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Abstract. GPUs are able to provide a tremendous computational power, but their
optimal usage requires the optimization of memory access. The many threads avail-
able can mitigate the long memory access latencies, but this usually demands a reor-
ganization of the data and algorithm to reach the performance peak. The addressed
problem is to know which data layout produces a faster evaluation when dealing
with population-based evolutionary algorithms optimizing non-separable functions.
This knowledge will allow a more efficient design of evolutionary algorithms. De-
pending on the fitness function and the problem size, the most suitable layout can
be implemented at the design phase of the algorithm, avoiding later costly code
or data layout redesigns. In this paper, diverse non-separable functions, such as
Rosenbrock and Rana functions, and data layouts are evaluated. The implemented
layouts cover main techniques to maximize the performance: coalesced access to
global memory, intensive use of on-chip memory: shared memory and registers, and
variable reuse to minimize the global memory transactions. Conclusions about the
optimum data layout related to the characteristics of the fitness function and the
problem size are stated. Besides, the conclusions ease the decision-making process
for future implementations of other non-separable functions.



726 M. Cárdenas-Montes, M. A. Vega-Rodŕıguez
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1 INTRODUCTION

The GPU performance critically depends on the use of various types of memories and
how the data are transferred between them. Besides, these data transfers are tightly
bound to the data layout and how they are accessed in global memory. This work
analyses the most suitable layout for efficient evaluation of non-separable functions.

For non-trivial problems, executing the reproductive cycle of an evolutionary al-
gorithm with high-dimensional individuals and large population requires large com-
putational resources. In many cases the evaluation of the fitness function is the most
costly operation.

When dealing with population-based algorithms, a parallelism arises naturally,
since each individual of the population is an independent unit. This allows acceler-
ating the execution by evaluating the individuals in parallel.

Three major parallel models for evolutionary algorithms might be distinguish-
ed [1]: the island a/synchronous cooperation model, the parallel evaluation of the
population, and the distributed evaluation of a single solution. The parallel eval-
uation of the population is recommended when the evaluation is the most time-
consuming part of the algorithm, as it might occur when using non-separable func-
tions.

Nowadays parallel evaluation on GPU has become a common practice in parallel
evolutionary algorithms. A set of examples will be shown in the Related Work
section. Because data layouts are not bound to any particular algorithm, the optimal
choice can be applied to any population-based evolutionary algorithm. For this
reason, the analysis of data layouts to state the most suitable one for a fast parallel
evaluation of non-separable functions is widely applicable.

With regard to non-separable fitness functions, the well-known non-separable
function has been firstly tested – the Rosenbrock function (Equation (1)) and four
tailored fitness functions (Equations (3)–(6)) with different computational intensi-
ties. They were formulated following the recommendations of construction of non-
separable functions [19]. Finally, predictions for other non-separable functions are
compared by using the Rana function (Equation (2)).

Regarding the strategies or layouts proposed, they were constructed including
the techniques recommended to improve the performance of GPU codes [14, 5],
such as: coalesced access to global memory, intensive use of on-chip memory: shared
memory and registers, and reuse of variables and data locality to minimize the global
memory transactions.

The conclusions stated from this work allow to design more productive evo-
lutionary algorithm, since a priori the most efficient layout for the corresponding
problem size can be implemented.
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The rest of this paper is organized as follows: Section 2 summarizes the re-
lated work and previous efforts done. In Section 3.1, the fitness functions used in
this article are briefly described. In Sections 3.2 and 3.3, the layouts are detailed.
An overview of Fermi architecture is presented in Section 3.4. The results are dis-
played and analysed in Section 4. And finally, the conclusions are presented in
Section 5.

2 RELATED WORK

Evolutionary computing has taken the advantage of the GPU appearance. Several
works are published every year describing how evolutionary problems are accelerated
by transferring the execution partially or totally to GPU. However, all these works
focus on the problem and how to accelerate it. This purpose is achieved through
a wide variety of improvements, but in most of cases the layout is fixed at the
beginning of the problem without testing alternative layouts.

Few examples of this kind of works are: implementations of genetic algo-
rithm [11, 12], there are also examples in accelerating learning systems [6], ex-
amples of general-purpose parallel implementations of particle swarm optimizer in
GPGPU [20, 21, 13, 8, 7]; and implementations of differential evolution [18, 3].

Generally, authors modify the parameters of the algorithm, such as population
size, mutation or crossover rates in genetic algorithms, or maximum velocity in
particle swarm optimizers; also GPU configuration parameters such as number of
blocks or number of threads per block. However, the initial data layout remains
mostly unaltered along the optimization process. For this reason, works addressing
a similar scope have not been found.

3 METHODOLOGY

3.1 Benchmark Functions

In general, the difficulty to find high-quality solutions and the evaluation time of
the fitness functions in the evolutionary computing increase with the dimensionality
of the individuals and the population size. However, there are other relevant factors
related with a separability of the fitness function. A function can be declared as
separable if the variables are independent. This kind of problems are easier to solve
by using evolutionary algorithms since a variable can be optimized while the rest
are kept unchanged. By using this mechanism iteratively, all of the variables can be
easily optimized. Even more, separable functions are often readily solved by local
search methods. This is the main reason why some authors argue that they should
not be incorporated to test suites [19].

On the contrary, the so-called non-separable fitness functions cannot implement
this mechanism, since the variables are not independent. A non-separable function is
called m-non-separable if at least m variables are not independent. In the extreme



728 M. Cárdenas-Montes, M. A. Vega-Rodŕıguez

case, where not any variable is independent of the others, the function is called
fully-non-separable.

In evolutionary computing, specially in the benchmark functions used in con-
tinuous optimization contest [16, 17], there exist well-known fully-non-separable
functions as Rosenbrock (Equation (1)) [15] or Rana function (Equation (2)).

fRosenbrock =
D−1∑
i=1

100 ·
[(
x2
i − xi+1

)2
+ (xi − 1)2

]
, (1)

fRana =
D−1∑
i=1

(xi+1 + 1.0) · cos(t2) · sin(t1) + cos(t1) · sin(t2) · xi,

where t1 =
√
|xi+1 + xi + 1.0| and t2 =

√
|xi+1 − xi + 1.0|. (2)

On the other hand, functions specially designed for this work are also employed.
These functions allow a finer-grained control over the computational intensity of the
benchmark function. For example, expensive and non-expensive calculation func-
tions (Equations (3), (4)) will allow an in-detail characterization of the behaviour
of data layouts.

These functions were constructed simulating the Rosenbrock function: incorpo-
rating a fixed number of dimensions to calculate each term of the fitness function.
The recommendations for constructing this type of functions have been followed in
order to compose the new non-separable functions [19].
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2, (3)
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3.2 Strategies

3.2.1 Strategy 1: Allocation of One Individual per Thread in Registers

In the two first presented strategies (S1 and S2) each individual is handled by a single
thread. Both strategies exploit the fast access to on-chip memory. In S1, registers are
used to accumulate the intermediate fitness values and coordinates of the individuals,
whereas in S2 the shared memory is used instead of registers. Besides, in both
strategies the input array is ranged as a sequence of individuals: firstly all the
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coordinates of the first individual, then all the coordinates of the second individual,
and so on.

In S1, each single thread executes a for-loop sequentially over the coordinates of
one individual. At the beginning of the sequence, the first partial fitness values are
necessary to be calculated. Next, one coordinate is read ahead to produce a new
part of the fitness which is gathered over the previous value of the accumulated
partial fitness.

In each step, only a new coordinate is downloaded from global memory to on-
chip memory (register for S1 and shared memory for S2). The remaining values,
necessary to calculate the partial fitness, were loaded and stored in the on-chip
memory in previous steps. This schema saves global memory accesses, replacing
them by faster on-chip memory accesses. The number of saved accesses per cycle
and individual depends on the number of necessary values to calculate a partial
fitness value.

A priori this strategy would be more suitable for the evaluation of large popula-
tions, because each individual evaluation is independent of the others, and therefore,
a large parallelism degree is reached. For small populations of high-dimensional in-
dividuals, this strategy is penalized because few threads are mobilized (threads as
individuals), and therefore a few streaming multiprocessors (SM) are active.

Regarding the limitations of the approach, it can be foreseen that this strategy
is constrained by the total number of threads that the GPU can allocate. However,
this number is high enough to allow fast evaluation of large size problems. A second
limitation could be the consumption of on-chip memory when evaluating fitness
functions requiring many coordinates of the individual. For example, Rosenbrock
function only requires two coordinates, whereas the tailored functions require two
and four respectively. In this case, the thread-block has to allocate a high number
of registers to hold all of the necessary values to calculate the partial fitness.

Finally, an important drawback is envisaged for the S1 strategy. A conjunction
between the data layout (a sequence of individuals) and the sequential access to
the dimensions of each individual create stride pattern access to the global memory,
which is pernicious for the performance.

Global memory is always read in chunks of 128 bytes (length of a cache line) by
32 consecutive threads1. If a part of a cache line reading involves not-necessary data
for the calculations or simply not all necessary data for the calculation because the
32 threads fill the cache line, then global memory bandwidth is being wasted. As
a consequence, the bus transactions are increased to complete the necessary data
for the calculations.

In S1 and S2, when dimensionality is equal or higher than 32, due to the dis-
position of the individuals, only one float is valid (from the 128 bytes read) for the
32 threads involved. Therefore, to read the 32 dimensions for the 32 consecutive
threads, 32 bus transactions are necessary. As can be evaluated, most of the memory
bandwidth is misused.

1 A particular case in Fermi architecture exists which modifies this feature (Section 3.4).
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When dimensionality is lower than 32, more than one float is valid in each bus
transaction, but still a part of the global memory bandwidth is underused. If dimen-
sionality is 16, then only 2 data are valid in the transaction; and, if dimensionality
is 8, then only 4 data, and so on. This cache trashing severely degrades the per-
formance. In the following strategies S3 and S4, two alternatives to circumvent the
stride access are presented2.

In spite of the above mentioned disadvantages, it is important to emphasize
the capacity of this strategy to cope with extremely large problem sizes. For this
reason, and because it is one of the most intuitive layout when adapting to GPU
evolutionary problems, this strategy is considered to be evaluated.

3.2.2 Strategy 2: Allocation of One Individual
per Thread on Shared Memory

This second strategy is very similar to the previous one but using shared memory
to support a stencil instead of registers. When implementing a stencil in shared
memory, some accesses to global memory are already saved. Similarly to S1, some
necessary coordinates to calculate the partial fitness were previously downloaded
and stored from global memory into the shared memory. In order to hold these
values on the shared memory, some arrays have to be defined. These arrays have
the same role as the variables defined in registers in S1.

Both S1 and S2 handle the individuals in parallel, but sequentially their dimen-
sions. A priori this is more suitable for large populations than for small populations
of high-dimensional individuals.

This strategy benefits from the absence of divergence in the warps, as well as
a significant reduction of global memory transactions. On the contrary, it suffers
from limitations arising from the shared memory consumption, similarly to the reg-
ister consumption in S13.

Finally, the most important drawback in S1 and S2 is the non-coalesced access
to global memory. In the next strategies two alternative layouts are presented. They
introduce the appropriate modifications in order to get coalesced access to global
memory.

3.2.3 Strategy 3: Allocation of One Individual Per Thread-Block
on Share Memory with Coalesced Access to Global Memory
and Atomic Operations

In this third strategy, the main difference holds on how the individual is managed:
each individual is handled by a single thread-block, instead of a single thread as in
the previous strategies. This layout forces to select the number of threads per block

2 In Fermi architecture L1 and L2 cache memory can mitigate partially this penaliza-
tion.

3 In the numerical experiments, the configuration with maximal shared memory (48 kB)
is used.
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equal to the dimensionality of the individual. This constraint indicates a weakness in
the strategy: the maximum threads per block allowed in the GPU4 is the maximum
dimensionality that this strategy can evaluate. Even though the highest allowed
dimension for the individuals is the maximum threads per block, a reduction of
this constraint is expected by the progressive increment of this value in future GPU
architectures.

Although there exist techniques to deal with individuals with a larger dimen-
sionality than the maximum number of threads per block5, these techniques are not
considered in this work.

Since the individuals are disposed sequentially (as in S1 and S2), each thread
accesses to some dimensions of an individual to calculate the partial fitness. These
dimensions are accessed in a coalesced mode: consecutive threads access to con-
secutive global memory directions. After getting the necessary data, each thread
calculates a chunk of the fitness values in parallel, and stores it in the shared memory
for the later reduction.

Oppositely to the previous strategies, in S3 the calculation of the fitness func-
tion is executed in parallel, not only among the individuals, but also for a partial
fitness of each individual. This is an advantage in relation to the previous strate-
gies.

For the final reduction of the partial values of the fitness of the individual, two
alternatives are considered:

• Folding of the array with a partial fitness by half successively up to accumulating
the addition of all the values over the first element of the array. This reduc-
tion technique has a relevant advantage in a high-degree of parallelism reached;
however it also has an important drawback: it is only valid for 2n dimensional
individuals. Individuals with different dimensionality from 2n have to be filled in
with null values to reach the next 2n value. Whereas the objective is to present
the most general implementation with the widest applicability, this reduction
technique is dismissed.

• Use of atomic operations, concretely atomicAdd(). Although the atomic opera-
tions should produce a degradation of the performance, this can be mitigated by
parallelizing the reduction with atomic operations for the individuals on shared
memory.

4 The maximum number of threads per block in pre-Fermi architecture is 512, whereas
in Fermi architecture is 1 024.

5 The techniques able to deal with larger individuals than the maximum number of
threads per block are mainly two: to spread out the individual over more than a single
thread-block including halo coordinates and later to use global memory to gather the
partial fitness values of each individual, or to treat the individual in chunks of the maximum
number of threads per block.
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3.2.4 Strategy 4: Allocation of One Individual Per Thread on Registers
with Coalesced Access to Global Memory

In this last strategy, the S1 strategy is modified to mitigate the penalty of the stride
global memory access. In order to overcome the non-coalesced access, a transposition
of the input data is performed previously to transfering them to global memory. This
transposition modifies the disposition of the elements from a sequence of individuals
to a sequence of the same coordinate of the individuals: firstly, the first coordinate
of all individuals, then the second coordinate of all individuals, and so on.

By using the present disposition, 32 consecutive threads access to 32 consecutive
floats (128 bytes) to obtain the value of a particular dimension of 32 individuals. As
a result the access to global memory becomes coalesced and the length of the cache
line is fully used.

Alike in S1, in S4 a single thread deals with an individual. Therefore, the indi-
viduals are handled in parallel but their dimensions are still sequentially managed.
The other benefits and drawbacks of the S1 strategy are still valid for S4.

By comparing S3 and S4, two different ways to gain coalesced access to global
memory are implemented. In S3 the calculations are modified to adapt them to the
data layout; whereas, in S4 the modification is performed over the data layout.

3.3 Sequential Evaluation

For the sake of completeness, a purely sequential evaluation is also implemented, and
its results are used in the comparisons. Considering the non-negligible cost of the
data transfer between CPU and GPU, for reduced problem sizes, CPU evaluation
is expected to be faster than the operations’ set: transfer from CPU to GPU of
population data, evaluation of individuals, and retrieval of the fitness data from
GPU to CPU. Comparisons with sequential evaluation discern which problem sizes
are more suitable for GPU or CPU evaluation.

All the numerical experiments have been executed in a computer with Intel
Xeon E5520 processor at 2.27 GHz and 6 GB of memory, and NVIDIA C2075 (Fermi
architecture).

3.4 Overview of Fermi Architecture

Although a CUDA kernel is ensured to be executed correctly on any CUDA device,
its performance can vary depending on how the code is adapted to a particular
architecture. There are several common optimization strategies in order to make
an efficient use of the hardware although the details of these hardware-dependent
strategies can change with each architecture.

This work focusses on data layout and how it affects the evaluation time of
the population. However, the data layout is tightly bound to the global memory
access pattern of threads, secondly, to the shared memory size which limits the
maximum problem size allowed to be evaluated, and to the memory transaction
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segment size which is a critical factor on how the bandwidth is used. Furthermore,
L1 cache memory size has a relevant role when data access pattern is unpredictable
or irregular.

All the previous features differ depending on the architecture of the CUDA
device, and for this reason they have to be taken into account in this work.

First of all, in pre-Fermi architecture each SM had only 16 kB for registers,
whereas in Fermi architecture this on-chip memory has grown up to 32 kB [9]. Other
feature that has been incremented in the Fermi architecture is the maximum number
of threads per block, from 512 to 1 024. These two features constitute a major
limiting factor for the largest problem of allocatable size in the layouts.

Second, Fermi introduces a two-level transparent cache memory hierarchy. Each
SM has 64 kB of on-chip memory, distributed between shared memory and L1 cache
memory. Users can select diverse configurations of shared memory and L1. Through
configuring shared memory size, limitations to the largest problem of allocatable size
are introduced.

When implementing coalesced or non-coalesced access to global memory, the
memory transaction segment size becomes an important factor in the final perfor-
mance. In the pre-Fermi architecture the available memory transaction segment
sizes are: 32, 64 and 128 bytes. A selected value depends on the amount of memory
needed and the memory access pattern. The selection is automatic in order to avoid
bandwidth wasting.

In the Fermi architecture, the memory transaction segment size follows a differ-
ent rule. When L1 cache memory is enabled, the hardware always issues segment
transactions of 128 bytes, the cache-line size; otherwise, 32 bytes segment transac-
tions are issued. In our study, default configuration of L1 is enabled in all numerical
experiments.

4 RESULTS AND ANALYSIS

4.1 Rosenbrock Function

In this section, we discuss the performance achieved by each strategy when evaluat-
ing the Rosenbrock function. The execution times (mean and standard deviation) of
the strategies for several configurations are presented in Table 1. The problem sizes
were selected for representing the state-of-the-art problem sizes, and mapping the
transitions between the most suitable strategies. Most of the configurations were
selected with a population equal to dimensionality. Where an unequal configura-
tion is chosen, the objective is to map the transition between two best strategies,
narrowing the uncertainty border.

For each problem size, diverse threads-per-block configurations are executed.
From the execution times obtained, the best results for each strategy are retained and
presented. For example, for 100 × 100 configuration, two configurations of threads
per block are tested: 32 and 64; whereas, for 2 000 × 2 000, four configurations are
tested: 128, 256, 512, and 1 024 threads per block. In order to fairly compare, for the
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sequential strategy the equal number of executions are produced, and then retaining
the best one. Furthermore, for each case a total of 20 tries are executed.

On the other hand, input data are randomly generated in the range (0, 1). Iden-
tical input files are used for all the executions of a particular configuration.

Pop.×Dim. S1 S2 S3 S4 Sequential

100× 100 0.237±0.005 0.255±0.003 0.145±0.004 0.170±0.003 0.026±0.001
200× 200 0.444±0.004 0.484±0.002 0.365±0.006 0.314±0.002 0.098±0.003

1 000× 1 000 3.188±0.014 3.389±0.012 NAN 2.481±0.019 2.432±0.041
500× 2 000 4.733±0.023 5.129±0.067 NAN 3.439±0.045 2.422±0.029
2 000× 500 2.558±0.013 2.549±0.020 NAN 1.962±0.071 2.431±0.048

1 500× 1 500 6.218±0.163 5.907±0.106 NAN 4.651±0.018 5.620±0.029

2 000× 2 000 9.723±0.075 9.685±0.135 NAN 7.533±0.110 10.129±0.032

1 000× 4 000 12.129±0.233 13.093±0.092 NAN 9.539±0.253 10.386±0.025

4 000× 1 000 8.723±0.020 10.030±0.041 NAN 6.633±0.067 10.143±0.035

4 000× 4 000 22.426±0.034 22.431±0.064 NAN 22.425±0.049 40.856±0.021

2 000× 8 000 39.284±0.067 40.110±0.038 NAN 30.369±0.101 40.552±0.107

8 000× 2 000 33.076±1.202 NAN NAN 26.601±0.069 40.536±0.083

Table 1. Mean execution time and standard deviation for Rosenbrock function

The results in Table 1 provide information about which strategy is the most
suitable. Mildly speaking, sequential evaluation is the fastest strategy for the eval-
uation of the Rosenbrock function if population and dimensionality are up to 1 000.
For these configurations, the cost of data transfer between CPU and GPU penalizes
the GPU implementations. This penalization is not balanced by a parallel, and
therefore faster, evaluation of the population.

However, when increasing problem sizes, the evaluation time of the sequential
strategy grows dramatically, no-longer being the best option. For problem sizes
equal or larger than 1 500×1 500, the penalization due to the data transfer between
CPU and GPU is counteracted by a faster evaluation.

When dealing with large problem sizes, the S4 strategy outperforms all of the
other strategies. In this strategy, the coalesced access to data in global memory
produces an efficient usage of the bandwidth. On the other hand, the a priori flaw
of the sequential treatment of the coordinates of each individual in S4 becomes
a robust feature when evaluating very high-dimensional individuals. In this case the
on-chip memory consumption is still moderated, because few variables per individual
have to be simultaneously allocated on registers.

On the contrary, for these very high-dimensional individuals, the maximum num-
ber of threads per block becomes a major limiting factor in S3. This does not allow
to evaluate individuals larger than 1 024 in the Fermi architecture (512 for the pre-
Fermi architecture). Even more, 1 000 × 1 000 and higher configurations are not
evaluable by S3 due to the depletion of the shared memory.

This depletion of the shared memory is the reason why 8 000×2 000 configuration
is not allocatable on S2 strategy. It demonstrates that strategies implementing
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registers as a support for the intermediate data are more robust than strategies
implementing shared memory.
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LinearSVM applied to Rosenbrock function results.

Figure 1. LinearSVM applied to the results of Rosenbrock function: the two data cate-
gories correspond to sequential evaluation for small and mid-size configurations,
and S4 for large configurations. The support vectors for the first class (sequential
evaluation) are 1 000× 1 000 and 500× 2 000; whereas for the second class (S4) is
1 500× 1 500.

In Figure 1, the results in Table 1 were analysed using Linear Support Vector
Machine6 (LinearSVM) [2]. The use of SVM allows the knowledge extraction from
large numerical data sets. Through building a model with SVM, patterns in data
can be inferred, in order the model is more comprehensible than the numerical
output [4]. If data are linearly separable, then LinearSVM is the simplest SVM
classification model. Particularly, the SVM models were produced by using scikit-
learn API [10].

The application of LinearSVM to the numerical results allows showing the area
(population size and dimensionality of individuals) where a particular data layout
is the most suitable one, as well as the location of the borders between the areas.

Figure 1 shows a clear distinction between the suitable configurations for sequen-
tial evaluation and the suitable configurations for GPU evaluation. The maximum-

6 It is assumed that the data are linearly separable.
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margin hyperplanes provide a visual estimation for the borders between the two data
classes: sequential evaluation for small and mid-sized configurations, and S4 for large
configurations. The support vectors pinpoint the configurations limiting the data
categories: 1 000× 1 000 and 500× 2 000, for sequential strategy; and 1 500× 1 500
for the S4 strategy.

Summarizing, decision-making about the most suitable evaluation strategy for
the Rosenbrock function can be easily adopted by using Figure 1.

4.2 F2-Light and F2-Heavy

The Rosenbrock function constitutes an excellent example of a non-separable func-
tion. However more functions are needed if the target is to characterize the problem
behaviour based on how the data layouts are presented. For this reason, four more
functions are constructed and their results analysed in this section and the following
one.

The first function, f2−light, is a Rosenbrock-like function with a non-expensive
calculation (Equation (3)), whereas the second one, f2−heavy (Equation (4)), is sim-
ilar to the previous function, but replacing the very light inner calculations of the
function by expensive operations from the computational point of view. Construct-
ing these tailored functions the computational intensity assigned to each thread is
under control. Similar to Rosenbrock, both functions involve only two consecutive
coordinates of the individuals.

The main difference between f2−light and f2−heavy is on the computational in-
tensity supported by each thread to complete a partial fitness calculation. Because
of this difference, each function results in a different relation between the access to
data on global memory and the life-time of data on-chip memory. For the light
version, the accesses to data in global memory per time unit are much higher
than in the expensive version. For the expensive version, the calculation takes
longer, and therefore, data should reside on the on-chip memory during a longer
period. Consequently, the access to global memory per unit of time becomes more
sparse.

The results of this study are presented using a LinearSVM plot: Figure 2 for
f2−light, and Figure 3 for f2−heavy. The different results show the tendency for other
non-separable functions when increasing its computational intensity.

The f2−light function has a lower computational intensity than Rosenbrock func-
tion, and for this reason, much larger problem sizes are the only suitable for GPU
evaluation. The support vectors (Figure 2) indicate that the limiting configurations
are: 4 000 × 1 000 and 1 000 × 4 000 for the largest suitable configuration for CPU
evaluation, and 4 000 × 4 000 for the lowest suitable configuration for GPU evalu-
ation. Similarly to the Rosenbrock function, S4 for the large-configurations case is
the appropriate strategy.

By comparing the plots for f2−light and f2−heavy, and both of them comparing
with Rosenbrock one, the most significant deviation appears for f2−heavy. In this
function, due to its high-computational intensity a strong reduction of the config-
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Figure 2. LinearSVM applied to the results of f2−light function: the two data categories
correspond to sequential evaluation for small and mid-size configurations, and S4
for large configurations. The support vectors for the first class (sequential eval-
uation) are 4 000 × 1 000 and 1 000 × 4 000; whereas for the second class (S4) is
4 000× 4 000.

urations where sequential evaluation is the most suitable option is observed. Only
very small configurations, up to 16×16, are suitable for sequential evaluation. When
increasing the problem size, the evaluation becomes more suitable for GPU in all
cases. Moreover, since f2−heavy is more computational intensive than f2−light, the
penalization of data transfer between CPU and GPU is largely counteracted by
a faster evaluation of the population.

Considering only the GPU implementations, two dominance areas appear in
the plot7 (Figure 3). In the inner one, the most suitable strategy is S3, whereas
in the outer one it is S4. Therefore, LinearSVM for f2−heavy presents three optimal
strategies depending on the configuration. For the very small problem sizes the most
suitable strategy is sequential evaluation, being the support vector 16 × 16. When
increasing the problem size, the most suitable strategy becomes S3. In this case the

7 In the original implementation, SVM is only available for binary classification. Al-
though there exist multiclass SVM implementations, in this work two simple and consec-
utive binary classifications are executed with two consecutive classes.
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Figure 3. LinearSVM applied to the results of f2−heavy function: the three data categories
correspond to sequential evaluation for smaller configurations, later when incre-
menting the problem size the best strategy becomes the S3 one, and finally S4 for
larger configurations. The support vectors for the first class (sequential evaluation)
are 16× 16, and 20× 20 for the lowest configuration of the second class (S3). This
second class has support vectors: from 20× 20 to 100× 400 and 400× 100 for the
largest configurations. And finally, for the third class (S4) the support vector is
400× 400.

support vector is 20× 20 for the lowest configuration. On the other hand, S3 is the
best strategy for a wide range of problem sizes. This class comprises from 20 × 20
to 100× 400 and 400× 100 as support vectors. For larger problem sizes (400× 400
and larger ones) the most suitable strategy is S4.

All the functions tested until this point coincide granting a relevant role to the
computational charge in order to be a worthwhile GPU-based evaluation. An in-
tensive computational charge can be reached through an increment of the problem
size, or by using fitness functions with a high-computational intensity. The neces-
sary threshold to be worthwhile a GPU-based evaluation can be reached with small
configurations (20 × 20) for very expensive functions (f2−heavy), or with very large
problem sizes (4 000 × 4 000) for inexpensive functions (f2−light). In all the cases,
S4 becomes the most suitable strategy when dealing with a high computational
charge.
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4.3 F4-Light and F4-Heavy

In order to characterize the behaviour of the evaluation time of non-separable func-
tions, the f2−light and f2−heavy are modified by incrementing the number of necessary
dimensions to calculate each partial fitness value. For this modification an increment
of the computational intensity over the functions is applied.

In Equations (5) and (6) the new functions are presented. They are very sim-
ilar to the functions used in the previous section but with more terms involved to
calculate any partial fitness values. This modification puts an extra pressure over
the on-chip memory consumption for the GPU-strategies. More resources have to
be allocated in order to hold the extra variables.

With these new functions, the general tendency of the evaluation time of the non-
separable functions is fully characterized. Decision-making about the most suitable
layout for functions with similar morphology is eased with this broad study.
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Figure 4. LinearSVM applied to the results of f4−light function: the two data categories
correspond to the sequential evaluation for small and mid-size configurations, and
S4 for large configurations. The support vectors for the first class (sequential
evaluation) are: 500× 8 000 and 1 000× 1 000; whereas for the second class (S4) it
is 1 000× 4 000.

Similarly to f2−light, for f4−light (Figure 4) the most suitable strategy for small
and mid-size problems is a sequential evaluation. Only for very large problem sizes
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(larger than 1 000 × 1 000 or 500 × 8 000) GPU-based evaluation (S4) becomes the
most suitable election.

Due to the higher computational intensity of f4−light compared with f2−light, the
area dominated by sequential evaluation shrinks. Whereas the support vectors for
sequential evaluation in f2−light are 1 000 × 4 000 and 4 000 × 1 000, for f4−light are
1 000× 1 000 and 500× 8 000. In conclusion, for lower configurations in f4−light than
in f2−light, the penalization of data transfer between CPU and GPU is balanced by
a faster evaluation of a more expensive function.
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Figure 5. LinearSVM applied to the results of f4−heavy function: the three data categories
correspond to sequential evaluation for tiny configurations, later, when increment-
ing the problem size, S3 is the best strategy and S4 for larger configurations. The
support vector for the first class (sequential evaluation) is 10× 10. For the second
class (S3) it is 16 × 16 for the lowest configuration and 200 × 200 for the largest
one. Finally, for the third class (S4): 100× 400 and 800× 200.

The observed trend of reduction of dominant CPU-based evaluation between
f2−light and f4−light is accentuated when comparing f2−heavy and f4−heavy (Figure 5).
When increasing the computational intensity of expensive versions of the fitness
function by adding more terms, the GPU-based evaluation area is enlarged at the
same time and the suitable problem sizes for sequential evaluation shrink.
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In f4−heavy, sequential evaluation the fastest choice is only for 10 × 10 configu-
ration, whereas for a slightly larger configuration as 16× 16 it becomes faster when
evaluating on GPU with S3 strategy. In f2−heavy, for 16× 16 the best choice is still
CPU-based evaluation.

More comparisons between f2−heavy and f4−heavy show a similar pattern in both
cases (Figures 3 and 5). For low problem sizes, sequential evaluation is the fastest
choice. However, due to the high-computational intensity of the function, any in-
crement in the problem size carries out a switch from this choice to GPU-based
evaluation choice.

When the problem reaches a size of 16 × 16, S3 becomes the most suitable
strategy up to the size of 200 × 200. For larger problem sizes, the most suitable
strategy is S4. This pattern reproduces the schema of f2−heavy with a constriction
towards the lower problem sizes of the dominance areas of sequential and S3 strategy.
S4 strategy is the fastest choice as much as the computational intensity of function
grows. For configurations such as 100× 400 or 800× 200, and larger ones, the best
option is S4.

The tendency provides clues about the behaviour of the problem when progres-
sively reducing the computational intensity of the fitness function: S3 dominance
area disappears, while sequential and S4 strategies fill the previous S3 area.

Other remarkable result is the critical role of the coalesced access in the perfor-
mance in all functions analysed. In the strategies where it is implemented (S3 and
S4) they outperform the strategies where the coalesced access is not implemented.
The results suggest that coalesced access to global memory should be a major re-
quirement in the design of evolutionary algorithms on GPU. Therefore, it can be
stated that this option is mandatory to obtain an efficient implementation.

Furthermore, comparing with f2−heavy, the pressure exerted in f4−heavy by the
higher on-chip memory consumption produces a shared memory depletion for lower
problem sizes in S2 strategy, as well as it happened in S3. Therefore, the experiments
demonstrated that implementations based on registers are more robust for very large
problem sizes than others based on shared memory.

4.4 Rana Function

Up to this point the proposed strategies have been tested against diverse non-
separable functions. The SVM plots presented have a predictable capacity for other
configurations of these particular fitness functions. However, this information is
valuable not only for the functions already analysed, but also to predict the be-
haviour of the best strategies for other non-previously tested functions. To test
the capacity of forecasting the best strategy to evaluate an arbitrary non-separable
fitness function, the Rana function (Equation (2)) is used as the benchmark.

Rana function has a computational intensity closer to the previous expensive
functions than to the light ones. Therefore, depending on the problem size, three
best strategies are expected: for the lowest range of problem sizes, sequential eval-
uation will be the most suitable strategy, for mid-range it will be S3 strategy, and
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finally, S4 strategy will be the most suitable for the upper-range of problem sizes.
In Figure 6 the LinearSVM digesting the numerical results of the Rana Function are
shown. The foreseen schema is roughly reproduced.
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Figure 6. LinearSVM applied to the results of the Rana function: the three data cate-
gories correspond to sequential evaluation for smaller configurations, later when
incrementing the problem size the best strategy becomes S3 one, and finally S4 for
larger configurations. The support vectors for the first class (sequential evaluation)
are 20× 20, and 40× 40 for the lowest configuration of the second class (S3). This
second class has as support vectors: from 40 × 40 to 200 × 200 for the largest
configurations. And finally, for the third class (S4) the support vector is 100× 400
and 800× 200.

The results presented for fRana (Figure 6) are reproduced in the schema of
f4−heavy rather than f2−heavy. Therefore, from the computational point of view fRana

is close to f4−heavy. There are no differences for the support vectors of the largest
suitable configuration for S3 (200× 200), or for the lowest suitable configuration for
S4 (100 × 400 and 800× 200). However, there exist some differences in the largest
suitable configuration for sequential evaluation: 20× 20 for the Rana function and
10× 10 for f4−heavy.

The adjustment between predictions and numerical experiments is good enough
as a predictive rule for other non-separable functions.
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5 CONCLUSION

This paper has presented a study analysing the impact of the data layout over the
fitness calculation time when evaluating non-separable functions on GPU. The work
has proved that a correct choice of the data layout reduces the fitness calculation
time. This knowledge of the optimal evaluation strategy contributes to create faster
algorithms, specially when dealing with high-computational intensity non-separable
functions.

Besides, since the analysed layouts are not bound to any particular algorithm,
the conclusions can be extrapolated to any population-based evolutionary algorithm
which evaluates similar fitness functions.

In more detail, it can be stated that a sequential evaluation is the most suitable
choice when dealing with non-expensive functions, except for very large problem sizes
where GPU-based evaluation is the optimal option. On the contrary, GPU-based
evaluation is recommended for most of the problem sizes of high-computational
intensity non-separable functions. In this case, two strategies dominate the problem
size landscape: S3 (each thread-block handles one individual on shared memory
with coalesced access to global memory) for mid-size configurations and S4 (each
thread handles one individual on registers with coalesced access to global memory)
for larger configurations. However, due to the tight restrictions in maximum problem
size allocatable in S3 and the relatively small difference in the evaluation time, we
strongly recommended implementation of S4 for all configurations.

By considering only the GPU implementations, the importance of the coalesced
access to global memory has to be underlined in order to reduce the evaluation time.
Regardless of the problem size, all cases S3 and S4 (strategies with coalesced access)
outperformed S1 and S2 (strategies without coalesced access).

Finally, it can be concluded that the knowledge of the most suitable evaluation
strategy when evaluating non-separable functions allows to implement more efficient
evolutionary algorithms avoiding later expensive redesign processes.
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[11] Posṕıchal, P.—Schwarz, J.—Jaros, J.: Parallel Genetic Algorithm Solving 0/1
Knapsack Problem Running on the GPU. 16th International Conference on Soft Com-
puting MENDEL 2010, Brno, University of Technology, 2010, pp. 64–70.
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