
Computing and Informatics, Vol. 34, 2015, 305–336

PATOMAT – VERSATILE FRAMEWORK
FOR PATTERN-BASED ONTOLOGY
TRANSFORMATION

Ondřej Zamazal, Vojtěch Svátek

University of Economics, Prague
W. Churchilla 4, 130 67 Prague 3, Czech Republic
e-mail: {ondrej.zamazal, svatek}@vse.cz

Abstract. The purpose of the PatOMat transformation framework is to bridge
between different modeling styles of web ontologies. We provide a formal model
of pattern-based ontology transformation, explain its implementation in PatOMat,
and manifest the flexibility of the framework on diverse use cases.

Keywords: Ontology engineering, semantic web, ontology transformation, ontol-
ogy matching, ontology import, ontology profiling, naming refactoring

Mathematics Subject Classification 2010: 68N01, 68T0, 68T3

1 INTRODUCTION

Ontologies have recently become an important part of many information systems
and applications, e.g. [7]. Ontological engineering [6] provides methods for covering
such an ontology lifecycle, including, aside from ontology authoring proper, other
activities such as the reuse of an existing ontology or pattern-based transformation of
an ontology, as main subject of this paper. The most prominent ontology language
nowadays is the Web Ontology Language (OWL) [33]. It contains numerous lan-
guage constructs, which allows the designers to express the same conceptualization
in different ways. This is convenient for the designers but can negatively impact the
applications working with such ontologies. In particular, an application might not
work at its best performance level, or, it can even crash if the modeling style of the

306 O. Zamazal, V. Svátek

ontology is different from the anticipated one. To illustrate the possible impact of
modeling style, let us consider the following semantic web scenarios:

• Ontologies with different styles are hard to match [3] or import to one another.

• The modeling style of the ontology has impact on the usability and performance
of tools, e.g., reasoners, that do not cope with certain language constructs.

As a straightforward example of style heterogeneity we present different formal
conceptualizations, in the Manchester syntax of OWL,1 of accepting or rejecting
papers, in ontologies of ‘conference organization’.2 In the first model, the apparatus
for distinguishing between accepted and rejected papers can be expressed simply as
disjoint classes to which the paper can be assigned:

AcceptedPaper SubClassOf: Paper.
RejectedPaper SubClassOf: Paper.

AcceptedPaper DisjointWith: RejectedPaper.

In another ontology the same (or similar) distinction can be captured less di-
rectly, using disjoint object properties :

accepts Domain: PCChair. accepts Range: Paper.
rejects Domain: PCChair. rejects Range: Paper.

accepts DisjointWith: rejects.

Another option is to express the distinction via an enumeration of ‘decision’
individuals to which the paper can be linked:

hasPCChairDecision Domain: Paper.
hasPCChairDecision Range: (EquivalentTo {acceptance, rejection}).

hasPCChairDecision Characteristics: FunctionalProperty.

As the final option we will introduce the use of disjoint classes to which the
(currently unspecified) decisions may belong:

hasPCChairDecision Domain: Paper
hasPCChairDecision Range: Decision.

Acceptance SubClassOf: Decision.
Rejection SubClassOf: Decision.

Acceptance DisjointWith: Rejection.

Since the purpose of the ontology fragment is to allow separating of objects of
a certain kind (papers) into distinct classes (accepted vs. rejected), we can formally
describe such a class via a concept expression in description logic. Table 1 lists
the concept expressions for all four modeling options; the last column displays the
symbol responsible for making a desired distinction.

1 http://www.w3.org/TR/owl2-manchester-syntax/
2 A collection of such ontologies has been used in the OAEI ontology matching contest,

see http://oaei.ontologymatching.org/2014/conference/.

PatOMat – Transformation Framework 307

Option Concept expression Distinction via

1 C C
2 ∃R.> R
3 ∃R.{i} i
4 ∃R.C C

Table 1. Concept expressions for classifying ‘papers’ according to all four modeling options.
The C symbol represents a class, R a property and i an individual.

Such modeling choices can possibly be captured at the level of ontology design
patterns : reusable solutions to a recurrent modeling problems [5], often collected
in catalogs.3 Importantly, each operation of transforming an ontology from one
modeling style (defined via the pattern structure) to another can also be captured
by a pattern, which we denote as a transformation pattern. Figure 1 schematically
depicts such an operation: according to a transformation pattern, a source ontology
(here rather just a fragment of it) is transformed to an unforeseen target ontology
(fragment); the source fragment corresponds to the fourth modeling choice and the
target fragment to the second (less complex) modeling choice from the motivating
example. The transformation thus has to consider two (occurrences of) ontology
patterns: one in the source ontology and one in the target ontology; the two patterns
plus the link between them is what we call transformation pattern.

?X ?Z

Transformation pattern

Source ontology Transformed ont.

Pattern-based
transformation

?P ?Q

?R ?V

Paper
Decision

hasPCChairDecision

Acceptance

Rejection

PCChair Paper

?p ?q

?r

accepts

rejects

Figure 1. Example of pattern-based ontology transformation

3 For instance: http://ontologydesignpatterns.org/.

308 O. Zamazal, V. Svátek

In this paper we first describe the formal model of ontology transformation
underlying our PatOMat transformation framework (Section 2). Next, we present
the overall implementation employed (Section 3) along with the user perspective.
Further, in Section 4, we provide a thorough description of the use cases tackled
by the framework so far. We discuss their motivation, provide their distinguishing
characteristics and demonstrate them on examples, as well as elaborate on some
of their implementation-related specifics. Section 6 provides an overview of related
work. Section 7 wraps up the paper and envisages further directions of this research.

2 FORMAL MODEL OF PATTERN-BASED TRANSFORMATION

Obviously, the basic building block in the approach is the notion of the ontology
pattern.

Definition 1 (Ontology Pattern). An ontology pattern is a triple 〈E, Ax, NDP∗〉, such
that E is a non-empty set of entity declarations, Ax a (possibly empty) set of axioms,
and NDP∗ a (possibly empty) set of naming detection patterns.

Entity declarations4 introduce entities, i.e. classes, properties and individuals,
either as concrete entities or, more often, at the level of placeholders (we distinguish
them with a starting question mark further on). Axioms are statements about en-
tities included in the transformation. Finally, the naming detection patterns (NDP)
capture the naming aspect of the ontology pattern relevant for its detection.

Definition 2. A naming detection pattern is a set of passive naming operations,
NDP = {no1, no2, . . . , non}. All noi have as their operands entities from the ontology
pattern to which NDP belongs, and constants.

For instance, the core pattern for the fourth option from Section 1 could be:

E = {ObjectProperty : ?p. Class : ?P, ?Q, ?X, ?Z}
Ax = {?p Domain : ?X. ?p Range : ?Z. ?P SubClassOf : ?Z. ?QSubClassOf :?Z.

?P DisjointWith : ?Q}.

NDPs could then restrict the detection of ?P and ?Q to the existence of verb forms
for their head nouns (e.g., ‘accept’ for ‘acceptance’ and ‘reject’ for ‘Rejection’).

Next, the relationship between the source and target OP is defined by what we
call ‘pattern transformation’.

Definition 3 (Pattern Transformation). Let OP1 and OP2 be ontology patterns.
A pattern transformation from OP1 (source pattern) to OP2 (target pattern) is a tu-
ple 〈LI, NTP∗〉, in which LI is a non-empty set of transformation links, and NTP∗

is a (possibly empty) set of naming transformation patterns. Every transformation

4 Corresponding to axioms with the rdf:type property.

PatOMat – Transformation Framework 309

link l ∈ LI is a triple 〈e, e’, R〉 where e ∈ OP1, e’ ∈ OP2, and R is either a logical
equivalence relationship between homogeneous entities or an extralogical relationship
between heterogeneous entities.

As logical equivalence relationships (≡) we consider standard OWL constructs
declaring the equivalence/identity of two ‘logical entities’ of same type: classes,
properties or individuals. An extralogical relationship (∼=) can be

1. a relationship of type eqAnn, valid between a ‘logical’ entity and an annotation
entity,5 or,

2. a ‘heterogeneous’ relationships eqHet, valid between two ‘logical entities’ of dif-
ferent type.

Extralogical relationships correspond to modeling the same situation using different
entity types, as we saw in the motivating example. For instance, for the transfor-
mation between the first and fourth modeling options as in Figure 1:

?X ≡ ?V.

?P ∼= ?q

?Q ∼= ?r.

Naming transformation patterns (NTP) provide a way of giving names to newly
created entities in OP2 with regard to entities in OP1.

Definition 4. A naming transformation pattern is a set of pairs consisting of an
entity and a naming operation, NTP = {(e1, no1), (e2, no2), . . . , (en, non)}. All noi
have as their operands entities from the source OP of the PT to which NTP belongs,
and constants. All ei are from the target OP of the PT to which NTP belongs.

In our running example we should provide the NTP for ?R (the new PCChair
entity, only present implicitly in the source ontology), ?q and ?r.

The construction of a proper transformation pattern is now straightforward:

Definition 5 (Transformation Pattern). Transformation Pattern is a triple 〈OP1,
PT, OP2〉 such that OP1, OP2 are ontology patterns and PT is a pattern transformation
from OP1 to OP2.

3 TRANSFORMATION FRAMEWORK IMPLEMENTATION

In this section we describe the PatOMat framework designed over the previously
described formal model.

5 OWL 2 annotations may contain various interlinked entities in a separate ‘space’;
these are, however, excluded from the logical interpretation of the ontology.

310 O. Zamazal, V. Svátek

3.1 Naming Patterns within Transformation Patterns

Naming operations can be divided into passive ones, applied for checking purposes,
and active ones, for naming a new entity.6 While both can be plugged into NTPs,7

only passive operations can be used in NDPs. Basically, an NDP concerns the
detection of an ontology pattern, while an NTP concerns (re)naming an entity from
this ontology pattern.

As an example of an NDP with two operations we can take the following:8

{comparison(head noun(?OP1 P), head noun(?OP1 A), not hypernym)}

This NDP checks whether there is (no) hypernym relationship between two terms.
In this case, those two terms are head nouns of entities (?OP1 P and ?OP1 A).
For instance, considering ‘ScientificWork’ as ?A and ‘Paper’ as ?P then the pattern
succeeds because ‘Paper’ is not a hypernym of ‘Work’ (applying WordNet [13]).

The following is an example of NTP with one compound operation:

{(?G, make passive verb(?C) + head noun(?A))}

It names ?G by composing the passive tense of a verb derived from the head noun of
?C with the head noun of ?A. For instance, if ?A is ‘PresentedPaper’ (with ‘Paper’
as head noun) and ?C is ‘Rejection’ (with ‘Rejected’ as derived verb passive), the
name of ?G in the transformed ontology will be ‘RejectedPaper’.

Naming patterns can be generally defined on any lexical aspect of an ontology:
URI of entities, their fragments, labels, comments etc. By default, we consider
naming patterns applied over fragments of URIs, otherwise it is stated in an attribute
of the ndp or ntp element of the XML serialisation, e.g., target=”label”.

A small collection of implemented naming operations was gathered based on
the requirements of use cases. They include (we list together both a passive and
an active variant where relevant):

• delimiter detection and change (e.g., underscore or camel-case)

• detection and derivation of the verb form of a noun (using WordNet and the
Stanford part-of-speech tagger [30])

• detection of hypernym relationship based on WordNet

• detection of head noun or its complement, for a noun phrase, and of a head term
for a verb phrase, typically in a property name (only passive operation)

• construction of the passive form of a verb.

6 A passive naming operation often has its active variant.
7 Transformation patterns are serialised according to an XML schema: http://nb.

vse.cz/~svabo/patomat/tp/tp-schema.xsd.
8 This example is borrowed from the naming use case described in Section 4.1, and its

transformation pattern is available at: http://nb.vse.cz/~svabo/patomat/tp/np/tp_

np1c.xml.

PatOMat – Transformation Framework 311

3.2 Annotations within Transformation Patterns

Ontology annotations provide the additional information about the concepts cap-
tured in the ontology and about an ontology in general. In order to transform one
modeling style into another it often happens that some parts of the transformed
fragment must be removed because there is no means for its representation in the
logical space of the ontology. However, it is possible to swap the removed parts of the
ontology into an annotation space, possibly even allowing for reverse transformation
in the future.

Let us assume we want to remove a union construct from an ontology, i.e., the
following axiom is in the source ontology pattern:

?OP1 AequivalentTo(unionOf (. . .?OP1 B))

We can swap this disjunction to the annotation space by 1) reification of the
to-be-removed axiom using an anonymous individual, ?OP2 ai1, and 2) annotating
it using the annotation relations annotation:relation and annotation:axiom.

Considering that ?OP1 A = ?OP2 A, this can be represented as follows:9

?OP2_A annotation:removed_axiom ?OP2_ai1

?OP2_ai1 annotation:relation ?OP2_n

?OP2_ai1 annotation:axiom ?OP2_m

On demand, the framework can also log all removed and added axioms auto-
matically using ontology annotations. In the previous case it would result in:

<annotation:removed_axiom>

A equivalentTo B or C or D

</annotation:removed_axiom>

While the first option of using annotations is under control of the transformation
pattern designer, the second option is effectuated automatically by the transforma-
tion framework (if it is switched on). Either option is sufficient for informing the
human user what happened during the transformation.

3.3 Entity and Axiom Transformation Operations

A transformation pattern, 〈〈E1, Ax1, NDP∗1〉, 〈LI,NTP∗〉, 〈E2, Ax2∅〉〉, captures rela-
tionships between entities and axioms on a higher level of generalisation. In practice,
the transformation pattern is converted to transformation instructions applicable to
a particular ontology. Basically, the instructions consist of entity and axiom trans-
formation operations.

Axiom transformation operations, operating at the level of axioms, can be di-
vided into two classes:

9 This example is taken from an existing transformation pattern available at http:

//nb.vse.cz/~svabo/patomat/tp/lr/tp_unionELbannotations.xml.

312 O. Zamazal, V. Svátek

• axiom removal, where axiom a is removed from the ontology and

• axiom addition, where axiom a is added to the ontology.

Furthermore, we distinguish between two kinds of axioms: logic-based and
annotation-based.

Entity transformation operations, operating at the level of entities, can be di-
vided into three classes:

• entity addition, where the new entity e is named according to an NTP,

• entity removal,

• entity renaming, where, again, entity e is renamed according to an NTP.

We can notice that there are two kinds of removal operations: one for an axiom
and one for an entity. The removal is derived from a user-designed transformation
pattern; however, since a removal can have far-reaching effects, there are three
different strategies for coping with them. They differ in the possibility of removing
entities and/or axioms:

• Conservative strategy does not allow to remove anything. Obviously this is the
safest strategy, avoiding undesirable changes in an ontology.

• Progressive strategy (used by default) does not allow to remove entities; however,
it is possible to remove axioms.

• Radical strategy allows to remove both entities and axioms.

We can illustrate the sensitive aspect of the removal operations using an exam-
ple.10 Let us assume that application of the transformation pattern leads to the
operation of removing class Author, but class Author is also used in other fragments
of the ontology; for instance, the domain of property writes is class Author. If the
removal operation is applied to the class Author and the radical strategy is selected,
the domain axiom of the property writes will be removed. However, if we choose the
conservative or progressive strategy then this domain axiom with the Author class
will be retained because the Author class is not removed.

We call such axioms additional axioms. They are external to the source pattern
but they refer to entities from the pattern. They could not be directly considered
at the time of transformation pattern design, and it is usually unfeasible to cap-
ture all possible situations in the transformation pattern. Therefore, the radical
transformation strategy has additional modalities:

radical-keep modality of radical strategy: entities are kept and additional axioms
are annotated using annotation:remove warning by to link the affected axiom
and the transformation pattern, and annotation:remove warning for to link the

10 This example is based on application of the transformation pattern http://nb.vse.

cz/~svabo/patomat/tp/tp_agentRoleV4a2.xml on the confOf ontology, http://oaei.
ontologymatching.org/2014/conference/data/confOf.owl.

PatOMat – Transformation Framework 313

affected axiom and the entity which would have been removed, e.g., class Author
in our example above.

radical-replace modality of radical strategy: entities are replaced either equiv-
alently, e.g., Author would be replaced by the equivalent concept expression:
Person and (writes some Paper), or approximately, e.g., if the class Author is
removed as the domain of the writes property, it will be replaced by the su-
perclass of Author, which is the class Person. In a more general way, the user
could provide a set of transformation patterns which could be applied if there
are some affected axioms in the ontology. Let us note that in some cases this
modality is not applicable.

radical-remove modality of radical strategy: the entities are simply removed.

Some expected additional axioms can be directly included into a transformation
pattern. It is possible to mark some axioms as optional, which decomposes the
transformation patterns into a mandatory part (containing the source and target
ontology patterns proper and their pattern transformation) and an optional part
(containing the additional axioms and their pattern transformation). Mandatory
axioms from the source ontology are used for generation of SPARQL queries, see
Section 3.5.

Additionally, when we remove information from the logical content of the ontol-
ogy, it is still possible to swap it into the annotations as explained in Section 3.2.
While we already consider annotations as part of a transformation/ontology pattern,
implementation of a concrete reverse transformation support is left to be addressed
in a future work.

3.4 Derivation of Transformation Operations
from Transformation Patterns

In the following we specify several rules how entity transformation operations are
derivable from a transformation pattern:

1. If there is an equivalence relationship between ?A ∈ E1 and ?B ∈ E2 (where ?A
and ?B depict placeholders, E1 and E2 depict entities from OP1 and OP2 resp.)
then the instance of ?B will be named according to NTP for ?B.

In other words, if it is stated, in pattern transformation part, that placeholders
?A and ?B are equivalent then the entity mapped to ?A is preserved but renamed
according to NTP for ?B.

2. If there is an extralogical link eqAnn or eqHet between ?A ∈ E1 and ?B ∈ E2,
then the instance of ?B will be named according to NTP for ?B, typed according
to the kind of placeholder of ?B, and in the case of radical strategy ?A will be
removed.

In other words, if it is stated, in pattern transformation part, that placeholders
of different kinds ?A and ?B are equivalent then the entity mapped to ?A is

314 O. Zamazal, V. Svátek

copied to ?B and named according to NTP for ?B. Moreover, because ?A and
?B are of different kinds (e.g. class and object property), the entity in ?B must
be typed according to type of ?B. Finally, on demand by a user (i.e. in the case
of radical strategy selection) entity in ?A is removed.

3. All entities from E2 that are not linked to an entity from E1 will be added.

In other words, entities stemming from OP2 that do not serve as a replacement
of original entities are added.

4. In the case of radical strategy, entities from E1 that are not linked to any entity
from E2 will be removed.

In other words, original entities, related to OP1, that should not be replaced,
according to pattern transformation part, are removed on demand by a user (in
the case of radical strategy selection) otherwise they are preserved.

As a result of Rule 2 application for conservative or progressive strategy there
are original and new entities in one ontology. Thus, it can be useful to mark their
relationship by an annotation property instance. We cannot use an annotation
property in the case of radical strategy since the original entity is removed. But, in
any strategy we can trace roots of new entity from (heterogeneous) transformation
link between the original entity and the new one at the level of a transformation
pattern.

For instance, in the transformation pattern for reducing a (reified) n-ary relation
to binary11 there is an extralogical link between class ?B and property ?q. According
to Rule 2 it would lead to up to two operations:

• operation of adding object property ?q named according to NTP for ?B, e.g.,
make passive verb(?B),

• (If radical:) operation of removing instance of ?B.

For instance, in the case of ?B = ReviewSubmission, it makes a new object
property ‘submitted’ by verb derivation from the head noun of ?B. Assuming the
conservative strategy (hence not removing ?B), an annotation property instance
would relate the old and the new entities.

The renaming operation works on the naming aspect (entity URI, rdfs:label,
etc.) of an entity referred to by a placeholder. By default, we process the URI
fragment of an entity. Changing the URI fragment is however problematic, since
it is, in principle, equivalent to creating a new entity. We can solve this problem
by adhering to ontology-versioning principles: to retain the original entity (with its
original URI) in the ontology, to annotate it as deprecated, and to add an equivalence
axiom between these two entities (i.e., between the original and new URI).

For deriving axiom transformation operations from a transformation pattern,
there are only two simple rules:

11 http://nb.vse.cz/~svabo/patomat/tp/tp_l-n-ary-relation.xml

PatOMat – Transformation Framework 315

1. remove all axioms within OP1 in the case of progressive or radical strategy,

2. add all axioms within OP2.

While the removal of axioms is pretty straightforward, as it works on the original
entities, the addition of axioms must be done in connection with entity operations,
since it only works on just-added or renamed entities.

For instance, in ontology pattern 1 of a transformation pattern dealing with a re-
striction class12 there is a template axiom ‘?A equivalentTo (?p value ?a)’. It can
match, e.g., the axiom ‘PresentedPaper equivalentTo (hasStatus value Acceptance)’,
which can be swapped with annotations in ontology pattern 2 as follows: ‘Accepted-
Paper annotation:discr property ‘hasStatus”, ‘AcceptedPaper annotation:value ‘Ac-
ceptance”. As a result of that rule, there will be an instruction to remove (in the case
of progressive or radical strategy) the original axiom and to add two new axioms.
The binding of placeholders and entity operations must be considered beforehand.

3.5 Ontology Transformation Workflow

The whole transformation is divided into three steps, which correspond to three
services as depicted in Figure 2. Rectangle-shaped boxes represent the three basic
services, while ellipse-shaped boxes represent input/output data. This functionality
is available as:

• RESTful services providing detection, instruction generation and transforma-
tion services through simple HTTP-based access. In the case of detection or
instruction generation they return results in XML. They can easily be used in
any language, see [31]. They are also accessible via the web interface [32] and as

• Java library providing the complete API for all transformation steps. This
library can be plugged into an application.

The OntologyPatternDetection service outputs the binding of entity placehold-
ers in XML. It takes the transformation pattern (containing the source and target
patterns) and a particular original ontology on input. The service automatically
generates a SPARQL query13 internally, based on the mandatory part of the on-
tology pattern (the placeholders becoming SPARQL variables) and executes it. The
structural/logical aspect is captured in the query structure, and the possible nam-
ing constraint is specifically dealt with based on its description within the source
pattern. The implementation uses the Jena framework.14 In more detail, there are
two ways to start detection. Using API of transformation framework in Java library
one can either first directly execute the generated SPARQL and then the naming
aspect is considered, or the other way around. The best option depends on the given
case. If there is a very specific structure that should be detected then the SPARQL

12 http://nb.vse.cz/~svabo/patomat/tp/tp_ce-hasValue.xml
13 http://www.w3.org/TR/rdf-sparql-query/
14 http://jena.apache.org/

316 O. Zamazal, V. Svátek

O1

OntologyPatternDetection

OntologyTransformation

O1'

Ontology Pattern

Transformation Pattern

InstructionGenerator

Pattern Instance

Transformation Instructions

Figure 2. Ontology transformation workflow; application workflow is depicted using a line
with a normal head and dataflow is depicted using a line with a V-shaped head

query can run first. However, if the source pattern structure is too generic, such as
the plain subClassOf relationship, then the combinatorial complexity of the query
is very high. On the other hand, if there is a naming detection pattern present
in a transformation pattern, the naming aspect can be applied first and then the
SPARQL query can already be limited by the naming detection results. For exam-
ple, thanks to application of the naming detection pattern, exhaustive search for
the Time-Indexed Participation pattern (in the importing use case, see Section 4.5)
in an ontology (with recursion enabled), which originally took 16 minutes, was re-
duced to 40 seconds (which includes naming detection pattern processing, SPARQL
query construction, its execution and final SPARQL query processing). In general,
detection phase usually takes up to tens of seconds (e.g. all examples in use cases
from Sections 4.2, 4.3, 4.4, 4.5). However, detection phase can take much more time
(hundreds of seconds) if there is either too generic source pattern structure or too
complex naming detection pattern (e.g. in use case from Section 4.1).

The InstructionGenerator service outputs particular transformation instruc-
tions, also in XML. It takes the particular binding of placeholders and the trans-
formation pattern on input. Transformation instructions are generated according
to the transformation pattern and the pattern instance. In general, transformation
instructions phase takes up to hundreds of milliseconds.

PatOMat – Transformation Framework 317

The OntologyTransformation service outputs the transformed ontology. It takes
the particular transformation instructions and the particular original ontology on
input. Generally, ontology transformation phase takes tens of milliseconds.

The intermediate products, pattern instance and transformation instructions,
are assumed to be inspected and possibly edited by the user. In particular, the user
can choose which pattern instances (from automatic detection) should be used.

However, there is also an aggregative one-step Ontology Transformation service
that takes the original ontology, transformation pattern and pattern instance on
input and returns the transformed ontology at once.

For the moment, we do not specifically take into account the status of the
transformed ontology within the semantic web. In some contexts it can be used
locally, as in an ontology matching scenario, while in some others it can be exposed
with a unique identifier, as a new ontology version pointing to its pre-cursor using
the OWL 2 versioning mechanism.

4 OVERVIEW OF USE CASES

We already mentioned a few use cases in Section 1. In this section we will describe
all five use cases that have been tackled by the framework so far: naming-based
ontology repair, ontology simplification (‘SKOSification’), ontology profiling, ontol-
ogy matching, and content pattern import. We first describe three use cases that
share the general shape of basic pattern-based transformation schema as depicted
in Figure 1. Then, we describe two use cases that have some additional steps before
and after the transformation step.

It should be noted that some of the use cases have been presented, to a certain
degree, in isolated publications. Namely, a very early version of the ‘matching’
use case was described in [27]; an extended version of the ‘profiling’ use case was
described in [25], and an extended version of the ‘import’ use case was described
in [23]. However, the remaining use cases as well as the synoptic and systematic
presentation, are the completely new contribution of the current paper.

4.1 Ontology Naming Repair Use Case

Ontology Naming. The first use case deals with the naming aspect of ontologies.
In general, an ontology has three aspects by which a user can capture the required
semantics of concepts. The first one is the logical aspect, which is often considered as
the only representational means for capturing the meaning of concepts. The logical
perspective is of the highest importance if we want to apply automatic reasoning and
deduction methods. At the same time, from the logical perspective, the naming of
concepts is not an important issue since the results of deduction would be the same
regardless of the concept names. On the other hand, it has been recognised [28] that
the logical aspect is not the only one since machines are not the only consumers of
ontologies. There are also their designers and users for whom clear names (naming

318 O. Zamazal, V. Svátek

aspect) of entities can mitigate the effort to comprehend the meaning of a concept
in an ontology. It is even possible to apply machine analysis to naming in order
to improve the presentation of ontologies, e.g., by avoiding redundant axioms [29].
This comprehensibility issue is also related to the third, annotation, aspect, since it
is also highly recommended to provide annotations to concepts in order to properly
convey the desired semantics of defined concepts.

Motivation for Ontology Naming Repair. An ontology designer can either
consider correct naming from the very beginning or (s)he can initiate naming repair
inspection when the ontology is otherwise finished. This naming inspection can be
made manually using ontology editors or (semi-)automatically. In the latter case we
call this ontology naming repair, which aims at helping us improve bad or awkward
naming of concepts in an ontology. There are several naming conventions [21] and
also warnings about bad naming practices [26]. In the following Section 4.1, one
type of naming issue taken from [26] is exemplified.

Example. In this example we detect and repair the naming pattern called “non-
matching child” from an ontology O1. The pattern is connected with the hypothesis
that the nature of an underlying entity should not change while subclassing, so
a change of the head noun would indicate ‘some problem’. The derivation associated
with the detection of this pattern is thus an ‘alerting one. Possible faults can be
of two types: fault in set-theoretical semantics : e.g., a part-of relationship mistaken
for subclass relationship (e.g., ‘Car/Wheel) and improper style of concept naming,
e.g., omission of the head noun in the child name (e.g. ‘Paper/Accepted’); unlike
the previous one, this situation often occurs even in ontologies created by relatively
skilled designers.

The corresponding transformation pattern – in particular, its detection part –
can be designed in different modalities. We can use simple head noun identity,
which provides low precision. Or, we can include thesaurus correspondence, which
improves the precision of detection. Namely, we can avoid alerting in situations
when the head noun of the child name is a hyponym or synonym of the head noun
of the parent name, e.g., ‘Author’ is a hyponym of ‘Person’.

As far as the structure of the source ontology pattern15 is concerned, it only
contains the subsumption relationship, ?OP1 A subClassOf ?OP1 P . The naming
aspect consists in evaluation of the hypernym relationship between head nouns of
the two classes in this relationship:

NDP = {comparison(not_hypernym,head_noun(?OP1_A), head_noun(?OP1_P))}

If a pair of classes is detected (e.g., Paper and Accepted), then ?OP2 A (e.g.,
Accepted) is renamed using a naming transformation pattern:

15 Transformation patterns for this example are available at http://nb.vse.cz/

~svabo/patomat/tp/np/.

PatOMat – Transformation Framework 319

NTP = {(?OP2_A, ?OP1_A + head_noun(?OP1_P))}

The ontology naming repair functionality has been integrated into the ORE
(Ontology Repair and Enrichment) tool [9] developed at the University of Leipzig.

Discussion of Characteristics. The structure of transformation patterns can be
quite complex. It is obvious that the naming aspect is of high importance in this
use case. We assume that the detection is semi-automatic, since the user should
decide which repair plan should eventually be performed. The annotation aspect
is not so important, since this kind of transformation is rather one-way (without
reverse transformation). As naming repair use case is mainly focused on the naming
aspect, a change of logical semantics is usually not expected.

The characteristics of all use cases are summarised in Table 2.

4.2 Ontology Simplification Use Case

Simple Knowledge Organization System (SKOS). SKOS [12] is an RDFS
vocabulary for expressing the structure of simple knowledge models – classifications
and thesauri. Such models do not exhibit the axiomatic structure of OWL, yet
they can model a hierarchical conceptual structure analogous to that of an OWL
class taxonomy. Thanks to their simplicity, as well as the possibility to include
additional features (such as the notion of ‘near match’ between concepts) which are
incompatible with the classical set-theoretic view of OWL, they are often preferred
by practitioners.

Motivation for Ontology Simplification. The simplification of ontologies and
conversion of OWL to SKOS have recently been recognised as an important task,
since most applications are tuned to such lightweight models. This need has already
been reflected by several tools providing such a conversion, see Section 6.

Example. Let us consider an example of transformation16 from the taxonomic
structure of an ontology O1 to a SKOS taxonomy. While we only need one axiom
on the side of the source pattern, i.e., ?OP1 A subClassOf ?OP1 B, the target
pattern is more complex. First, instead of OWL classes in an OWL taxonomy, there
are instances of skos : Concept in the SKOS taxonomy:

?OP2_a types skos:Concept.

?OP2_b types skos:Concept

In order to express a SKOS taxonomy, the skos : broader (or skos : narrower)
property is used:

16 The complete transformation pattern tp skos3.xml is available at http://nb.vse.

cz/~svabo/patomat/tp/skos/.

320 O. Zamazal, V. Svátek

?OP2_a skos:broader ?OP2_b.

Furthermore, we can represent this SKOS taxonomy as part of one scheme using
the skos : inScheme property, which has instances of skos : ConceptScheme in its
range:

?OP2_scheme types skos:ConceptScheme.

?OP2_a skos:inScheme ?OP2_scheme.

Finally, we can add an rdfs : label annotation to instance ?OP2 scheme in order
to make the scheme name more comprehensible:

?OP2_scheme rdfs:label ?label.

where ?label and ?OP2 scheme are newly named according to the transformation
pattern part:

<ntp entity="?OP2_scheme">schema1</ntp>

<ntp entity="?label">skos-scheme</ntp>

Due to the fact that concepts in SKOS are modelled as instances of skos :
Concept while they are at the same time classes in OWL, we need a heterogeneous
link between the original class in OWL representation and the instance in SKOS
representation. We do not use a naming detection pattern in this case; however, we
can imagine that the transformation of an OWL taxonomy might be restricted to
a certain part of the OWL taxonomy based on the naming aspect.

Discussion of Characteristics. Transformation patterns related to the SKOS
use case are generally not very complex. As already discussed, the naming aspect
could be useful if we wanted to restrict the transformation based on the naming
aspect. However, this does not play an important role here as in the use case of the
ontology naming repair. Using annotations is useful, since there are many cases in
which we lose information. The detection should be rather automatic, however some
user interaction could be considered. Finally, the OWL to SKOS transformation
generally includes a change of logical semantics, as classes are meta-modelled at
instance level.

We remind the reader once more that the characteristics of all five use cases are
summarised in Table 2.

4.3 Ontology Profiling Use Case

Ontology Profiling. Existing tools operating on ontologies normally support
a certain well-defined set of logical operators. In many cases this set of opera-
tors is not sufficient to completely capture the semantics of the OWL language. As
a result, these tools cannot be used on certain ontologies or they provide incomplete
reasoning results. In both cases, a transformation of the input ontology can improve
the situation. In particular, the ontology can be transformed into a version that only
uses the supported operators.

PatOMat – Transformation Framework 321

Motivation for Ontology Profiling. Language profiling outside the tools gives
a user more flexibility because (s)he can design a transformation that is not di-
rectly hard-coded into the tool. Generally, language profiling can be driven either
by a need for replacing a specific language construct or by an ontology complexity
requirement of a particular tool. The former case contains a single transformation,
while the latter case, downgrading, is comprised of more than one transformation
pattern in order to achieve the required complexity level. In the next section we
will illustrate ontology profiling on a specific construct replacement example, while
ontology downgrading is discussed in Section 4.3.

Example. In order to demonstrate the use case of ontology profiling, let us con-
sider that a particular tool (mostly the reasoner) has problems to tackle nominals.
The simplest way could be the removal of nominals. However, this would cause
a large change in conceptualisation. In the following example we will show how
nominals can be replaced rather than removed. Let us assume that we have nomi-
nals describing continents and the Continent class defined as ‘one of’ those nominals
(implicitly assuming their mutual difference):

Continent equivalentTo {Africa, America, Antarctica,

Asia, Australia, Europe}.

Let us further assume that we have the AfricanRedSlip class,17 defined via the
hasContinentOfOrigin property:

AfricanRedSlip subClassOf Ware.

AfricanRedSlip subClassOf (hasContinentOfOrigin value Africa).

Nominals could be simply removed; however, we would then lose, e.g., part of
the description of AfricanRedSlip. Instead, we can replace a set of nominals using
a union of classes where xxx nc depicts the class that was originally the nominal
class:

OneOfContinent equivalentTo (Africa_nc or America_nc or

Antarctica_nc or Asia_nc or Australia_nc or Europe_nc).

Africa a Africa_nc. America a America_nc.

Antarctica a Antarctica_nc. Asia a Asia_nc.

Australia a Australia_nc. Europe a Europe_nc.

This transformation is approximate (with regard to original representation) be-
cause it is no longer assured that, e.g., Africa nc could not have other individ-
uals than Africa. Due to this change, we should also modify the description of
AfricanRedSlip:

17 African red slip is a kind of ancient pottery, see http://open.vocab.org/docs/

AfricanRedSlip.

322 O. Zamazal, V. Svátek

AfricanRedSlip subClassOf Ware.

AfricanRedSlip subClassOf (hasContinentOfOrigin some Africa_nc).

This can be done automatically using our framework with a specific TP.18 It
is worth noting that, historically, nominals used to be represented in this (‘trans-
formed’) way.

Additional off-the-shelf transformation patterns for replacing different OWL con-
structs are available online at http://nb.vse.cz/~svabo/patomat/tp/lr/.

Regarding the ontology complexity requirement case, in the past [25] we focused
on ontology downgrading to OWL2EL profile [15].

Discussion of Characteristics. Transformation patterns related to the ontology
profiling use case are generally simple since they usually capture a single construct.
A naming aspect is not employed at all – it is merely about language constructs. On
the other hand, an annotation aspect can be an important issue since this transfor-
mation could be reversible. Although a transformation tries to be logically equiva-
lent, it naturally features a change of logical semantics.

The transformation of language profiling constructs can generally be done in
one of three ways: they can be replaced with an equivalent different representation,
or they can be replaced with an approximate different representation, or they can
be removed. The first option is obviously the best one. However, it is only rarely
possible to find an equivalent representation using other constructs when we need
to eliminate a problematic construct during complexity downgrading. The second
option is more realistic. However, there is often no (even approximate) alternative
means of representation and the problematic construct has to simply be removed.

In comparison with other transformation use cases, the language profiling sce-
nario leads to a fully automatic pipeline (including the detection step). First,
a source ontology is pre-processed in order to syntactically decompose the con-
structs that can hinder querying in a unified way. In our case we decompose (→)
the following constructs:

• intersection: A subClassOf (B and C) → A subClassOf B. A subClassOf C.

• disjointness : DisjointClasses(B, C, D) → B disjointWith C. C disjointWith D.
B disjointWith D.

• and disjoint union: DisjointUnion(B, C, D)19 → B equivalentTo C or D. C
disjointWith D.

In the specific situation of the language profiling use case – complexity down-
grading, the source ontology is inspected (by using the OWL-API library) in order to
specify (based on a given list of forbidden constructs) which transformation patterns

18 The pattern tp nominals-6a.xml is available at http://nb.vse.cz/~svabo/

patomat/tp/lr/.
19 B is the disjoint union of C and D.

PatOMat – Transformation Framework 323

should be applied. Consequently, selected transformation patterns are dynamically
composed into a sequence.

For each transformation pattern a detection is performed by the OntologyPat-
ternDetection service. There are typically more than one pattern instances as a re-
sult of the detection step. Furthermore, it is usually precise, because in the case
of the language profiling scenario, detection is merely based on structural/logical
aspects and naming detection patterns are not generally needed. The following step
amounts to generation of transformation instructions by the Instruction Generator
service. Finally, the application of instructions is carried out by the OntologyTrans-
formation service according to the selected transformation strategy. By default, it
uses the “progressive” transformation strategy, which enables the removal of axioms
but not the removal of entities.

Additionally, there is a post-processing step where the remaining forbidden con-
structs are removed using the OWL-API library. This step ensures completeness of
the downgrading process.

4.4 Ontology Matching Use Case

Ontology Matching. Ontology matching is an important part of semantic web
vision. Ontologies help to unambiguously describe concepts. However, because of
a distributive character of the web there is more than one ontology from a certain
domain of discourse. Concepts are consequently described differently in various on-
tologies. The heterogeneity problem thus was moved one layer above and it is still
an open challenge to, automatically or at least semi-automatically, discover proper
relationships between concepts from various ontologies. Ontology matching pro-
vides graph-, lexical- and semantic- based techniques and methods to achieve such
a challenge [3]. Matching is a process of discovering semantic relationships, a corre-
spondence, between concepts of different ontologies. A set of semantic relationships
between concepts is an alignment. Furthermore, we can distinguish a simple corre-
spondence and a complex one where the simple correspondence contains exactly one
element on each side of a correspondence. On the contrary, a complex correspon-
dence includes more than one element on at least one side of a correspondence.

For instance, given two ontologies O1 and O2, a correspondence is the statement
that property hasName in O1 is equal to property name in O2. This is an example
of a simple correspondence in which an equivalence is the employed relationship.
An example of a complex correspondence could extend the previous one in the sense
that hasName in O1 is equal to composition of hasF irstname and hasSurname
in O2.

Motivation for Ontology Matching. Ontology matching systems inspect all
aspects of ontologies in order to deliver proper matching results. It means that
if a matching system does not adequately work with a certain modeling style, the
matching process will fail. Therefore, by transforming an ontology to a form that is

324 O. Zamazal, V. Svátek

more easily matched to another one, the matching results will be improved. Further-
more, a transformation can contribute to a discovery of a complex correspondence.

For this purpose, a transformation can focus on two aspects of ontologies: logical
(structural) aspect and naming aspect. They can be combined or used separately.
An obvious application of only the naming transformation is a transformation of
all names in O1 (e.g., local fragments of URI or labels of concepts) according to
the naming convention employed in O2, e.g., a kind of delimiter. A separate logical
transformation can be also considered; however, more often both logical and naming
aspects will be considered together, as exemplified in Section 4.4, to obtain a complex
correspondence.

Example. Let us consider matching of two ontologies O1 and O2,
20 which both

deal with a conference organisation domain and model the concept that the “paper
was accepted”. While the structure of O1 is rather simple and we can only find Paper
concept but not directly an accepted paper concept, O2 has a very detailed structure
where there is also the concept Accepted Paper (this corresponds to the above-
mentioned analysis of the second ontology). However, after more careful inspection
of O1, we can find that Paper is in the domain of the property hasDomain, which can
have Acceptance or Rejection in its range. Thus, this axiomatisation also concerns
an accepted paper, however this cannot be found by traditional matchers since it
needs a complex correspondence to come into play. The transformation pattern
which can enable discovering the “paper was accepted” concept adds an explicit
class AcceptedPaper defined as Paper for which the decision is acceptance:

AcceptedPaper equivalentTo (hasDecision some Acceptance)

Designing this transformation pattern, one has to specify a logical (structure)
aspect and naming aspect. The logical aspect consists of three axioms:

?p domain ?A.

?p range ?B.

?C subClassOf ?B.

However, this structure constraint is not enough. Furthermore, there is a naming
constraint:

NDP = {comparison(?B, head_term(?p), equal), exists(verb_form(?C))}

This connects the entity names of ?B and ?p. Particularly, it checks whether
the head term of the property named ?p is the same as the name of the entity B.
Additionally, the name of ?C should be one we can verbalise, e.g., a noun “Rejection”
can be verbalised as “to reject”.

20 This is a real example where O1 is cmt and O2 is ekaw ontology. Technical details
about each step of transformation are available at http://owl.vse.cz:8080/tutorial/
node36.html.

PatOMat – Transformation Framework 325

If those constraints are fulfilled, a new axiom is added:

?G equivalentTo (?q some ?F)

where ?q =?p, ?F =?C and ?G form a new entity whose name has to be generated.
This is specified by the naming transformation pattern:

NTP = {(?G, make_passive_verb(?C) + head_noun(?A))}

Due to detection, ?C and ?A are already assigned. E.g., ?C is Acceptance and
?A is Paper. Applying the naming instructions above, we get name AcceptedPaper.

After such a transformation, a simple matching system will find a simple cor-
respondence O1#AcceptedPaper = O2#Accepted Paper. By using the definition of
AcceptedPaper in O1 we can get a complex correspondence (O1#hasDecision some
O1#Acceptance) = O2#Accepted Paper corresponding to the ‘Class by Attribute
Type’ alignment pattern from [18, 20]. This discovery of accepted paper correspon-
dence increases precision of the data translation task, since we can now translate
instances of accepted papers among O1 and O2 ontologies. It was not possible be-
fore because we did not have an equivalent counterpart of O2#Accepted Paper in
the O1 ontology.

Furthermore, without that discovery it could find some incorrect correspon-
dences such as O1#Acceptance = O2#Accepted Paper in a traditional 1-to-1 match-
ing setting. While the Levenshtein score would be too high (7), Jaro-Winkler would
give 84% of similarity which makes it a correspondence candidate, though incorrect.

Discussion of Characteristics. Transformation patterns related to the ontology
matching use case can be generally very complex since they can include complex
structures of axioms on each side of a pattern. Furthermore, the naming aspect
plays an important role, because proper (re)naming of (old) new entities can provide
a better clue for ontology matching systems. An annotation aspect provides a useful
means for possible both-sided matching. Regarding detection, it is rather semi-
automatic since we can consider intervention by the user. Logical semantics could
be changed but it will mostly be preserved.

Specific workflow in a situation of matching use case is schematically depicted in
Figure 3 a) (the “structural changes” shown are merely illustrative and do not claim
to correspond to meaningful transformations). The transformation step here pre-
cedes the actual matching step in the overall workflow. A (possibly just a fragment
of a) given ontology, which is to be matched to a second ontology, is first matched
to the source OP of a TP; the choice of the fragment as well as of the TP is, how-
ever, guided by an analysis of the second ontology (such that the target OP of the
TP should use the same modeling style as the second ontology). The transformed
ontology is built in the style of the target OP of the TP. This makes the subse-
quent matching to the second ontology easier; e.g., simple and fast string matching
methods can be used instead of sophisticated and fragile matching methods.

326 O. Zamazal, V. Svátek

?X

?Y ?Z

?X

?Y

?Z'

Transformation pattern

Source ontology

To-be-matched ont.

A

B C

A1

B1

C1

Transformed ont.

A

B

C' Ont. matching

A

B

C'

A

B

C'

Pattern-based
transformation

Ontology
matching

a)

Source
ontology

A

B C

Content
pattern

D

E

Source ontology with CP

A

B C

D

E

Thing

Transformed
ontology

D

A E

B C

Transformation pattern

?X D

?Y E

D

?X E

?Y'

Thing

Trivial
import

Pattern-based
transformation

b)

Figure 3. Schematic depiction of transformation for a) ontology matching b) CP import

4.5 Ontology Design Pattern Import Use Case

Ontology Import. Ontology import is an important part of any ontology design
methodology. Generally, it is highly recommended to search for already existing
ontologies which could be reused; usually by specialisation of their concepts. This
practice enables direct mapping between different ontologies and to take advantage
of some wise ontology design decisions.

PatOMat – Transformation Framework 327

In this use case we do not consider import of the whole ontology or its arbi-
trary fragment. We consider here a particular small and widely reusable ontological
component – a content pattern (CP). Thus, it is rather a CP import.

Motivation for Ontology Design Pattern Import Use Case. Ontology con-
tent patterns [5] are nowadays considered as a central artifact promoting best prac-
tices and supporting shareability in ontology design. Although, ideally, CPs should
be taken into account from the very start of the design process, it is a common
situation that the authors of the ontology are, at the onset, either unaware of the
existence of CPs at all or too novice to choose the right one. The CPs then only
enter the design process at a later phase, when at least a prototype of the ontology
already exists, and their adoption has the nature of ontology reengineering.

Example. Let us consider ontology O1,
21 where the role authorship is modelled

as the Author class being a subclass of Person. The Author class has a pair of
existential and universal restrictions over the writes property, and also appears in
the domain of this property and in the range of its inverse, writtenBy. Furthermore,
there are two subclasses of Author: PaperAuthor and PosterAuthor respectively.
This is a “class-oriented” role pattern. There are various approaches for modeling
role-playing aspects, e.g., a sophisticated approach is presented in [22]. However,
we demonstrate the CP import use case by importing one of the ontology content
design patterns from OntologyDesignPatterns.org – the AgentRole pattern. It is
depicted in a UML-like notation in Figure 4. The AgentRole pattern, displayed
with its elements in a solid line, specialises the ObjectRole pattern (entities from
the ‘or’ namespace), which in turn specialises the Classification pattern (entities
from the ‘class’ namespace), both displayed with their elements in a dashed line.
Following from the most generic model, the Classification pattern merely allows us
to state the relationship between an entity and the concept to which this entity is
somehow classified; this corresponds to an informal ‘reification’ of the subClassOf
relationship. ObjectRole, in turn, already deals with role playing, understood as
a specific type of classification; entities playing roles can be any objects (i.e., no
more arbitrary things such as properties). Let us recall that there is a subprop-
erty relationship between isRoleOf and Classified, and hasRole and isClassifiedBy,
respectively. Finally, AgentRole introduces an even more specific class of such po-
tentially role-playing objects, called Agent, which is declared as disjoint with class
Role.

Notice that content pattern is already present in the ontology when the ontology
is submitted to transformation, and thus has to be a part of the source pattern.
However, it is still unconnected to the rest of the ontology (and the source pattern)
at this point. A further part of the source pattern is the subsumption relationship
between the classes of Author and Person. The content pattern is transferred to

21 This is a real example where O1 is the confOf ontology, http://oaei.

ontologymatching.org/2014/conference/data/confOf.owl.

328 O. Zamazal, V. Svátek

or:Role class:Concept

owl:Thingor:ObjectAgent

<<
dis
joi
nt
>>

or:hasRole

or:isRoleOf class:Classifies

class:ClassifiedBy

Figure 4. AgentRole pattern and its imports

the target pattern without any change. However, there are many alternative ways
(discussed in [23]) to smoothly include content pattern into ontology O1.

Note that, in the particular context of AgentRole pattern and the class-oriented
role modeling style of O1, the transformation of the notion of ‘Author’ from a (seem-
ingly) natural concept to a role amounts to transition from the ‘instance of’ rela-
tionship (being a language primitive in OWL DL) to the ‘hasRole’ relationship
(i.e., object property). In consequence, the fact of a person having the author role,
which was previously expressed as, e.g., “John rdf:type Author”, now has to con-
nect the individual John to some ‘Author’ entity through the ‘hasRole’ property.
Assuming we formalise the author role as a class in the target pattern, we arrive at
an instance of the “defining classes as property values” problem, treated as a logical
pattern in [17].

Let us consider one approach (out of five presented in [23]) which is about
“creation of special instances of the class to be used as property values”. This may
lead, assuming some naming transformations, to the situation depicted in Figure 5
(we only focus on the part of the ontology directly connected to the content pattern,
and also omit the namespace prefixes and do not distinguish imports, for better
readability). The Author class is removed, while there is a new class, with the same
name but different meaning, subordinated to Role; there is also a distinguished
instance of the latter class now, called AuthorRole (in a rounded rectangle) as part of
the ontology. Let us mention that in the “books-about-animals” example in [17], the
class corresponds to an animal species and the instance to the ‘topic’ of this animal.
In both cases, the nature of such instances – ‘roles’ and ‘topics’, respectively, entails
the semantics of the class; the name of the class (rather appropriate for a natural
concept) is then intuitively not very coherent with this semantics.

While instantiating the transformed ontology, an instance of Person can be
connected by the hasRole property with the AuthorRole individual.

Let us recall that there are two subclasses of the class Author. Due to recursive
application of transformation pattern along the taxonomy, they will be removed and
transformed into subclasses of AuthorRole (i.e., PaperAuthorRole, PosterAuthor-
Role). Furthermore, each such class will also have a corresponding individual (e.g.,
PosterAuthorRole) as a direct instance. An additional axiom issue dealing with this
example has already been discussed in 3.3.

PatOMat – Transformation Framework 329

Role

Object

Agent

hasRole

isRoleOf

AuthorPerson

AuthorRole

<<disjoint>>

Person

Author

Contribution

writtenBy

writes

Figure 5. Source and target of import-oriented transformation

Discussion of Characteristics. Transformation patterns related to the ontology
import use case can be generally quite complex because they have to reflect structure
of content patterns to some extent. On the other hand, the naming aspect will not
play so important role since the naming aspect is not part of the content patterns.
Annotations can be used but they play minor role in a transformation here. Detec-
tion of the source pattern will be mostly automatic. This transformation should not
often change logical semantics.

Specific workflow in an ontology import use case is schematically depicted in
Figure 3 b). It differs from the matching use case in the overall workflow, in the
sense that the import literally precedes the transformation. Namely, in the first
step, the CP is included in the ontology as a separate structure, merely subordinated
to owl:Thing. Then the transformation takes place; however, only TPs specifically
tailored to the given CP are considered. In the transformed ontology,22 shaped to
the style of the target OP of the TP, the CP is already integrated into the ontology,
as part of its root structure.

Even if a part of the input to the transformation, the content pattern, is fixed,
there is potentially a great variability in the ways different ontologies can be adapted
to the pattern [23].

5 ON LIMITATIONS OF THE APPROACH

In the past we encountered several tasks on which the transformation framework did
not work. The first category of impossible transformations is related to dealing with
anonymous classes. Let us say that we want to replace an existential restriction,
applied in the position of filler of universal restriction, by a named class, e.g.:

22 For illustration, Figure 3 b) also contains an entity B, which is not matched by the
TP and thus implicitly copied to the transformed ontology.

330 O. Zamazal, V. Svátek

Use Case Complexity Naming Annotation Automation Semantics

Ontology
Naming
Repair

*** ***** * ** *

Ontology
Simpli-
fication
(SKOS)

** * ** *** *

Ontology
Profiling

* - *** ***** ***

Ontology
Matching

***** *** ***** ** *

Ontology
Design
Pattern
Import

**** ** * *** *

Table 2. Use cases overview. Semantics means change of the logical semantics.

C v ∀r.(∃s.Z)⇒ C v ∀r.Anonymous Class .

This can be carried out by a transformation pattern where a new named class
Anonymous Class is defined. Let us further note that we want to replace any anony-
mous class expression in the position of filler of universal restriction by a named class,
i.e. this should cover the following examples:

C v ∀r.(∃s.Z) ⇒ C v ∀r.Anonymous Class ,

C v ∀r.(≤ x s.Z) ⇒ C v ∀r.Anonymous Class ,

C v ∀r.(X u Y) ⇒ C v ∀r.Anonymous Class ,

. . .

In order to capture this transformation we need multiple transformation pat-
terns, each specifically tailored to the given restriction. There is no means to refer
to any anonymous expression in some position and to reference it in other parts of
transformation pattern similarly as this can be done with entity placeholders. This
hampers the design of a transformation pattern that could fulfil this task all at once.

The second category of impossible transformations is related to an unknown
number of components in diverse constructs. Let us consider that we want to split
conjunctions statements in position of superclass into their atomic parts, i.e.:

C v ∀r.X1 u ∃r.X2 u . . .⇒ C v ∀r.X1;C v ∃r.X2; . . .

In order to cover this situation we would have to design multiple transformation
patterns that would differ in their number of components. Moreover, even in such

PatOMat – Transformation Framework 331

a case there would be again the issue described above, i.e. we would have to fix the
position of the constructs. All these cases have been encountered during implemen-
tation of ontology normalisation detailed in [19]. These limitations stem from the
expressiveness of the transformation pattern language.

6 RELATED WORK

The most prominent representative of the transformation across languages is the
approach described in [8], which leveraged the ontology translation problem to the
generic meta-model. This work has been done from the model management perspec-
tive, which implies a generality of this approach. From this perspective, meta-models
are languages for defining models. In general, model management tries to ‘support
the integration, evolution and matching of (data) models at the conceptual and logi-
cal design level’. There are important differences from our approach. Although they
consider transformations of ontologies (expressed in OWL DL), these transforma-
tions are directed into the generic meta-model or into any other meta-model such as
that of UML or XML Schema. In contrast, in our approach we stay within the OWL
language (being the meta-model of OWL ontologies) and we consider transformation
as a way of translating a certain representation into its modeling alternatives.

There are plenty of different approaches related to ontology transformation
within a language. OPPL (Ontology Pre-Processing Language), introduced in [4], is
a macro language, based on Manchester OWL syntax, for manipulating ontologies
written in OWL. Its initial purpose was to provide a declarative language to enrich
lean ontologies with automatically produced axioms. OPPL is based on OWL-API
which can be directly used for an ontology manipulation but OPPL makes this eas-
ier. Our transformation framework is based on OPPL and we also partly employ
OWL-API. Our approach enables the user to define ontology transformation from
a pattern-based perspective. Similarly to OPPL, but in the context of Prolog, POPL
(Prology Ontology Processing Language) is accessible via POSH (The Prology OWL
Shell) [16].

The core of our transformation language are transformation patterns. As for
the pattern discovery, traditional data mining techniques could help. In [10] au-
thors introduced data mining algorithm working on ontology-annotated data along
with the ontology (represented as an unified RDF bipartite graph) in order to mine
semantic associations relating diverse entities from ontology-annotated data source.
The approach was applied on biomedical domain where they demonstrated not only
discovering implicit semantic associations but also detecting flaws in ontologies. For
the transformation patterns, we could consider data, i.e. ABox, annotated with the
appropriate meta-ontology, e.g. PURO [24] which allows indicating true ontological
nature of data entities (e.g. particulars vs. universals etc). Mining modeling style
in the form of transformation patterns could be, to some extent, similar as min-
ing semantic associations. Discovering transformation patterns is close to ontology
matching considering relationships between ontology and source patterns one by

332 O. Zamazal, V. Svátek

one (and not in whole as modeling style). However while ontology matching deals
with aligning particular entities, patterns are on a higher level of abstraction, i.e.
placeholders within ontology patterns. Nowadays, there are plenty of diverse match-
ing techniques providing correspondences between ontology elements [3]. There are
also ontology matching approaches which directly base their matching process on
association rule mining, e.g. [2].

From the use case perspective, prior research on ontology profiling and down-
grading can be divided into generic approaches and those specifically tailored for
a certain (popular) reasoner. [14] aimed at elimination of transitivity axioms from
an ontology in order to reduce its expressivity. [1] presented an inference service
for approximate translation of a concept from one Description Logic to (typically)
less expressive Description Logic. In comparison with our approach, both of these
approaches focus on logical features, while we follow a more engineering-oriented
approach, taking into account the view of the human modeller.

This article is strongly related to the authors’ previous papers about this topic.
Original idea and first introduction of pattern-based ontology transformation has
been in [27]. Afterwards, in [23] the authors presented the ontology design pattern
import use case, and in [25] the ontology profiling use case was presented. In this
article we concentrate on describing the principles of the whole approach and on
revealing its flexibility from the use case perspective, where new use cases are in-
cluded together with already published ones. All of them are newly presented from
the viewpoint of their motivation, inherent distinctive characteristics and actual
implementation.

7 CONCLUSIONS AND FUTURE WORK

We presented a pattern-based ontology transformation framework based on OPPL
and OWL-API, which includes ontology pattern detection, generation of instruc-
tions and finally transformation as such. All steps are implemented as RESTful
services; a standalone Java library is available as well. We formally defined the
notions related to transformation patterns and described the rules for generating
transformation instructions. We demonstrate versatility of the framework on five
different use cases. The strong point of the presented approach is that the users
can design their own transformation patterns for diverse use cases. This can be
done either in XML or in the graphical syntax. Authoring transformation patterns
directly in XML syntax allows the user to use all features of the transformation
pattern language; however, as we noticed, even an experienced designer sometimes
makes an error in terms of syntax or missing transformation pattern parts (e.g.,
pattern transformation part), therefore we designed and implemented the graphi-
cal transformation pattern editor as a proper alternative that helps with those two
issues.

We plan to investigate further directions for each use case mentioned above. We
also plan to enhance the theory underpinning the transformation framework. This

PatOMat – Transformation Framework 333

will be based on the deeper conceptual structure behind the ‘surface’ RDF/OWL
knowledge structures’ model of ontology language [24].

We also plan to do more research in a direction of transformation pattern dis-
covery or at least its parts, ontology patterns. So far, we developed transformation
patterns manually based on individual examples from those diverse applications/use
cases (e.g. ontology import etc). We think that an automatic approach is unfeasible
due to the lack of data – examples of an ontology and its transformation variants
are very rare and moreover those transformation variants are usually very heteroge-
neous so that it is hard to generalize a pattern. However, parts of an transformation
pattern, i.e. ontology patterns, should be automatically discovered more easily by
applying traditional techniques for the pattern discovery, i.e. data mining. This
could allow us to detect recurrent patterns (structures) which would be then po-
tentially assembled to a transformation pattern. While an abstraction of discovered
recurrent patterns could be a semi-automatic process, linking ontology source and
target patterns would be rather manual since automatic linking would be probably
too low in precision and recall. From this perspective, another discipline could be
useful as a possible inspiration for discovering transformation patterns i.e. ontology
matching. Since transformation patterns are, in fact, links between elements of on-
tology patterns, techniques enabling discovery of links between particular ontologies
and their concepts can be considered, i.e. ontology matching. However, we would
have to abstract those relationships on higher level of abstraction and figure out
meaningful (abstract) structures not only within ontologies but also across ontolo-
gies. This brings us to data mining techniques, such as association rule mining,
which could be potentially applied on the alignments. Data mining techniques will
be considered separately and also in connection with ontology matching in our future
work.

Acknowledgement

This research has been partly supported by CSF Grant No. P202/10/1825, “PatO-
Mat – Automation of Ontology Pattern Detection and Exploitation” and by long-
term institutional support of research activities by Faculty of Informatics and Statis-
tics, University of Economics, Prague. Ondřej Zamazal has been supported by the
CSF Grant No. 14-14076P, “COSOL Categorization of Ontologies in Support of
Ontology Life Cycle”. Further, we want to thank Marek Dudáš and Ján Černý
for their participation on development of graphical tools using and supporting the
pattern-based ontology transformation framework.

REFERENCES

[1] Brandt, S.—Kuesters, R.—Turhan, A.-Y.: Approximation and Difference in
Description Logics. 8th Conference Principles of Knowledge Representation and Rea-
soning (KR 2002), Toulouse, 2002.

334 O. Zamazal, V. Svátek

[2] David, J.: AROMA Results for OAEI 2011. The Sixth International Workshop on
Ontology Matching (OM-2011), 2011, pp. 122–125.

[3] Euzenat, J.—Shvaiko, P.: Ontology Matching. Springer-Verlag, 2007, ISBN 3-
540-49611-4.

[4] Egaña, M.—Stevens, R.—Antezana, E.: Transforming the Axiomisation of
Ontologies: The Ontology Pre-Processor Language. Proceedings of the Fifth OWLED
Workshop on OWL: Experiences and Directions (OWLED-2008), 2008.

[5] Gangemi, A.: Ontology Design Patterns for Semantic Web Content. Proceedings of
the 4th International Semantic Web Conference (ISWC ’05), Galway, Ireland, Springer
2005, pp. 262–276.

[6] Gómez-Pérez, A.—Fernández-López, M.—Corcho, O.: Ontological Engineer-
ing: With Examples from the Areas of Knowledge Management, e-Commerce and the
Semantic Web. Springer, 2007.

[7] Hanh, H. H.—Jung, J. J.: An Ontological Framework for Context-Aware Collab-
orative Business Process Formulation. Computing and Informatics, Vol. 33, 2014,
No. 3, pp. 553–569.

[8] Kensche, D.—Quix, C.—Chatti, M.—Jarke, M.: GeRoMe: A Generic Role
Based Metamodel for Model Management. Journal on Data Semantics, Vol. 8, 2007,
pp. 82–117.

[9] Lehmann, J.—Bühmann, L.: ORE – a Tool for Repairing and Enriching Know-
ledge Bases. The 9th International Semantic Web Conference on The Semantic Web
(ISWC 2010), Springer 2010, pp. 177–193.

[10] Liu, H.—Dou, D.—LePendu, P.—Shah, N.—Jin, R.: Mining Biomedical On-
tologies and Data Using RDF Hypergraphs. 2013 12th International Conference on
Machine Learning and Applications (ICMLA), Miami, FL, IEEE, 2013, pp. 141–146.

[11] Lösch, U.—Sebastian, S.—Vrandečić, D.—Studer, R.: Tempus Fugit –
Towards an Ontology Update Language. 6th European Semantic Web Conference
(ESWC 2009), Heraklion, LNCS, Vol. 5554, 2009, pp. 278–292.

[12] Miles, A.—Bechhofer, S.: SKOS Simple Knowledge Organization System
Reference. W3C Recommendation, August 18, 2009. http://www.w3.org/TR/

skos-reference/.

[13] Miller, G. A.: WordNet: A Lexical Database for English. Communications of the
ACM, Vol. 38, 1995, No. 11, pp. 39–41.

[14] Motik, B.: Reasoning in Description Logics Using Resolution and Deductive
Databases. Ph.D. thesis, Univ. Karlsruhe, 2006.

[15] Motik, B.—Grau, B. C.—Horrocks, I.—Wu, Z.—Fokoue, A.—Lutz, C.:
OWL 2 Web Ontology Language Profiles. W3C Recommendation. 2009.

[16] Mungall, C.: Posh – The Prolog OWL Shell. Proceedings of the 8th International
Workshop on OWL: Experiences and Directions (OWLED 2011).

[17] Noy, N. (Ed.): Representing Classes as Property Values on the Semantic Web.
W3C Working Group Note, 5 April 2005, online at http://www.w3.org/TR/

swbp-classes-as-values/.

PatOMat – Transformation Framework 335

[18] Ritze, D.—Meilicke, Ch.—Šváb-Zamazal, O.—Stuckenschmidt, H.: A Pat-
tern-Based Ontology Matching Approach for Detecting Complex Correspondences.
ISWC Workshop on Ontology Matching (OM-2009), Chanti, USA, 2009, pp. 25–36.

[19] Roussey, C.—Zamazal, O.: Antipattern Detection: How to Debug an Ontology
without a Reasoner. The Second International Workshop on Debugging Ontologies
and Ontology Mappings (WoDOOM), 2013, pp. 45–56.

[20] Scharffe, F.—Zamazal, O.—Fensel, D.: Ontology Alignment Design Pat-
terns. Knowledge and Information Systems, Vol. 40, 2014, No. 1, pp. 1–28, DOI
10.1007/s10115-013-0633-y.

[21] Schober, D.—Smith, B.—Lewis, S. E.—Kusnierczyk, W.—Lomax, J.—
Mungall, C.—Taylor, C. F.—Rocca-Serra, P.—Sansone, S. A.: Survey-
Based Naming Conventions for Use in OBO Foundry Ontology Development. BMC
Bioinformatics, Vol. 10, 2009, Art. No. 125, DOI 10.1186/1471-2105-10-125.

[22] Sunagawa, E.—Kozaki, K.—Kitamura, Y.—Mizoguchi, R.: Role Organiza-
tion Model in Hozo. Proceedings of 15th International Conference on Knowledge En-
gineering and Knowledge Management Managing Knowledge in a World of Networks
(EKAW 2006), Podebrady, Czech Republic, 2006. LNCS, Vol. 4248, 2006, pp. 67–81.

[23] Svátek, V.—Šváb-Zamazal O.—Vacura, M.: Adapting Ontologies to Content
Patterns Using Transformation Patterns. Workshop on Ontology Patterns (WOP-
2010), CEUR, 2010, online http://ceur-ws.org/Vol-671/pap5.pdf.

[24] Svátek, V.—Homola, M.—Kľuka, J.—Vacura, M.: Mapping Structural De-
sign Patterns in OWL to Ontological Background Models. Proceedings of the Sev-
enth International Conference on Knowledge Capture (K-CAP ’13), ACM, 2013,
pp. 117–120.

[25] Šváb-Zamazal, O.—Schlicht, A.—Stuckenschmidt, H.—Svátek, V.: Con-
structs Replacing and Complexity Downgrading Via a Generic OWL Ontology Trans-
formation Framework. Proceedings of the 39th International Conference on Current
Trends in Theory and Practice of Computer Science (SOFSEM ’13), 2013, LNCS,
Vol. 7741, 2013, pp. 528–539.

[26] Šváb-Zamazal, O.—Svátek, V.: Analysing Ontological Structures through Name
Pattern Tracking. Knowledge Engineering: Practice and Patterns, Proceedings of 16th

International Conference on Knowledge Engineering and Knowledge Management
(EKAW 2008), LNCS, Springer, Vol. 5268, 2008, pp. 213–228.

[27] Šváb-Zamazal, O.—Svátek, V.—Iannone, L.: Pattern-Based Ontology Trans-
formation Service Exploiting OPPL and OWL-API. Knowledge Engineering and
Knowledge Management by the Masses (EKAW-2010), 2010, pp. 105–119.

[28] Svátek, V.—Šváb-Zamazal, O.—Presutti, V.: Ontology Naming Pattern
Sauce for (Human and Computer) Gourmets. Workshop on Ontology Patterns (WOP-
2009), CEUR, 2009, online http://ceur-ws.org/Vol-516/pap18.pdf.

[29] Third, A.: “Hidden Semantics”: What Can We Learn from the Names in an Ontol-
ogy? Proceedings of the 7th International Natural Language Generation Conference
(INLG 2012), 2012, Starved Rock, IL, USA, pp. 67–75.

[30] Toutanova, K.—Klein, D.—Manning, Ch.—Singer, Y.: Feature-Rich Part-
of-Speech Tagging with a Cyclic Dependency Network. Proceedings of the Human

336 O. Zamazal, V. Svátek

Language Technology Conference of the North American Chapter of the Association
for Computational Linguistics (HLT-NAACL 2003), 2003, pp. 252–259.

[31] Zamazal, O.—Svátek, V.: Tutorial v3.0.0: Ontology Transformation, Transfor-
mation Patterns, Naming Patterns and RESTful Services. Online tutorial, http:

//owl.vse.cz:8080/tutorial/, 10-05-2013.

[32] The Ontology Transformation Framework Web. Accessed on 03-07-13, http://owl.
vse.cz:8080/.

[33] W3C Owl Working Group and Others: OWL 2 Web Ontology Lan-
guage Document Overview. W3C Recommendation. 2009, http://www.w3.org/TR/
owl2-overview/.

Ondřej Zamazal is Researcher and Lecturer at the University
of Economics, Prague (UEP), Department of Information and
Knowledge Engineering, where he also obtained the Ph.D. de-
gree in 2010. His main research topics are ontological engineering
and ontology matching. He participated in EU projects such as
K-Space, Knowledge Web, LOD2 and LinkedTV and undertook
a research internship at INRIA Rhône-Alps, France and Univer-
sity of Mannheim, Germany. Holder of the Josef Hlávka Award
(2006). Author of about 50 refereed publications. Co-organiser
of the OAEI initiative, PC member of a number of conferences,

including top-class ones such as ISWC or EKAW.

Vojtěch Sv�atek is Associate Professor (since 2007) and Senior
Researcher at the University of Economics, Prague (UEP), De-
partment of Information and Knowledge Engineering. His main
research topic is the synergy of ontological engineering, linked
data management and data mining. Participant Coordinator
of the EU projects K-Space, MedIEQ, LOD2 and LinkedTV,
and Coordinator of three projects of the Czech Science Foun-
dation. Author of about 200 refereed publications. Editorial
Board member of Elsevier’s Journal of Web Semantics and PC
member of dozens of top-class conferences such as ISWC, ESWC
or EKAW.

