466620 1.923 59.845 101 0.000 0.000 4 528 12.9
CMJ2 N150 M2 ins2 306.4769149 306.477038 2.037 64.436 101 0.000 0.000 4 515 13.1
CMJ2 N150 M2 ins3 295.108654 295.108662 4.533 56.072 106 0.000 0.000 4 815 11.6
CMJ2 N150 M2 ins4 306.7194959 306.719503 4.199 54.772 105 0.000 0.000 4 770 11.9
CMJ2 N150 M3 ins0 449.6789004 449.682666 10.239 66.315 116 0.000 0.000 5 684 4.6
CMJ2 N150 M3 ins1 439.922495 439.922499 45.548 93.546 168 0.015 0.019 8 170 4.7
CMJ2 N150 M3 ins2 449.126137 449.126141 62.689 112.319 175 0.067 0.077 8 481 4.9
CMJ2 N150 M3 ins3 424.1957387 424.196692 27.467 77.111 150 0.011 0.023 7 299 4.9
CMJ2 N150 M3 ins4 433.6412309 433.653701 56.574 110.268 172 0.039 0.032 8 360 4.7
CMJ2 N200 M1 ins0 208.5897235 208.589725 2.106 63.542 101 0.000 0.000 4 734 8.9
CMJ2 N200 M1 ins1 210.5568331 210.556835 2.817 78.042 101 0.000 0.000 4 732 9.0
CMJ2 N200 M1 ins2 200.2334487 200.233450 3.680 84.405 101 0.000 0.000 4 725 9.1
CMJ2 N200 M1 ins3 204.1614891 204.161493 3.511 93.942 101 0.000 0.000 4 708 9.4
CMJ2 N200 M2 ins0 413.876559 413.876565 4.973 113.092 102 0.000 0.000 4 680 11.2
CMJ2 N200 M2 ins1 406.5458725 406.545878 18.031 141.491 111 0.000 0.000 5 140 10.1
CMJ2 N200 M2 ins2 419.1611158 419.161786 19.694 128.483 115 0.002 0.006 5 323 10.5
CMJ2 N200 M2 ins3 394.4577078 394.457714 6.149 116.582 103 0.000 0.000 4 658 12.2
CMJ2 N200 M2 ins4 404.4349761 404.434981 14.215 150.545 109 0.000 0.000 5 044 10.3
CMJ2 N200 M3 ins0 590.2930825 590.293090 77.257 183.368 158 0.017 0.016 7 776 3.8
CMJ2 N200 M3 ins1 594.7989282 594.798932 127.190 196.726 189 0.070 0.068 9 225 4.1
CMJ2 N200 M3 ins2 591.7248894 591.766738 113.350 223.170 177 0.017 0.016 8 665 4.2
CMJ2 N200 M3 ins3 574.5171615 574.433285 112.154 193.934 181 0.029 0.030 8 862 4.1
CMJ2 N200 M3 ins4 588.7981153 588.798120 139.055 255.742 184 0.025 0.023 9 010 3.9

Table 2. GA results on larger instances

In only one case, the GA method did not reach an optimal solution and was
smaller than the CPLEX value for the instance CMJ2 N200 M3 ins3. The CPLEX
result was 574.517161 and the GA result, 574.433285. For an optimal xij determined
by CPLEX in the instance mentioned above, yij were calculated by the method for
solving FixedMJACPT, and after that, the value of objective function was obtained.
This optimal value was 574.517183, and it was free of any rounding off error. This
means that CPLEX reached the optimum, but was not exact due to the rounding
off error.

All other solutions of the GA method were optimal, their error was on the 13th

decimal, so all optimal solutions with high precision are given in Table 3. The GA
method could not verify optimality of solutions alone, but in this case, a study of
solutions of CPLEX and GA points to the conclusion that all other GA solutions
were optimal.

The second part of the experiment was performed to emphasize the use of GA
and comparing differences with CPLEX required testing on much greater instances.
Since there do not exist large-scale MJACPT instances, testing was also performed
on modified large-scale ORLIB GAP instances, with parameter m up to 80 and
parameter n up to 400, presented in [6]. Missing data (matrices kij and uij)
was randomly generated as in [1]. Because GAP is a minimization problem and
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Instance name Opt.sol Instance name Opt.sol

CMJ2 N50 M1 ins0 49.6184571840096 CMJ2 N150 M1 ins0 158.4987326103862
CMJ2 N50 M1 ins1 50.9836276836393 CMJ2 N150 M1 ins1 156.6469845071603
CMJ2 N50 M1 ins2 49.4010214895848 CMJ2 N150 M1 ins2 145.3041273209200
CMJ2 N50 M1 ins3 57.2783306637174 CMJ2 N150 M1 ins3 155.0724060324565
CMJ2 N50 M1 ins4 48.6627167903425 CMJ2 N150 M1 ins4 159.1381650812547
CMJ2 N50 M2 ins0 96.0046381268228 CMJ2 N150 M2 ins0 308.3803557208960
CMJ2 N50 M2 ins1 102.0868553225832 CMJ2 N150 M2 ins1 306.4666195431429
CMJ2 N50 M2 ins2 93.5052424120723 CMJ2 N150 M2 ins2 306.4770378197365
CMJ2 N50 M2 ins3 99.5703094364975 CMJ2 N150 M2 ins3 295.1086624543456
CMJ2 N50 M2 ins4 104.4963258036986 CMJ2 N150 M2 ins4 306.7195031962992
CMJ2 N50 M3 ins0 150.5204777847314 CMJ2 N150 M3 ins0 449.6826660346746
CMJ2 N50 M3 ins1 146.0709784188812 CMJ2 N150 M3 ins1 439.9224990034459
CMJ2 N50 M3 ins2 134.3200594945234 CMJ2 N150 M3 ins2 449.1261410038149
CMJ2 N50 M3 ins3 143.6944161293770 CMJ2 N150 M3 ins3 424.1966916942326
CMJ2 N50 M3 ins4 142.8815259890024 CMJ2 N150 M3 ins4 433.6537005607537
CMJ2 N100 M1 ins0 102.5891345863531 CMJ2 N200 M1 ins0 208.5897252356628
CMJ2 N100 M1 ins1 103.9195389338855 CMJ2 N200 M1 ins1 210.5568348855265
CMJ2 N100 M1 ins2 96.6965633770596 CMJ2 N200 M1 ins2 200.2334498731282
CMJ2 N100 M1 ins3 105.1304152605631 CMJ2 N200 M1 ins3 204.1614929078376
CMJ2 N100 M1 ins4 106.4550936083245 CMJ2 N200 M2 ins0 413.8765646932486
CMJ2 N100 M2 ins0 201.2384675063532 CMJ2 N200 M2 ins1 406.5458779954473
CMJ2 N100 M2 ins1 205.7838017264405 CMJ2 N200 M2 ins2 419.1617857029970
CMJ2 N100 M2 ins2 196.1458428409325 CMJ2 N200 M2 ins3 394.4577140505253
CMJ2 N100 M2 ins3 197.1896537591701 CMJ2 N200 M2 ins4 404.4349810136758
CMJ2 N100 M2 ins4 201.8047515689439 CMJ2 N200 M3 ins0 590.2930901105431
CMJ2 N100 M3 ins0 296.5320941467872 CMJ2 N200 M3 ins1 594.7989320213267
CMJ2 N100 M3 ins1 291.6850188552467 CMJ2 N200 M3 ins2 591.7667378549382
CMJ2 N100 M3 ins2 294.2437654270240 CMJ2 N200 M3 ins3 574.5171832693950
CMJ2 N100 M3 ins3 285.7296742234393 CMJ2 N200 M3 ins4 588.7981203560063
CMJ2 N100 M3 ins4 287.5533120463056

Table 3. Optimal results with 13 decimals

MJACPT is a maximization problem, coefficients of objective function (matrix H)
were obtained by following formula hMJACPT

ij = maxH + minH − hGAP
ij , where

maxH = maxi,j h
GAP
ij and minH = mini,j h

GAP
ij .

On these large-scale instances, the CPLEX run was bounded at maximum 7 200
seconds. Numerical values obtained by CPLEX and GA are given in Table 4. Since
CPLEX did not finish its work within 7 200 seconds for any instance, suboptimal
result obtained at 7 200 seconds was presented. GA was run on the same criterion
as for Tables 1 and 2. The value and meaning of every column are the same as in
Tables 1 and 2.

The summary of the comparison of GA and CPLEX for these large-scale in-
stances is graphically presented in Figure 2. Note that, on instances with m = 20,
CPLEX obtained better results than GA in 4 of 6 cases. On instances wherem = 40,
GA was better in 5 of 9 cases; and finally, on instances where m = 80, GA produced
better results in all cases. To sum up, GA gave better results in 16 of 24 cases. Dif-
ferences in particular m = 80 were considerable, and above all, in one case, CPLEX
could not even obtain a meaningful result (instance ga mjacpt gap d M80 N100).
Running time of GA in all these instances is reasonably short, up to 450 seconds).

Some characteristic parameters of GA were also tested. They included elitism
and frozen genes as explained in Section 4. There were two tests. The first test was
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Instance name CPLEXsol GAbest t ttot gen agap σ eval cache
(sec) (sec) (%) (%) (%)

gap d M20 N400 23 718.41854 21 180.893573 306.359 390.986 155.6 0.731 0.432 10 091.0 0.2
gap e M20 N200 9 509.968452 8 217.285275 76.122 91.998 165.7 1.276 0.632 10 096.2 0.3
gap e M20 N400 18 764.93016 16 193.758021 450.573 532.063 167.8 1.541 0.816 10 077.0 0.2
gap f M20 N100 9 339.540846 9 636.813165 4.277 5.833 142.4 0.620 0.226 9 857.0 0.7
gap f M20 N200 19 272.17599 19 301.319034 16.927 21.333 157.3 0.263 0.148 10 088.0 0.3
gap f M20 N400 39 553.55436 38 519.015278 75.344 85.909 172.8 0.242 0.160 10 015.1 0.2
gap d M40 N100 4 771.738602 5 514.614569 9.012 10.165 174.7 1.195 0.663 9 992.5 0.3
gap d M40 N200 11 065.83301 10 992.541073 40.114 44.855 176.9 0.753 0.395 10 062.5 0.1
gap d M40 N400 22 986.51878 21 822.183750 209.075 246.150 168.9 0.604 0.345 10 116.4 0.1
gap e M40 N100 4 102.523455 4 324.954403 8.269 10.075 163.8 0.694 0.330 10 117.4 0.3
gap e M40 N200 8 814.769097 8 429.475253 46.591 52.702 175.8 1.012 0.642 10 135.2 0.1
gap e M40 N400 18 519.41278 16 567.585986 292.817 351.404 165.0 0.945 0.598 10 081.7 0.1
gap f M40 N100 6 698.9799 9 503.531442 6.542 8.685 147.2 0.368 0.216 9 895.4 0.3
gap f M40 N200 17 688.24505 19 381.774669 21.357 25.323 168.4 0.346 0.151 10 136.1 0.1
gap f M40 N400 37 691.67152 38 786.228670 74.563 87.330 170.2 0.200 0.106 10 141.5 0.1
gap d M80 N100 −9916.809537 5 533.285159 9.963 12.471 151.5 0.700 0.358 9 662.7 0.2
gap d M80 N200 3 923.46281 11 320.078339 38.349 40.533 189.1 0.651 0.368 10 142.7 0.1
gap d M80 N400 17 854.34492 22 486.025034 154.396 167.677 183.8 0.454 0.280 10 146.3 0.0
gap e M80 N100 601.346291 4 372.501404 9.557 11.566 164.0 0.969 0.548 10 062.9 0.2
gap e M80 N200 1 787.201356 8 803.339238 36.540 40.374 180.8 0.879 0.506 10 142.9 0.1
gap e M80 N400 16 034.77513 17 266.752053 167.328 179.676 185.8 0.842 0.438 10 141.5 0.0
gap f M80 N100 7 927.832539 9 408.795921 10.786 13.094 162.2 0.472 0.252 9 983.5 0.2
gap f M80 N200 11 913.87707 19 229.361546 35.230 38.479 182.9 0.162 0.096 10 142.7 0.1
gap f M80 N400 33 462.17106 39 037.567647 101.884 110.599 184.1 0.157 0.094 10 146.7 0.0

Table 4. GA results on much larger instances

run without frozen genes. The second test was run without elite individuals, e.g.,
the number of elite individuals was set at 0. Since GA is quite robust, it was useful
to test it on one of the largest MJACPT instances, namely gap f M80 N400. The
result for every test was the best value obtained from 20 running GA on the instance
mentioned above. The summary of these tests is given in Table 5 and Figure 3.
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Fig. 2. Comparison between CPLEX and GA results on large instances
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Kind of test GAbest ttot

test with standard parameters 39 037.56765 110.599
test mutation without frozen genes 39 026.89113 113.23
test without elite individuals 39 033.41195 310.05

Table 5. Parameter sensitivity on the gap f M80 N400
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Fig. 3. Parameter sensitivity on the gap f M80 N400

As can be seen from Table 5, results obtained by GA without frozen genes and
elite individuals were slightly worse than results obtained by GA with standard
parameter values. Testing of all aspects of GA was beyond the scope of this work
and can be found in literature. For example, a detailed discussion of selection and
cross-over parameters can be found in [29].

6 CONCLUSIONS

The GA metaheuristic for solving MJACPT is presented in this paper. The integer
representation of the job assignment was used with a constrained nonlinear con-
vex optimization problem for obtaining controllable processing times. Local search
heuristic was implemented for improving job assignment. One-point crossover and
simple mutation with frozen genes were used. Computational performance of GA
was improved by caching. For almost all smaller instances, except one, GA cal-
culated solutions that matched optimal ones, obtained in a reasonable CPU time.
For large-scale instances GA also produced very good solutions in comparison with
CPLEX.

Based on the results, GA has the potential to be a useful metaheuristic for
solving other similar problems, whether for machine job assignment or flexible ma-
nufacturing. Parallelization of the GA and its integration with exact methods are
the most promising directions of future work.
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[25] Marić, M.: An Efficient Genetic Algorithm for Solving the Multi-Level Uncapaci-
tated Facility Location Problem. Computing and Informatics, Vol. 29, 2010, No. 2,
pp. 183–201.

[26] Mitchell, M.: Introduction to Genetic Algorithms. MIT Press, Cambridge, Mas-
sachusetts, 1999.

[27] Savelsbergh, M.W.P.: A Branch-and-Cut Algorithm for the Generalized Assign-
ment Problem. Intractability: A Guide to the Theory of Operations Research, Vol. 45,
No. 6, 1997, pp. 831–841.



A GA Approach for Solving MJACPT 845

[28] Shabtay, D.—Steiner, G.: A Survey of Scheduling with Controllable Processing

Times. Discrete Applied Mathematics, Vol. 155, 2007, pp. 1643–1666.
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