
Computing and Informatics, Vol. 34, 2015, 1168–1200

A SURVEY: SOFTWARE-MANAGED ON-CHIP
MEMORIES

Shahid Alam

Department of Computer Science and Engineering
Qatar University, P.O Box 2713, Doha, Qatar
&
Department of Computer Science
University of Victoria, Victoria, BC, V8P 5C2, Canada
e-mail: salam@qu.edu.qa

Nigel Horspool

Department of Computer Science
University of Victoria, Victoria, BC, V8P 5C2, Canada
e-mail: nigelh@cs.uvic.ca

Abstract. Processors are unable to achieve significant gains in speed using the
conventional methods. For example increasing the clock rate increases the average
access time to on-chip caches which in turn lowers the average number of instructions
per cycle of the processor. On-chip memory system will be the major bottleneck in
future processors. Software-managed on-chip memories (SMCs) are on-chip caches
where software can explicitly read and write some or all of the memory references
within a block of caches. This paper1 analyzes the current trends for optimizing
the use of these SMCs. We separate and compare these trends based on general
classifications developed during our study. The paper not only serves as a collec-
tion of recent references, information and classifications for easy comparison and
analysis but also as a motivation for improving the SMC management framework
for embedded systems. It will also make a first step towards making them useful
for general purpose multicore processors.

1 The work presented in this paper is an expansion of the authors’ previously published
work in the conference paper [3], and was carried out when the first author was a Ph.D.
student in the Department of Computer Science at University of Victoria.

A Survey: Software-Managed On-Chip Memories 1169

Keywords: Cache memory, memory management, optimization, software engineer-
ing, system software

Mathematics Subject Classification 2010: 68-02, 68N01, 68N20, 68M01,
68M07, 68M14, 68U99

1 INTRODUCTION

General purpose multicore processors (GPPs) and high performance embedded sys-
tems (ESs) available today use random access memories to store program’s code
and data. These memories can be static (SRAM) or dynamic (DRAM). SRAMs are
costlier and speedier, almost equal to the speed of the processor, than DRAMs and
are used as on-chip and off-chip caches. A cache stores copies of data or instructions,
or a combination of two, from the main memory to reduce the average memory ac-
cess time. A CPU (central processing unit) in a GPP or a high performance ES
has several levels of caches [54]. Caches closest to the ALU (arithmetic logic unit)
after the registers, i.e. on-chip are called L1-caches. Access time of a L1-cache in
ES is usually 1 cycle and 1–3 cycles in GPPs. L2-caches can be on-chip as found
in multicore processors or off-chip. L3-caches if present are off-chip. Access time of
L2-cache is more than the L1-cache and access time of L3-cache is more than the
L2-cache.

These on-chip and off-chip caches form a memory hierarchy and are either man-
aged by hardware or software, or a combination of the two. The purpose of using
this cache hierarchy starting from the on-chip cache is to break the effect of the
memory wall [69]. If the speed of an on-chip cache is almost equal to the speed
of the CPU, as is the case in most modern processors, we can potentially break
the effect of the memory wall if all the memory accesses pass through this memory
without any delay. One option for accomplishing this is to let the compiler/software
explicitly manage and somehow make the code and data available all the time in
these high speed memories/caches.

1. But is it possible in practice?

2. What efforts have already been done in this area both in an ES and a GPP?

3. How successful are they?

4. And what major areas need more research to ease and optimize the use of on-chip
caches specifically in GPP?

These are our motivations for the study carried out in this paper.
The work presented in this paper is an expansion of the authors’ previously

published work in the conference paper [3]. Some of the major expansions are:

1. To reflect the latest research, five new software-managed on-chip memories
(SMCs) have been added to the survey.

1170 S. Alam, N. Horspool

2. For better understanding of the reader, the general use of SMCs is explained
in detail using examples and figures, and more explanation has been added to
specific SMCs discussed in the survey.

We define SMCs as on-chip caches where software can read and write all or some
of the memory references within a block of caches. These can include locked caches,
scratchpads and are high speed SRAMs.

Locked caches are caches which are locked by the hardware, or sometimes by
the software [48], so the software can use either a portion of, or the whole cache as
a scratchpad. Scratchpad memories (SPM) in one form or other have been used in
ES a long time. Recently [10] they have been recommended for ES as an alternative
to a cache. SPM is considered similar to L1-cache but it has explicit instructions to
move data from and to the main memory, often using DMA (direct memory access)
based data transfer. A comparative study [70, 10] shows that the use of scratchpad
memory instead of a cache gives an improvement of 18 % in performance for bubble
sort, a 34 % reduction in chip area, and uses less energy per access because of the
absence of tag comparisons. From here onwards in this paper we use the abbreviation
SMC to denote these memories.

SMCs are currently only used in ES including multicore processors [19, 20, 46,
61, 64]. There are also research efforts [32, 18, 17, 16, 23] where SMCs have been
developed and tested for use in a GPP. The main advantage as mentioned in [70, 10]
of using SMCs are the savings they provide in area and energy. They can also
accelerate the speed of a program because of the close proximity to the CPU.

The basic purpose of SMCs is to improve both performance and energy saving
by optimizing the use of caches. Cache optimizations work on the principle of
locality [24] which states that data recently used will be reused again in the near
future. There are two kinds of localities. Spatial locality: Data located together will
be referenced close together in time. Temporal locality: Data accessed recently will
be accessed again in a near future.

We further explain the use of SMC using a single core hypothetical processor as
shown in Figure 1. The DMA controller is used to move code/data from the main
memory to the SMC. The SMC controller performs the mangement functions such
as replacement of blocks of the SMC etc.

The total memory of the system shown in Figure 1 is 1 GB. The memory address
is shared between the main memory and the SMC which is located on the chip
(CPU). The first 1 MB (0x00000000–0x000FFFFF) of the memory addresses are
assigned to the SMC. The code shown on the left transposes a matrix of size 100 ×
100. The application code first copies the contents of the matrix to the SMC, then
it transposes the matrix inside the SMC, which is much faster than doing it in the
main memory using the normal cache.

System calls DMACopy copies the array from the memory to the SMC and vice
versa while the processor is executing other instructions. CheckCopy is used for
synchronization. Line 4 changes the address of the ptr to point to the new address
of the array in the SMC. The system calls are part of the runtime that is responsible

A Survey: Software-Managed On-Chip Memories 1171

CPU

Cache

SMC

Main

Memory

array

array

ptr

SMC Controller DMA Controller1 ptr = savedptr = malloc (40000); // 4x100x100
-
 // copy 40000 bytes at ptr to loc 1000 in the SMC
2 DMACopy(1000, ptr, 40000);
-
-
 // wait for copy to loc 1000 to finish
3 CheckCopy(1000);
4 ptr = 1000;
 // Transpose
5 for (r = 0; r < 100; r++) {
 for (c = 0; c < 100; c++) {
 temp = ptr[r][c];
 ptr[r][c] = ptr[c][r];
 ptr[c][r] = temp;
 }
 }
6 DMACopy(savedptr, 1000, 40000);

1 MB

999 MB

0x00000000

0x000FFFFF

0x00100000

0x40000000

Figure 1. A hypothetical SMC in a single core processor and its use in a sample application
code

for managing the SMC. The runtime is a system software that can either be part of
an operating system or can be a separate independent running software.

As we see in the example above using SMC more resources can be applied
and hence more complex analysis (such as sophisticated replacement algorithms)
to the problem, e.g.: system software can load data and instructions into SMC
and instruct the SMC to disable their replacement. Hints from the application can
also be incorporated to improve performance. An example of SMCs in a multicore
processor is shown in Figure 2. To keep the Figure 2 simple, other features of the
processor are not shown, such as SMC and DMA controllers. Intermediate memory
can be L2 and/or L3 cache(s), which are shared among the cores. Each core in
addition to a L1 cache has a SMC that is only accessible by the respective core.

CPU

Core

Main MemoryIntermediate
Memory

I/O System

Interconnection Network

S
M
C

C
a
c
h
e

CPU

Core

S
M
C

C
a
c
h
e

CPU

Core

S
M
C

C
a
c
h
e

CPU

Core

S
M
C

C
a
c
h
e

CPU

Core

S
M
C

C
a
c
h
e

CPU

Core

S
M
C

C
a
c
h
e

CPU

Core

S
M
C

C
a
c
h
e

CPU

Core

S
M
C

C
a
c
h
e

Figure 2. An eight core processor with SMCs

SMCs are managed by software, so operating systems (OSs) and compilers (es-
pecially dynamic/runtime compilers) will play a big role in their efficient use by
taking advantage of spatial and temporal locality of code and data. A multicore
processor’s local data that does not need to be committed to the main memory
or shared with other processors can efficiently utilize SMCs [47] as is clear from
Figure 2. Threads in SMT (simultaneous multithreading) [67] processors (threads
running on one core) can share the SMC.

1172 S. Alam, N. Horspool

In a multithreading application running on a multicore processor, threads that
share data the most can be placed on a single SMT core to considerably decrease
their communication time and memory bandwidth. As we increase the number of
cores, a core needs to have its own private on-chip space to improve its perfor-
mance characteristics. IBM in its Cell processor [61], Intel in its Single-Chip Cloud
Computer [44] and Nvidia in its GPUs (graphic processing units) [64] have been
experimenting with SMCs. SMCs will play a big role in improving the performance
of the next generation of microprocessors. Nvidia’s GPU architecture, code name
FERMI [22], contains a parallel data cache hierarchy with configurable 64 KB private
L1-caches for each streaming multiprocessor and a 768 KB shared L2-cache. Eche-
lon [37], a next generation GPU architecture from Nvidia, will contain SRAMs that
can be configured as a combination of register files, a software controlled scratch
pads (like SMCs), or hardware controlled caches. [43] gives a good introduction
to general-purpose computing on the GPU and relates it to a mature technology,
hardware/software co-design.

This paper analyzes the current trends for optimizing the use of these SMCs.
Only selected research efforts have been included that provide a significant opti-
mization of the SMCs. In Section 2 we present the current trends for managing and
optimizing SMCs in software/hardware. In Section 3 we enumerate simple classifi-
cations developed in this paper that help us to provide an analysis and comparison
of this study. Section 4 separates, compares and analyzes these efforts based on
these classifications. Section 5 concludes the paper.

2 CURRENT TRENDS IN SMC MANAGEMENT
AND OPTIMIZATION

Except for some pioneering work performed by Cheriton et al. in 1986 [18], this
section reports on progress made in optimizing the use of SMCs from the year 2000
onwards. We label these works for comparison according to the type of work done
and call this label as SMC Type. We only cover on-chip memories and exclude recent
work done [57, 11, 38, 26] on software-managed memory hierarchies that includes
both on-chip and off-chip memories. Readers interested in a comparison of program-
ming models for managing memory hierarchies and a discussion on various types of
memories for manycore processors (both on-chip and off-chip) are referred to [59, 12].

SMC-VMP: As mentioned before the first work done on targeting SMCs is by
Cheriton et al. [18]. They implemented SMCs in an experimental multiproces-
sor called VMP [17]. Concepts learned in this experiment were later used in
designing and developing the Paradigm architecture [16]. The Paradigm con-
sisted of a memory module and multiprocessor module groups. Each group
consisted of: processors with on-chip caches (private caches); an on board cache
(shared cache); and interbus cache module. It is unclear to what extent the
Paradigm system was completed. We can see that similar concepts are being
used now in building commercial multicore processors [61, 64, 22].

A Survey: Software-Managed On-Chip Memories 1173

The VMP processor was an experimental multiprocessor developed at Stanford
University. It was a software/hardware architecture that combined the OS,
hardware and software as firmware-like cache management modules. The main
motivation for building such a processor was to give more control to the software
to manage cache access. Local memory, i.e. on-chip cache, contained the software
for cache management. A cache miss in the VMP is implemented as follows:

On a cache miss the cache controller issues an interrupt and generates a cache
slot in the main memory to be brought in. The processor on interrupt saves its
state on the (supervisor processor) stack and jump to the cache miss handler
routine stored in local memory. The cache miss handler routine maps the virtual
address to the physical address of the cache page and tells the block copier to
copy the main memory to the cache. If the data is not there a page fault occurs
which is passed to the OS. The block copier works independent of the processor
and the processor updates its data structures during the copy. When the copy
completes, the processor resumes execution.

The VMP multiprocessor prototype was not ready at the time of experiments
so they presented performance results based on trace-driven simulations. The
results presented were not very promising. The processor performance reduced
by almost 50 % with a cache miss rate of 1 %. As mentioned by the authors [17],
the real challenge of the VMP design was in the software and hence a lack
of a good programming environment was one of the major reasons for these
disappointing results.

SMC-IIC: The first scheme to implement a runtime SMC is presented by Hallnor
et al. [32]. The SMC implemented is for L2-cache. There are two parts to
this implementation: hardware structure of the cache called IIC (indirect index
cache) and the replacement algorithm called generational replacement.

The IIC uses a cache line table in hardware to make the cache replacement policy
fully associative. It does not associate a tag entry to a special data block location
and hence achieves full associativeness. Hash table entries with a pointer to the
data block are used to lookup the tag for the block. The IIC’s replacement
algorithm is as follows:

The use of data is divided into prioritized pools. The data is moved into pools
based on the frequency of use. Instead of tracking the frequency of each data
block they group them into smaller pools to make it easy to track the usage.
The block to be replaced is chosen from the non-empty lowest priority pool.

Traces are generated on the Intel architecture running Windows NT 4.0 to run
simulations. Following programs were used to generate traces: pcdb, a PC
database application; draw, a PC drawing program; specweb, a web server trace
from SPECweb96; tpcc and tpcc long, 2 transaction processing server traces.
The trace oltp1w was provided by IBM. These traces contain instructions and
data references to stress test the SMC. The generational replacement algorithm
is compared with traditional cache design using different associativities, 4, 8

1174 S. Alam, N. Horspool

and 16. The average improvement on miss count is 45 % on a block size of 512.
It is not clear from the paper how the cache and the cache line table is simulated
in the hardware.

SMC-LT: Kandemir et al. [36] present a SMC management framework focusing on
optimizing the array based applications as found in image and video processing.
The compiler divides the work into the following three phases:

• Data access: Loop transformations [2] are used to decrease the data transfer
between SMC and off-chip memory and hence maximizing the use of the
SMC. The portion of arrays required by the current computation is fetched
and is called a tile. The selection criteria for these tiles are: they should
have high reuse; and should fit in the SMC.

• Data partitioning: After loop transformations the compiler partitions the
available space in the SMC among the arrays accessed. The partioning de-
pends on how the loops are transformed in the first phase.

• Code modifications: Code is inserted into the program at compile time for
the changes mentioned above.

The experiment carried out in the paper consisted of five benchmarks: int mxm,
an integer matrix multiply program (that contains one initialization and one
multiplication nest); full search and parallel hier, two different motion estima-
tion codes; rasta fft, a discrete Fourier analysis code; and rasta flt, a filtering
routine. The results of the experiment presented show that the SMC man-
agement framework on average is 30 % better than when the SMC is used as
a hardware cache and is not able to improve upon the hand optimized version.
The reason is the selection of tiles. In selecting the tiles the hand optimized ver-
sion not only consider the loop nests [2] but also the tile reuse between multiple
nests.

SMC-No-Cache: Banakar et al. [10] recommend and establishes the use of a SMC
instead of a cache in ES to save energy and area. This is the first time such
recommendation has been made. A comparison is made between a 2-way set
associative cache and the SMC. The benchmark used in the experiment was an
in-house written C program. The results show that the area covered by the
SMC is almost 34 % less than the cache. The energy consumption on average
is reduced by 40 % using the SMC. An experimental compiler encc is used to
generate code, which identifies the frequently used code and data and maps
them to the SMC using the knapsack algorithm.

SMC-Optimal: Avissar et al. [8] present an optimal memory allocation scheme
for SMC in ES. The optimality depends on the data collected by the profiler at
compile time. The paper assumes that the target ES has at least two writable
memories and no cache. Focus of this paper is on global and stack variables.
The basic process includes collecting data like size, frequency of access and total
number of variables in the application by profiling. This information is passed

A Survey: Software-Managed On-Chip Memories 1175

to the compiler. Compiler also gets the size and the latency of the memories.
Based on this information compiler formulates the problem of memory allocation
into linear optimization problem that is solved using Matlab.

The scheme presented assumes the heap data to be allocated to the external
DRAM. Heaps are allocated dynamically, i.e. at runtime, and there is no way
to know the size and allocation frequency of heap data at compile time. Lin-
ear equations are formed for allocating global and stack variables to the SMC.
With these linear equations following constraints are defined to turn memory
allocation problem into a linear optimization problem: a variable can only be
allocated to one memory unit; and sum of all the sizes of variables allocated
cannot exceed the size of the memory unit. For stack variables they propose the
following two options for allocation:

• Multiple stacks are allocated in SMC and DRAM. Because of more overheads
this is feasible for large number of variables.

• One stack is allocated to either SMC or DRAM. Because of less overheads
this is feasible for small number of variables.

The basis of the optimality is the formulation of the data collected by the pro-
filer into linear optimization problem. The parameters used to form the linear
equations does not include the time of access to the variables. In our opinion
this information could be obtained at compile time, as it is done in SMC-CT,
but it may not be as accurate as when it is collected at runtime. Even so,
by including these times in the equations, we may be able to further improve
the solution. The benchmarks used in the experiment were: FIR, BMM [21],
BTOA [58], CRC32, DIJKSTRA [29], FFT, IIR, and LATNRM [51]. Results
show that on average the SMC allocation achieves over 50 % speedup than the
all DRAM allocation. A comparison with a hardware cache could have produced
more real results.

SMC-ICache-1: Huneycutt et al. [34] present the first effort to implement SMC
using dynamic binary rewriting for ES. An instruction cache (I-Cache) is imple-
mented in the software as a client-server model. A software cache controller at
the client side handles hits and a hardware memory controller at the server side
handles the misses. This way the workload is divided between a client which
does not need to be powerful, hence saving energy in an ES, and a server which
can be far more powerful. Instruction sequences are broken down into chunks,
which are basic blocks, at the hardware memory controller and sent to the soft-
ware cache controller which places them in a cache on the client side called
tcache. Instructions in the tcache can be relocated to anywhere, i.e. tcache is
fully associative. Instructions accessed recently are placed in the tcache.

The binary rewriter dynamically modifies the code to include jumps to either
off-chip or on-chip memory, depending on the location of the jump target. This
way, no matter whether the object is either on-chip or off-chip, the code runs
correctly. By rewriting the instructions (branch instructions) there is no need to

1176 S. Alam, N. Horspool

check for cache tags. Not all the tags can be avoided and replaced in this way.
Only tags for the branch instructions whose destinations are known at the time
of rewriting are replaced and hence the technique only deals with the common
case of the branch instructions. The design for a data cache is also proposed
but not implemented in the paper.

The software I-Cache is compared with a direct mapped hardware cache with
a 16 bytes block. The benchmarks used in the experiemnt were: 129.compress
from the SPEC CPU95 suite; adpcmenc from MediaBench; and hextobdd a local
graph manipulation application. Results show 19 % slow down of software cache
than hardware cache. But they are successfull in proving that the software cache
can be implemented without any help from the hardware and its performance is
close to the hardware cache. Implementing I-Cache in software is good for ESs
in a client-server model but we should also take into account the communication
between the client and the server. In these environemnts a client needs to
communicate with the server for other purposes, like command and control,
but the software cache management will add more to this communication. The
authors do not include or discuss this communication cost.

SMC-ICache-2: The second effort of designing a software instruction cache is by
Miller et al. [48]. This software I-Cache has been implemented on the MIT RAW
prototype microprocessor [66]. There are two parts to this design: a runtime
and a preprocessor.

Preprocessor: The preprocessor consists of a binary rewriter for code modifica-
tions, to add instruction caching to the code, and is located in the main memory.
Preprocessing is carried out before linking of the object file. The preprocessor
divides the cache into blocks. These blocks refer to the program basic blocks
in the CFG (control flow graph) [2]. Basic blocks in a CFG have different sizes
so to keep their sizes same NOP (no operation) instructions are added. It is
not clear from the paper what maximum size is kept for the basic block. We
assume it is the size of the SMC. But, what if the size of a basic block is greater
than size of the SMC? The binary rewriter creates a destination table to store
physical addresses along with the virtual addresses of the control instructions
which are at the end of a basic block in the CFG. This table is stored in the
main memory and consulted by the runtime to fetch the appropriate data for
each control instruction. In our opinion this way the runtime incurs a call to
the main memory each time it jumps to the next block.

Runtime: The runtime is located in the cache. When the runtime receives
control from one of the blocks it looks up the physical address, in a block data
table as described above that contains information about the current basic block,
based on the virtual address passed. If the block is present it jumps to the new
block otherwise it asks the main memory to send the block. When it receives
a response it copies the block to a specific memory location in the cache and
jumps to the new block.

A Survey: Software-Managed On-Chip Memories 1177

For cache replacement FIFO or FLUSH is used. FIFO evicts the oldest cache,
and FLUSH flushes the entire cache and starts fresh. A pin system is imple-
mented for the software cache which allows a programmer to specify what func-
tions to pin/lock for time predictability in real-time systems. The pinned/locked
code in the cache cannot be evicted and therefore has predictable and consistent
time when it executes.

Chaining is used to modify the code inside the cache the first time when a block is
loaded by the runtime. This changes the destination of the jump which requested
the block. In this way, second time, the new block is automatically executed
without going through the runtime, which saves some clock cycles. According
to the authors it saves 40 clock cycles. Chaining is good for FLUSH because
unchaining is not needed when the block needs to be evicted. For indirect jumps,
which are jumps that might have different target addresses, each time all the
target addresses are chained. This chaining is only done for function jumps,
which according to the authors have small number of different targets, and for
FLUSH.

The system was evaluated using the MediaBench [40] benchmark suite. The ex-
perimental results presented in the paper are not very encouraging but they also
prove, as is proved in SMC-ICache-1, that an I-Cache can be implemented in
a software where a hardware cache is not present and improves the convenience
of programming. The I-Cache implemented improves neither performance or en-
ergy. Its major difference to compare the previous similar effort, SMC-ICache-1,
is that its implementation is not based on a client-server model. Because of
this it improves performance and energy saving compared to SMC-ICache-1 as
shown in Table 1.

SMC-CT: The technique presented in [68] is an improvement on the previous work
discussed in this survey as SMC-Optimal. Compile time decisions are used to
change static memory allocation to dynamic memory allocation (explanation of
these terms is given in Section 3) that on average improves the performance
by 40 % and energy saving by 31 % compared to SMC-Optimal. When com-
pared with all hardware direct mapped cache implementation the improvement
in overall performance is neglegible and is 1.7 %. The experiment consisted of
the following benchmarks: Lpc, Edge Detect, Spectral, Compress, G721 [51],
Gsm, Stringsearch and Rijndael [21]. Out of 9 benchmarks used only 3 of them
show improvements in performance. Two of these show minor improvements but
the third benchmark G.721 shows a 100 % improvement in performance, which
considerably improves the overall results. G.721 is one of the data compression
techniques (Speech codecs) used in audio signal processing. We are not sure
why this discrepancy is there as the memory use of G.721 is almost the same as
some of the other benchmarks as shown in Table I in [68].

The basic process/heuristic used consists of first identifying program points,
which are points where it is beneficial to insert code for copying a variable from
the DRAM to the SMC. A point is beneficial if: gain in speed by having the

1178 S. Alam, N. Horspool

variable in the SMC is greater than the cost of moving the variable to the SMC.
Profiling is used to find out this cost and benefit model. The compiler evicts
some of the existing variables from SMC to make space for incoming variables
that makes the allocation dynamic. Variables with minimum size are removed
first to make the eviction simple and to keep the runtime lower. In a case of
a tie the compiler chooses the variable with higher timestamp.

The timestamps are dynamic execution orders of the running program and are
generated by using a data program relationship graph (DPRG). The DPRG
is created by time stamping the call graph [2] of the program in a depth first
traversal. Each node in the DPRG is a program point as described above.
The DPRG is a directed acyclic graph as it does not handle recursive calls.
Recursive cycles in the DPRG are collapsed to a single node and are allocated
to the DRAM. A sample program and its DPRG is shown in Figure 3.

For allocating global and stack variables to the SMC the algorithm first traverses
each program point in the DPRG in the partial order of their timestamps. In
the first traversal it transfers variables to the SMC in decreasing order of their
frequency of access. This frequency is computed at compile time by profiling
the application. The second time before transferring a variable to the SMC the
algortihm checks the cost and benefit model, as described above, and transfers
and evicts only if it is feasible. An extension is presented to include program
code for allocation to the SMC. It is not clear from the paper [68] if the authors
have incorporated this extension in the implementation before evaluating it.

SMC-As-FC: Baiocchi et al. [9] present a technique to manage a fragment cache
(FC) in dynamic binary translators (DBT) using SMC with the help of flash
and external memory in an ES. A FC is used to keep dynamically translated
instructions called fragments which are the application’s translated code working
set to keep the DBT from retranslating the previously translated code. Their
initial experiments without optimizations show that having FC in the external
memory is better than FC in the SMC. Based on these experiments and results,
following three optimizations are applied to improve the use of FC in the DBT
using SMC. These optimizations are implemented using Strata [60], a cross
platform infrastructure for building a DBT:

• Footprint Reduction: The DBT uses a trampoline (a short snippets of code)
for translating the target at the end of a basic block. In the case of a branch
taken it adds the branch instruction to the new target, and in the case of
a branch not taken it returns control to the DBT. Depending on the number
of basic blocks these trampolines can expand the instruction count in the
program. To reduce this instruction count only one trampoline function is
used that can be shared by all the branches. For speed this function resides
inside the SMC.

• Victim Compression: The FC is divided into two regions: a compressed frag-
ment region (CFR) and an uncompressed executable fragment region (EFR).

A Survey: Software-Managed On-Chip Memories 1179

void sample (i n t X, i n t Y)
{

i f (X > 10)
C() ;

e l s e
{

i f ((X > 20 && Y < 10)
{

D() ;
C() ;

}
e l s e

whi l e (X < 100)
X += 2 ;

}
A() ;
B() ;

}
a)

1 sample() 18

2 if 3 14 A() 15 16 B() 17

3 then 6

3 else 12

4,7 C() 5,8

4 if 11

5 then 10 5 else 8

6 D() 9 6 loop 7

X

b)

Figure 3. Sample program and its data program relationship graph (DPRG); a) A sample
program, b) DPRG of the sample program

1180 S. Alam, N. Horspool

The CFR is used to save the evicted fragment (a victim – a block evicted
from the cache upon replacement) from the FC. The basic idea is to store the
victim in the CFR after compressing it for easy retrieval. Compression and
decompression is done in the external memory. In our opinion if the time
for compressing and decompressing the fragment when needed is less than
the time for accessing and retrieving the fragment from the external memory,
then this scheme is profitable. Using this cost model before this optimization
could give better results. We are not clear if the scheme presented followed
this model. The FC is partitioned dynamically between the CFR and the
EFR. More priority is given to the EFR. When the FC is filled completely
with the EFR then the EFR is compressed and becomes the new CFR.

• Fragment Pinning: A fragment in FC can be pinned (locked) so that it
persists across different flushes to avoid unnecessary overhead of compressing
and decompressing such a fragment. A pinned fragment region (PFR) is used
for this purpose and is intermixed with the EFR for best utilization. Victims
from the previous FC which are part of the working set of the DBT are one of
the targets for pinning. Pins are released when the size of the PFR reaches
a certain threshold value, which is computed experimentally. There is no
specific policy (for example in what order) given in the paper for releasing
the pins.

After applying these optimizations the results improved. But the improvement
in speedup compared to using FC in external memory on average is just 2 % for
a SMC of size 32 KB. Other sizes of SMC show a reduction in speedup compared
to FC in the external memory. The only major improvement that was obsereved
is that if SMC is used for FC than the amount of external memory required for
a DBT is decreased. The experiments used the programs from MiBench [58].

In our opinion if size of the SMC and the FC allows, it is beneficial to keep
more than one CFRs (old copies of EFR). This may produce better results if
the data presents such a temporal locality. But it will increase the complexity
of the SMC management for the DBT.

SMC-GPU: Silberstein et al. [64] present techniques to efficiently utilize SMC im-
plemented in Nvidia’s GPU, which is based on a parallel computing architecture
called CUDA [31], for memory bound algorithms. CUDA is a computing engine
in Nvidia’s GPUs which is available to the programmers through the C language
with Nvidia’s extensions and the OpenCL [28] framework. CUDA SDK (soft-
ware development kit) is available for Windows and Linux. CUDA program is
run by the hardware (only Nvidia’s GPUs) on multiple threads.

These threads are lightweight and their performance is modest, but by effectively
using many threads in parallel GPU can substantially outperform CPU. The
programming model of GPU is SPMD (single program multiple data). Many
threads run the same program on different data. CUDA exposes a fast user
manageable shared cache which can be used as a SMC among a subset of threads.

A Survey: Software-Managed On-Chip Memories 1181

The author’s motivation to use this SMC of a GPU is to accelerate the processing
of the MPF solver [52] which can sometimes take years to complete on modern
CPUs. Using this cache they achieved 2700-fold speedup on random data and
270-fold speedup on real-life genetic analysis datasets.

Here we give an overview of the SMC management strategy and the performance
achieved in comparison to the texture cache [30]. Preprocessing is done once by
the CPU for deciding when and which data to be placed in the cache and then
this information is passed to the GPU in the form of metatables. The GPU uses
metatables to manage the fetching and replacement of the data in the cache to
be processed by the threads. The preprocessing also includes the determination
of the replacement policy for each function in the program. If a function exceeds
the size of the cache available that function is accessed directly from the main
memory bypassing the cache. Spatial locality is improved by restructuring the
data layout. With this user managed cache on average they achieve more than
150 % performance compared to the use of texture cache. Textures are read only
data and present spatial optimization opportunities. Textures are used to map
images onto the surfaces of three dimensional objects. For example mapping
a grassy image to an uneven surface of a mountain. A texture cache in GPU
provides faster access to these textures.

SMC-Heap: There are two efforts which deal with heap data allocation to SMC
for ES. The first one [25] does not allocate full heap data to SMC whereas the
second one [46] provides allocation of full storage of heap data to SMC. Therefore
we just discuss the second effort that presents a SMC memory allocator (SMA)
similar to the C language malloc() function. The SMA works as follows:

For large allocations it divides the SMC into fixed number of blocks. The mem-
ory is allocated out of these blocks. For small allocations, a block is divided into
sub-blocks of the size requested, which should be equal to a valid size, if not,
then it is rounded to a valid size. Valid size for the SMA is a power of two. The
SMA uses block sizes of 128 bytes and sub-block sizes of 8, 16, 32 or 64 bytes.
In this way, SMC can be used as a memory pad where data is allocated by the
software. It provides simple and semi-automatic management of SMC. It may
not give good performance compared to hardware caches but it is space efficient.

The experiments and results are shown for Intel IXP network processor, which
utilizes Intel XScale [35] microprocessor core. The IXP is a heterogeneous mul-
ticore processor with two SMCs per core. One local and one shared. The bench-
marks used were: Huff, an adaptive Huffman encoding; Dhrystone1.1, a perfor-
mance benchmark application; Susan, an image smoothing edge/corner detector;
GSM, speech compression; and KS, a minimum spanning tree for graphs. The
results are compared with Doug Lea’s malloc [39] implementation, which is the
standard implementation used in Linux allocator in the GNU C library. Ac-
cording to the paper this is considered as one of the fastest and space efficient
allocators available. The SMA on average is 27 % better in memory allocation
time and 64 % better in memory freeing time. It is not clear how much this im-

1182 S. Alam, N. Horspool

provement is due to their allocation algorithm and how much to the fact that,
compared to the SMA, the Doug Lea’s malloc cannot use the on core SMC of
the Intel IXP processor.

SMC-SMT: Metzlaff et al. [47] present a design for a SMC that is manage dynam-
ically in hardware to provide predictable timing behavior for a SMT (simultane-
ous multithreading) processor. The SMC designed gets help from the software
in the form of a flag as explained in the next paragraph. So both hardware and
software are used to manage the SMC. This SMC is called function SMC in the
paper because a complete function is allocated inside the SMC. On every call or
return the effected function is copied from the off-chip memory to the SMC. At
one time the SMC may contain more than one function. If the application calls
a function that is already contained in the SMC then there is no need to reload
that function.

Each processor implemented using SystemC processor simulator has a local SMC
with a controller (SPC) which is responsible for all reads and writes from and to
the SMC. The execute stage of the pipeline passes the function call and returns
information to the SPC which then loads the current function and any function
that is nested in the current function. The SPC also maps a function to the SMC.
If the function size is greater than the SMC, SPC wraps around and copies the
left over instructions from the start overwriting some of the instructions of the
current function. This can create some complications. For example, the size
of the largest function in the application must not exceed the size of the SMC.
This is a constraint of this paper which in our opinion may limit the use of this
scheme to relatively few applications. SPC does not have any information at
runtime about the size of the function to be copied. This information is passed
via the compiler through a flag. This flag indicates the end of the function in
the linked code.

The applications for the experiment were selected from the Malardalen WCET
Benchmark Suite [49]. The selected benchmarks for experimenting list the
largest function size. The comparison is done with a system without on-chip
cache. Experiments are carried out with different SMC sizes. SMC minimum
size is selected according to the largest function’s size listed. The scheme shows
improved instructions per count compared to the system without on-chip cache.
On average improvement is over 100 %. A comparison with an on-chip locked
cache could have produced more real results.

SMC-GC: Li et al. [41] present the first effort which maps the SMC management
problem to the graph coloring (GC) problem. GC is the way to color the vertices
of a graph such that no adjacent vertices shares the same color.

The promising idea presented is the partitioning of the SMC into a register
file. That is how they map the SMC allocation problem to register allocation
and hence to graph coloring problem. The complete algorithm for the SMC
partioning is given in [42]. It is illustrated here in Figure 4 and it shows that

A Survey: Software-Managed On-Chip Memories 1183

for some of the array sizes the algorithm may not be able to utilize SMC space
efficiently by showing some unused space in the SMC with a simple example.
Figure 4 a) shows the alignment of arrays ‘A’, ‘B’ and ‘C’ at 8 bytes using the
size of the smallest array ‘A’. The SMC shown in Figure 4 b) of size 1024 bytes is
divided into 8 registers each of size 128 bytes, because of the size of the smallest
array ‘A’. Array ‘C’ whose original size is 668 bytes fits into 6 registers with the
last register having (96 + 4) bytes of unused space.

 R0

128
 R1

128
 R2

128
 R3

128
 R4

128
 R5

128
 R6

128
 R7

128

 R0

768

672 bytes

96 bytes

(b) Partioning of of size 1024 bytes
 File. Array ‘C’ fits into 6 registers with the last register
 having (96 + 4) bytes of unused space. 4 bytes
 added for alignment to array ‘C’.

SMC into a Register

R5

 Arrays Original Sizes Sizes in bytes after
 in bytes aligned @ 8 bytes

 A 124 128

 B 128 128

 C 668 672

(a) Arrays ‘A’, ‘B’ and ‘C’ with there original and aligned
 sizes.

Figure 4. An example of SMC partitioning into a register file

An interprocedural control flow analysis [2, 4] is performed to build an inter-
procedural CFG (ICFG). The ICFG consists of CFGs of all the functions in the
program and all possible interprocedural flow edges across the CFGs. Liveness
analysis is performed for arrays. An array is live at a program point if some
of its elements may be used (read) before they are defined (killed) in an ICFG.
They split a live range of an array into subranges, which can be allocated to dif-
ferent registers in the SMC. Only arrays in hot loops are splitted and allocated.
Profiling is used at compile time to find these hot loops.

The SMC partitioning and the live range splitting create arrays to be allocated
to the SMC. Given these arrays and the register file an existing graph coloring
algorithm [53] is used to determine where these arrays are going to reside in
the SMC. The experiment included 10 applications from MediaBench [40] and
2 applications from MiBench [21]. The results are compared with [68] discussed
as SMC-CT in this study. The SMC-GC on average shows an improvement of
almost 3 % in speedup.

1184 S. Alam, N. Horspool

SMC-USize: Nguyen et al. [50] present the first effort which deals with an unknown
size (USize) SMC at compile time. The basis of their technique is a binary
rewriter (BW). The BW computes the size of the SMC and then accordingly
modifies the code to fit the SMC size. Here we are going to look into three
things: how and where this BW gets installed; how the data and instructions
are allocated to the SMC; and how the executable is modified to make these
changes.

The BW inserts code into the application executable for a customized installer.
The installer is called just before the main() routine in the application and it
runs just after code is loaded into the memory. The SMC size is calculated by
making an OS call or by probing addresses in the memory using binary search.

The install time allocator does two jobs: profiling and allocation. Profiling is
done at compile time which computes the frequency of data access. Variables
with greater frequency of access are allocated first to the SMC. Other informa-
tion that is required at install time like allocation and memory layout are also
collected at compile time for every possible SMC size. This information is stored
in a compact form. This way lot of computation and space is saved at install
time. To further save space all the accesses of variables are stored in a linked
list.

The program code is divided into regions at compile time based on the frequency
of access. At install time these regions are placed in the SMC. To preserve
the control flow branches are inserted at two places, which is called the code
patching: start of region i.e., from the original location to the SMC; and end of
region i.e. from the SMC to the original location.

Lot of information required as described above is collected at the compile time.
The code needs to be compiled to collect this information. Therefore only stat-
ically linked libraries with source code should be used for better results. Such
libraries are recompiled to include their variables in SMC allocation. Libraries
without a source code are not optimized.

The experiment included the following applications: StringSearch, a Pratt-
Boyer-Moore string search; CRC, 32 BIT ANSI X3.66 CRC checksum; Dijk-
stra, shortest path algorithm; EdgeDetect, edge detection in the image; FFT,
fast fourier transform; KS, minimum spanning tree for graphs; MMULT, matrix
multiplication; and Qsort, quick sort algorithm. Results are compared with one
of the author’s previous work [8] on SMC discussed as SMC-Optimal in this
study, which requires the size of the SMC at compile time. On average results
show a decline of −4 % in performance and a reduction of 5 % in energy saving.
We believe the overheads are in computing the SMC size at install time. Results
are also compared with hardware cache and are not very promising. On average
results show a reduction of 3 % in performance and the improvement of 8 % in
energy saving.

A Survey: Software-Managed On-Chip Memories 1185

SMC-DLDP: This [19, 20] is the first effort which presents a dynamic technique
to specifically deal with data layout decision problem (DLDP) in the SMC for
regular and irregular data access patterns usually found in multimedia applica-
tions. DLDP is defined as a problem of finding a layout for data to fit in the
memory, in this case SMC, to maximize energy saving. There are two parts in
the technique to solve this problem: selection of data to be moved to the SMC
based on the data access patterns and placement of this data in the SMC to
reduce memory fragmentation after solving DLDP.

Data selection (at compile time) algorithm depends on data reusability factor
(DRF) and the lifetime (LT) of a data element. Profiling is used at compile time
to find the frequency of data access to compute the DRF of a data element. DRF
is a ratio of frequency of access of an element to its estimated size in words. Data
elements with DRF of more than 1 are selected. Usually these elements are large
in numbers so a cluster is formed, to move them to the SMC using DMA. The
lifetime is computed in two steps: First LT of an element is computed, which
is the difference between its final and initial accesses. Then LT-D is computed,
which is the difference between LTs of two elements in an array. Now the data
cluster is formed which is a union of data elements that have the most beneficial
LT-D. In this way two kinds, first using DRF and the other using LT-D, of data
clusers are formed.

The DLDP solver (at compile time) finds an order/layout for these clusters
selected to fit them in the SMC. The DLDP is formulated into a two dimensional
(time and space) knapsack problem. A heuristic is given to solve this problem
to find the locations, which is based on divide and conquer principle, and then
clusters are loaded to the SMC at these locations using DMA. For dynamic
address translation of data references, which are created by the DLDP solver,
the address translation buffer in hardware is used to optimize address generation
code. This address translation buffer is implemented by a set of registers and is
updated by the operating system when the application is loaded. Replacement
policy is decided at runtime but nothing is mentioned about how and when the
data is replaced in the SMC.

The scheme presented in [20] is an improvement over their previous scheme [19].
These improvements are mentioned below:

• Tracking of data access patterns and data layout is changed from static to
dynamic. To accomplish this a data access record table (DART) is imple-
mented in the hardware. The DART records the runtime data access history,
as memory addresses and frequency counters, to support the decision of data
placement at runtime by the operating system. Only highly accessed mem-
ory addresses (called working memory locations – WMLs) are kept in the
DART, which are computed by profiling at compile time. The operating
system updates the memory addresses inside the DART.

1186 S. Alam, N. Horspool

• Introduction of new operating system components to automatically manage
the contents of the SMC. At runtime the operating system SMC manager
performs two tasks: data transfer; and data access trace comparison for se-
lecting a data layout scenario. These scenarios are computed during compile
time by the profiler and passed to the operating system before runtime.

The experiment was a set of codes obtained from MediaBench [40] with various
size (7.2 KB–504 KB) of input data. SimpleScalar [7] is used for simulation and
CACTI [63] for energy estimation. Comparisons, with different hardware cache
configurations using LRU replacement policy: 1, 2, 4, 8 way set associative and
different SMC sizes: 2 KB, 4 KB, 8 KB, are made. The results presented in [19]:
it improves 30 % energy consumption compared to caches, similar results are
shown by [10] discussed as SMC-No-Cache in this study; on average it improves
runtime by 18 %, but 8-way set associative hardware cache gives better runtime
on average 5 % better than using the SMC. The improvements carried out in [20]
improve the overall results by 6 % compared to [19].

SMC-MC: The SMC implemented in this [61] work is a 4-way set associative cache
in the IBM Cell processor [55] that has 8 general purpose cores and one special
core. Each of the 8 cores has its own local SMC which uses DMA to access
main memory. The 4-way set associative cache implemented in software uses
fully associative replacement policy and hence gives a low cache miss overhead.
A cache line table is used to map the tag to the cache line.

The replacement algorithm used is a modification of the reuse replacement algo-
rithm [56]. The original reuse replacement algorithm keeps a reuse counter for
each cache line starting with 0 and increments upto 3. Looking for a victim cache
it searches and evicts the first cache line with 0 reuse counter. While searching
it also decrements each of the non-zero reuse counters. The authors claim that
this algorithm may introduce more misses by selecting the zero counter. The
replacement algorithm modifies this and initializes the counter to less than or
equal to 3.

To avoid thrashing (generation of cache misses when the working set of a parallel
loop is greater than the cache size) loop distribution/fission [2] is applied, which
splits the loop into multiple loops to decrease the working set. The authors
present an adaptive algorithm to choose the cache line size and the replacement
policy. The algorithm learns and adapts to the characteristics of the specific
loop. There are five cache line sizes to select from. These are selected dy-
namically by running the loops and comparing the TPIs (execution times per
iteration). The size with the lowest TPI is selected. This way an optimal size
is selected for the running loop. The replacement policy is selected out of clock
algorithm, LRU and FIFO in the similar way.

Eight OpenMP [14] applications are ported to the runtime developed for eval-
uation. The results are compared against indirect indexed cache [32] discussed
as SMC-IIC in this study. On average, the results show an improvement of

A Survey: Software-Managed On-Chip Memories 1187

20 % over SMC-IIC. We believe the main reason is the tag comparison done in
SMC-IIC.

SMC-Code-Pos: The authors in [33] present an optimal code layout technique to
minimize energy consumption in an ES. They formulate the problem of code
layout, i.e. code repositioning and SMC code selection as an ILP (integer linear
programming) model. They also propose a solution based on heuristics.

The paper provides interesting observations about code selection for the SMC
and why the solution based on the heurisitcs is better than the solution based
on the ILP model. According to the authors the ILP optimization process is
time consuming and may halt the process indefinitely. Whereas targeting only
few hot code objects using heuristic algorithms significantly reduces the process
time and identify better quality solution. The difference of this study with other
such studies is that this study employs both code repositioning and SMC code
selection simultaneously. The benchmarks used in the experiment were selected
from MiBench [29] and ARM RealView Development Suite [6]. The only results
presented in the paper are of energy consumption.

SMC-LIB: This [23] is the first effort which deals with the heap data allocation to
SMC for GPPs. Some of the basic characteristics of this research are:

1. A library with APIs (application programming interfaces) is provided to
allocate memory in the SMCs.

2. A runtime is developed to provide semi automatic management of the SMCs.

3. Supports heap data but only for the C language.

4. No profiling knowledge is required to use the SMCs.

5. SMC is used as a flat space in which multiple threads share common data.

SMC-LIB is implemented as a software dynamic library and contains a runtime
that takes care of dynamically allocating and managing the heap data when
allocated by the programmer.

Now we explain the workings of the runtime of SMC-LIB: The runtime di-
vides the SMC into blocks, each of 1 KB in size. The record of allocation of
SMCs block is kept in a linked list. It is not clear from the paper where this
list is maintained/stored. Is it stored in one of the SMCs or in the main mem-
ory? A node in the linked list contains: addr, length, allocation scheme used
and pointer to the next node. A bitmap SPM PHY POS[BIT MAP SIZE] is
maintained for an SMC. If SPM PHY POS[i] = 0 it indicates that the ith po-
sition in the SMC is empty and a 1 indicates a filled position. If the memory
requested is greater than the size of the SMC then it is allocated out of the
main memory. There are four APIs and here we explain the most important of
them:

spm distributed malloc(long bytenum): This API allocates memory in a dis-
tributed manner as defined in Partitioned Global Address Space (PGAS) mem-
ory model. In PGAS each process or thread has its own local address space, and

1188 S. Alam, N. Horspool

also shares a global address space with other processes or threads. Each core’s
SMC is allocated the same amount of memory. For the programmer this memory
acts as a flat space. If the memory requested does not fit in all the SMCs, then
the main memory call malloc() is used to allocate rest of the requested memory.
Following is an example of allocating distributed memory and how two threads
use this memory:

1 #define ADDR int*

2 void *func1 (ADDR *testArray) {

3 . . .

4 processor_bind (P_LWPID, P_MYID, 0, NULL);

5 ADDR start_addr = testArray[0];

6 for (i = 0; i < 1048576; i++) {

7 start_addr[i] = i;

8 }

9 . . .

10 }

11 void *_func2 (ADDR *testArray) {

12 . . .

13 processor_bind (P_LWPID, P_MYID , 1, NULL));

14 ADDR startaddr = testArray[1];

15 for (i = 1048577; i < 2097152; i++) {

16 startaddr[i] = i;

17 }

18 . . .

19 }

20 void main (int argc, char **argv) {

21 . . .

22 ADDR *testArray;

23 testArray = (ADDR *)spm_distributed_malloc(2097152*sizeof(int));

24 pthread_create (&t1, &attr1, Func1, (ADDR *)testArray);

25 pthread_create (&t2, &attr2, Func2, (ADDR *)testArray);

26 . . .

27 pthread_join (t1, NULL);

28 pthread_join (t2, NULL);

29 }

Some Issues and Possible Improvements of SMC-LIB:

1. A general purpose program is independent of a hardware it is running on.
When a programmer is writing a program, we do not want him/her to
be aware of either the number of cores or the size of SMC in each core.
Based on this fact, a programmer using SMC-LIB may write a program
in which one process utilizes most of the SMCs. In this case some of
the other processes will be deprived of their SMCs and may run much
slower. In other words, it is possible that the local data of one of the

A Survey: Software-Managed On-Chip Memories 1189

threads ends up in the main memory because its SMC is stolen by another
thread running on another core. For example in the above source code list-
ing:

(a) The runtime of SMC-LIB will allocate the data for thread 1 (t1) to the
SMCs. Assuming the size of all the SMCs = 1 MB, then t1 is going
to consume all the SMCs. Therefore the data for thread 2 (t2) will be
allocated to the main memory.

(b) If we use profiling and know that fun2() i.e. t2 is run 80 % out of the
total runtime then we can make an informed decision. Based on this
information we allocate data for t2 to the SMCs and the data for t1 to
the main memory.

Out of the above two scenarios the second scenario will definitely give us bet-
ter performance. The techniques presented in [23] do not use any profiling
and hence use only scenario 1.

2. SMC-LIB is optimized for PGAS memory model. PGAS is best suited for
Single Program Multiple Data (SPMD) programming model. In this case a
single program on each core can work on different sets of data in its own lo-
cal core. Not many programs are written using SPMD, especially for GPPs.
Therefore general purpose applications running on GPPs using SMC-LIB
may incur increase communication costs if they do not follow the SPMD
programming model.

Six applications from the PARSEC [4] and SPLASH2 [26] benchmark suite were
selected for the experiments. The experiments show that by using the library
the applications on average can reduce the energy consumption by 24 %.

3 CLASSIFICATIONS DEVELOPED

We develop general classifications also called parameters to distinguish, compare
and analyze the eighteen works discussed above. Table 1 lists these works based on
these classifications. Section 4 provides analysis and gives some of the comparison
examples using this table. As mentioned initially in the paper, the most important
aspect of managing a SMC is to allocate as much program code and data to the
SMC as possible. Our classifications are mostly based on memory allocations and
are defined below:

1. Allocation Kind Static: Memory allocation cannot change at runtime, i.e. the
cache blocks cannot be replaced when the program is running. After moving the
code/data to the SMC it cannot be replaced by other code/data. It is useful
for long running programs where the compiler/software decides for once which
code/data will be moved to the SMC. It is easier to manage but it is not very
flexible.

2. Allocation Kind Dynamic: Memory allocation can change at runtime, i.e. the
cache blocks can be replaced when the program is running. After moving the

1190 S. Alam, N. Horspool

code/data to the SMC it can be replaced by other code/data. It is difficult to
manage but it is more flexible.

3. Allocation Type Code: If program instructions are allocated to the cache.

4. Allocation Type Data: If program data is allocated to the cache. We further
subdivide data allocation into three categories:

(a) Variables: These can be scalars or arrays and local or global, and are allo-
cated at compile time or runtime.

(b) Stack: Data using the stack and is allocated at compile time or runtime.

(c) Heap: Memory area allocated during runtime and used as dynamic memory.

5. Allocation Method Static: Techniques used for allocation are carried out at
compile time.

6. Allocation Method Dynamic: Techniques used for allocation are carried out at
runtime.

7. Profiling Static: Compile time profiling. The program is executed with generated
sets of input data to collect profiling information.

8. Profiling Dynamic: Runtime profiling. Profiling information is collected as the
program executes with actual (real) input data.

9. System Compared: The system that is compared with the system developed or
presented.

10. Results: We divide the results compared to the system above (classification 9)
into two categories:

(a) Performance: An improvement or a reduction in the execution time.

(b) Energy saving: An improvement or a reduction in the energy saved.

(c) We use the following grades to compare the above two: A: (100 % and up)
B: (50 % to 99 %) C: (0 % to 49 %) D: (−1 % to −49 %) F: (−50 % and less)

4 SYNTHESIS

In this section we use the classifications defined above to distinguish, compare and
analyze the approaches used for SMCs as described in Section 2. In this synthesis we
determine and reason some of the basic characteristics of a framework for optimizing
the management of SMCs, and list them at the end of this section.

All the work discussed in this paper uses software to manage SMCs and over
half (seven) of them use both software and hardware as shown in Table 1. One of
them SMC-SMT is implemented in hardware (simulated) but needs a flag from the
compiler to be passed to indicate the size of a function. Less than half (five) of the
schemes use profiling which is of type static as shown in Table 1.

Only three of these works, SMC-VMP, SMC-IIC and SMC-LIB, are done for
desktops, with two of them, SMC-VMP and SMC-LIB, designed for a multiproces-
sor. SMC-VMP showed poor results and SMC-IIC did not prove to be successful,

A Survey: Software-Managed On-Chip Memories 1191

results shown in column PI (Performance Improvement) of Table 1. As mentioned,
the reason for poor performance in SMC-VMP is the lack of a good software system
or a programming environment for managing SMCs. SMC-LIB is the first effort
that shows significant improvement in energy for GPPs. They are not optimized
for general purpose applications and are not fully automatic, and can be further
improved by using profiling. None of the techniques for GPPs gets a grade of A as
shown in Table 1.

There are two schemes which based on our study get a grade of A in the results as
shown in column PI of Table 1. One is SMC-SMT which is compared with a system
using no cache and the other is SMC-GPU which is compared with a system using
texture cache. So, out of the sixteen works surveyed, we consider SMC-GPU to give
the best results. We list SMC-GPU as an ES in Table 1 because it is designed for
GPUs, special purpose graphic processors, that are embedded inside either a GPP
or a high performance ES.

There are also some successful efforts in multicore processors, SMC-GPU, SMC-
MC and SMC-DLDP, but all are developed for ES. If SMCs can be successful in
ES, they can also be successful in GPPs. Unlike ES, because of the nature of appli-
cations, for any system software to be successful in GPPs it has to provide an easy
to understand and programmable framework and a transparent software/hardware
interface to the application programmer.

Less than half (six) of the works discussed use profiling and are all type static,
Table 1. The reason for this small number is that most of the SMCs are used in
ES as shown in Table 1. ES are designed to run specific applications. It is easier to
optimize the program for a specific application than for a general purpose application
without profiling information.

Now we list and discuss, based on our classifications and the analysis above, what
we consider to be some of the basic characteristics of a framework for optimizing
the management of SMCs:

Transparent software/hardware interface: We believe this area is one of the
most important factor for improving the use of SMCs especially in a GPP. The
best example of a transparent software/hardware system for managing SMCs
discussed in this paper is SMC-GPU. The CUDA framework used in SMC-GPU
is highly optimized for and only runs on Nvidia’s GPUs. Other significant pro-
gramming models not discussed in this paper are: Brook [15] used by AMD and
RapidMind [45] used by the new language called Ct [27], currently under devel-
opment at Intel, specifically designed for multi core CPUs. They are still under
development and we are not sure how much support they provide for SMCs.
Most of the successful work done in multicore processors is in ES discussed as
SMC-GPU, SMC-MC and SMC-DLDP in this paper. Application programmers
for GPP need a generally easy to understand and programmable interface. So
making it general and transparent is one of the major hurdles for adapting SMCs
to a GPP.

1192 S. Alam, N. Horspool
A

llo
cation

R
esu

lts

S
M

C
T

y
p

e
K

in
d

T
y
p

e
M

eth
o
d

1P
rof

C
om

p
ared

W
ith

2P
I

3E
4H

/S
E

S
G

P
P

S
M

C
-V

M
P

D
y
n
am

ic
7

D
y
n
am

ic
7

T
raced

sim
u
lation

s
D

7
3

7
3

S
M

C
-IIC

D
y
n
a
m

ic
7

D
y
n
am

ic
7

5H
C

C
7

3
7

3

S
M

C
-L

IB
D

y
n
a
m

ic
H

eap
D

y
n
am

ic
7

H
C

9C
D

C
7

7
3

S
M

C
-L

T
D

y
n
a
m

ic
6V

ar
S
tatic

7
7H

O
S
M

C
/S

M
C

H
C

D
/C

7
7

3
7

S
M

C
-N

o-C
ach

e
S
ta

tic
C

o
d
e,

D
ata

S
tatic

S
tatic

H
C

7
C

7
3

7

S
M

C
-O

p
tim

a
l

S
tatic

V
a
r,

S
tack

S
tatic

S
tatic

M
ain

m
em

ory
B

7
7

3
7

S
M

C
-IC

ach
e-1

D
y
n
am

ic
C

o
d
e

D
y
n
am

ic
7

H
C

D
7

3
3

7

S
M

C
-IC

ach
e-2

D
y
n
am

ic
C

o
d
e

D
y
n
am

ic
7

H
C

D
7

3
3

7

S
M

C
-C

T
D

y
n
a
m

ic
C

o
d
e,

V
ar,

S
tack

S
tatic

S
tatic

S
M

C
-O

p
tim

al/H
C

C
/C

7
7

3
7

S
M

C
-A

s-F
C

D
y
n
am

ic
C

o
d
e

D
y
n
am

ic
7

F
C

in
M

ain
M

em
ory

C
7

7
3

7

S
M

C
-G

P
U

D
y
n
am

ic
V

ar
D

y
n
am

ic
7

T
ex

tu
re

cach
e

A
7

3
3

7

S
M

C
-H

ea
p

D
y
n
am

ic
H

ea
p

D
y
n
am

ic
7

8D
L

M
allo

c
C

7
7

3
7

S
M

C
-S

M
T

D
y
n
a
m

ic
C

o
d
e

D
y
n
am

ic
7

N
o

cach
e

A
7

3
3

7

S
M

C
-G

C
D

y
n
am

ic
V

ar
S
tatic

S
tatic

S
M

C
-C

T
C

7
7

3
7

S
M

C
-U

S
ize

S
tatic

C
o
d
e,

V
a
r,

S
tack

S
tatic

S
tatic

H
C

/N
o

cach
e

D
/C

C
/C

7
3

7

S
M

C
-D

L
D

P
S
ta

tic
V

ar
S
tatic

S
tatic

H
C

C
C

3
3

7

S
M

C
-M

C
D

y
n
am

ic
C

o
d
e

D
y
n
am

ic
7

S
M

C
-IIC

C
7

3
3

7

S
M

C
-C

o
d
e-P

os
S
tatic

C
o
d
e

S
tatic

3
H

C
7

C
D

7
3

7

1
P

ro
fi

lin
g

2
P

erfo
rm

a
n

ce
im

p
ro

v
em

en
t

3
E

n
erg

y
sa

v
in

g
4

Im
p

lem
en

ted
u

sin
g

b
o
th

h
a
rd

w
a
re

a
n

d
so

ftw
a
re

5
H

a
rd

w
a
re

ca
ch

e
6

V
a
ria

b
les

7
H

a
n

d
o
p

tim
ized

S
M

C
/
S

M
C

a
s

h
a
rd

w
a
re

ca
ch

e
8

D
o
u

g
L

ea
’s

m
a
llo

c()
[3

9
]

9
R

esu
lts

a
re

in
g
ra

d
e

C
a
n

d
D

ra
n

g
e

T
a
b
le

1.
A

llo
cation

s,
resu

lts
a
n
d

p
latform

s
su

p
p

orted
b
y

S
M

C
s

b
ased

on
th

e
classifi

cation
s

d
ev

elop
ed

in
S
ection

3

A Survey: Software-Managed On-Chip Memories 1193

Dynamic profiling: Profiling is a very important part of any software optimizing
system. Dynamic profiling provides more exact information than static profil-
ing. The challenge of dynamic profiling is that it takes time and space and hence
increases the execution time and area of the running program. [62] presents a dy-
namic application profiler for space conservation and [13] is a recent effort that
presents a dynamic fast profiler for data locality. Almost all modern processors
have hardware performance monitors/counters that can be used for profiling the
running program [65, 5]. But, to our knowledge, there is no such effort where
they have been used for profiling to optimize the use of SMCs. We did not find
any work that uses dynamic profiling for SMC management. We believe this is
one of the major areas where more research is needed.

Dynamic memory allocation: The ideal situation would be to allocate all the
code and data of the current working set of the running program to the SMC
without any delay. Much work has been done on allocation of code and data
including stack and global variables to the SMC. There is a need to do more work
on SMC management for heap data. The only work we know of on allocating
the heap to the SMC is SMC-Heap. The other areas are the kind and method
of allocation. Based on the results presented in Table 1 we believe that both
the method and the kind of allocation should be dynamic. Dynamic allocation
takes time and can increase the execution time of the running program. To
reduce time, we recommend obtaining help from the hardware as is done in some
of the schemes listed in Table 1 but should be transparent to the application
programmer especially for the GPP as described above.

Flexible: With different sizes of SMCs and the different data patterns presented by
applications running on ES and GPP, there is a need for the SMC management
framework to be flexible. This will enable it to learn, change and adapt to these
changing environments. This is done in SMC-MC, which adapts and selects dif-
ferent cache line sizes and replacement policies based on the loop characteristics,
and the technique presented in SMC-USize works with an unknown SMC size.

5 CONCLUSION

We have analyzed the current trends and reasoned about some of the basic character-
istics of a framework for managing and optimizing SMCs in ES and GPP. A general
classification has been developed to compare, analyze and distinguish these trends.
Table 1 lists the division based on these classifications for the easy analysis and
comparison.

With aggressive clock rates, the average access time to a L1-cache will typically
be 3–7 cycles and 30–50 for L2-caches, which will adversely affect the average number
of instructions per cycle [1]. Conventional processors at best will be able to achieve
an annual gain of 12 % rather than 55 % in speed [1] if Moore’s Law continues to
apply to chip density. This is the main reason multicore processors have already
taken over from single core processors. The on-chip memory system will be a major

1194 S. Alam, N. Horspool

bottleneck in future processors and there is a need to do more research and work on
managing these memories especially for GPP.

We hope this paper will not only serve as a collection of recent references,
a source of information and classifications for easy comparison and analysis but also
a motivation for improving SMC management framework for ES and introducing
and making it successful for GPP.

REFERENCES

[1] Agarwal, V.—Hrishikesh, M. S.—Keckler, S. W.—Burger, D.: Clock Rate
Versus IPC: The End of the Road for Conventional Microarchitectures. SIGARCH
Computer Architecture News, Vol. 28, 2000, No. 2, pp. 248–259.

[2] Aho, A. V.—Lam, M. S.—Sethi, R.—Ullman, J. D.: Compilers: Principles,
Techniques, and Tools. Pearson Education, Inc., Boston, MA, USA, 2007.

[3] Alam, S.—Horspool, R. N.: Current Trends and the Future of Software-Managed
On-Chip Memories in Modern Processors. Proceedings of the 2010 International Con-
ference on High Performance Computing Systems (HPCS 2010), July 2010, pp. 63–70.

[4] Allen, R.—Kennedy, K.: Optimizing Compilers for Modern Architectures. Mor-
gan Kaufmann, San Francisco, CA, USA, 2002.

[5] Anderson, J. M.—Berc, L. M.—Dean, J.—Ghemawat, S.—Henzin-
ger, M. R.—Leung, S.-T. A.—Sites, R. L.—Vandevoorde, M. T.—Wald-
spurger, C. A.—Weihl, W. E.: Continuous Profiling: Where Have All the Cycles
Gone? ACM Transactions on Computer Systems, Vol. 15, 1997, No. 4, pp. 357–390.

[6] ARM. ARM RealView Development Suite. Available online: http://www.arm.com/

products/processors/classic/arm11/index.php.

[7] Austin, T.—Larson, E.—Ernst, D.: SimpleScalar: An Infrastructure for Com-
puter System Modeling. Computer, Vol. 35, 2002, No. 2, pp. 59–67.

[8] Avissar, O.—Barua, R.—Stewart, D.: An Optimal Memory Allocation Scheme
for Scratch-Pad-Based Embedded Systems. ACM Transactions on Embedded Com-
puting Systems (TECS), Vol. 1, 2002, No. 1, pp. 6–26.

[9] Baiocchi, J.—Childers, B. R.—Davidson, J. W.—Hiser, J. D.—Misur-
da, J.: Fragment Cache Management for Dynamic Binary Translators in Embedded
Systems with Scratchpad. Proceedings of the 2007 International Conference on Com-
pilers, Architecture, and Synthesis for Embedded Systems (CASES ’07), ACM, 2007,
pp. 75–84.

[10] Banakar, R.—Steinke, S.—Lee, B.-S.—Balakrishnan, M.—Marwedel, P.:
Scratchpad Memory: Design Alternative for Cache On-Chip Memory in Embedded
Systems. Proceedings of the Tenth International Symposium on Hardware/Software
Codesign (CODES ’02), ACM, 2002, pp. 73–78.

[11] Baskaran, M. M.—Bondhugula, U.—Krishnamoorthy, S.—Ramanu-
jam, J.—Rountev, A.—Sadayappan, P.: Automatic Data Movement and Com-
putation Mapping for Multi-Level Parallel Architectures with Explicitly Managed

A Survey: Software-Managed On-Chip Memories 1195

Memories. Proceedings of the 13th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP ’08), ACM, 2008, pp. 1–10.

[12] Bathen, L. A. D.—Dutt, N. D.: Software Controlled Memories for Scalable Many-
Core Architectures. 2012 IEEE 18th International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA), 2012, pp. 1–10.

[13] Berg, E.—Hagersten, E.: Fast Data-Locality Profiling of Native Execution. Pro-
ceedings of the 2005 ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS ’05), ACM, 2005, pp. 169–180.

[14] OpenMP Architecture Review Board: OpenMP Application Program Interface Ver-
sion 3.0. Available online: http://www.openmp.org/mp-documents/spec30.pdf,
2008.

[15] Buck, I.—Foley, T.—Horn, D.—Sugerman, J.—Fatahalian, K.—
Houston, M.—Hanrahan, P.: Brook for GPUs: Stream Computing on Graph-
ics Hardware. ACM SIGGRAPH 2004 Papers (SIGGRAPH ’04), ACM, 2004,
pp. 777–786.

[16] Cheriton, D. R.—Goosen, H. A.—Boyle, P. D.: ParaDiGM:: A Highly Scal-
able Shared-Memory Multicomputer Architecture. Computer, Vol. 24, 1991, No. 2,
pp. 33–46.

[17] Cheriton, D. R.—Gupta, A.—Boyle, P. D.—Goosen, H. A.: The VMP Multi-
processor: Initial Experience, Refinements, and Performance Evaluation. Proceedings
of the 15th Annual International Symposium on Computer Architecture (ISCA ’88),
IEEE Computer Society Press, 1988, pp. 410–421.

[18] Cheriton, D. R.—Slavenburg, G. A.—Boyle, P. D.: Software-Controlled
Caches in the VMP Multiprocessor. Proceedings of the 13th Annual International
Symposium on Computer Architecture (ISCA ’86), IEEE Computer Society Press,
1986, pp. 366–374.

[19] Cho, D.—Pasricha, S.—Issenin, I.—Dutt, N.—Paek, Y.—Ko, S.: Compiler
Driven Data Layout Optimization for Regular/Irregular Array Access Patterns. Pro-
ceedings of the 2008 ACM SIGPLAN-SIGBED Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES ’08), ACM, 2008, pp. 41–50.

[20] Cho, D.—Pasricha, S.—Issenin, I.—Dutt, N. D.—Ahn, M.—Paek, Y.:
Adaptive Scratch Pad Memory Management for Dynamic Behavior of Multimedia
Applications. Transactions on Computer-Aided Design Integrated Circuits and Sys-
tems, Vol. 28, 2009, No. 4, pp. 554–567.

[21] The Trimaran Benchmark Suite. Available online: http://www.trimaran.org, 1999.

[22] NVIDIA Corporation: Nvidia’s Next Generation CUDA Compute Architecture,
Fermi. Whitepaper NVIDIA Corporation, 2009.

[23] Deng, N.—Ji, W.—Li, J.—Zuo, Q.: A Semi-Automatic Scratchpad Memory
Management Framework for CMP. Proceedings of the 9th International Conference
on Advanced Parallel Processing Technologies (APPT ’11), Springer-Verlag, Berlin,
Heidelberg, 2011, pp. 73–87.

[24] Denning, P. J.: The Locality Principle. Communications of the ACM, Vol. 48, 2005,
No. 7, pp. 19–24.

1196 S. Alam, N. Horspool

[25] Dominguez, A.—Udayakumaran, S.—Barua, R.: Heap Data Allocation to
Scratch-Pad Memory in Embedded Systems. Journal of Embedded Computing, Vol. 1,
2005, No. 4, pp. 521–540.

[26] Fatahalian, K.—Horn, D. R.—Knight, T. J.—Leem, L.—Houston, M.—
Park, J. Y.—Erez, M.—Ren, M.—Aiken, A.—Dally, W. J.—Hanrahan, P.:
Sequoia: Programming the Memory Hierarchy. Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing (SC ’06), ACM, 2006, Art. No. 83.

[27] Ghuloum, A.—Smith, T.—Wu, G.—Zhou, X.—Fang, J.—Guo, P.—
So, B.—Rajagopalan, M.—Chen, Y.—Chen, B.: Future-Proof Data Parallel
Algorithms and Software on Intel Multi-Core Architecture. Intel Technology Journal,
Vol. 11, 2007, No. 4, pp. 333–347.

[28] Khronos OpenCL Working Group: The OpenCL Specification Version: 1.0 Doc-
ument. Revision: 48. Available Online: http://www.khronos.org/registry/cl/

specs/opencl-1.0.48.pdf, 2009.

[29] Guthaus, M. R.—Ringenberg, J. S.—Ernst, D.—Austin, T. M.—
Mudge, T.—Brown, R. B.: MiBench: A Free, Commercially Representative
Embedded Benchmark Suite. Available online: http://www.eecs.umich.edu/

jringenb/mibench, 2001.

[30] Hakura, Z. S.—Gupta, A.: The Design and Analysis of a Cache Architecture
for Texture Mapping. ACM SIGARCH Computer Architecture News, Vol. 25, 1997,
No. 2, pp. 108–120.

[31] Halfhill, T. R.: Parallel Programming with CUDA Nvidia’s High-Performance
Computing Platform Uses Massive Multithreading. The Insider Guide to Micropro-
cessor Hardware, 2008.

[32] Hallnor, E. G.—Reinhardt, S. K.: A Fully Associative Software-Managed Cache
Design. ACM SIGARCH Computer Architecture News, Vol. 28, 2000, No. 2,
pp. 107–116.

[33] Huang, C.-W.—Tsao, S.-L.: Minimizing Energy Consumption of Embedded Sys-
tems via Optimal Code Layout. IEEE Transactions on Computers, Vol. 61, 2012,
No. 8, pp. 1127–1139.

[34] Huneycutt, C. M.—Fryman, J. B.—Mackenzie, K. M.: Software Caching Us-
ing Dynamic Binary Rewriting for Embedded Devices. Proceedings of the 2002 In-
ternational Conference on Parallel Processing (ICPP ’02), IEEE Computer Society,
2002, pp. 621–630.

[35] Intel Corporation Inc.: 3rd Generation Intel XScale(R) Microarchitecture Developer’s
Manual. Available online: http://www.intel.com/design/intelxscale/316283.

htm, 2007.

[36] Kandemir, M.—Ramanujam, J.—Irwin, J.—Vijaykrishnan, N.—
Kadayif, I.—Parikh, A.: Dynamic Management of Scratch-Pad Memory
Space. Proceedings of the 38th Annual Design Automation Conference (DAC ’01),
ACM, 2001, pp. 690–695.

[37] Keckler, S.—Dally, W. J.—Khailany, B.—Garland, M.—Glasco, D.:
GPUs and the Future of Parallel Computing. IEEE Micro, Vol. 31, 2011, No. 5,
pp. 7–17.

A Survey: Software-Managed On-Chip Memories 1197

[38] Knight, T. J.—Park, J. Y.—Ren, M.—Houston, M.—Erez, M.—Fataha-
lian, K.—Aiken, A.—Dally, W. J.—Hanrahan, P.: Compilation for Explic-
itly Managed Memory Hierarchies. Proceedings of the 12th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming (PPoPP ’07), ACM, 2007,
pp. 226–236.

[39] Lea, D.: A Memory Allocator Called Doug Lea’s Malloc or dlmalloc for Short.
Available online: http://gee.cs.oswego.edu/dl/html/malloc.html, 1996.

[40] Lee, C.—Potkonjak, M.—Mangione-Smith, W. H.: MediaBench: A Tool for
Evaluating and Synthesizing Multimedia and Communicatons Systems. Proceedings
of the 30th Annual ACM/IEEE International Symposium on Microarchitecture (MI-
CRO 30), IEEE Computer Society, 1997, pp. 330–335.

[41] Li, L.—Feng, H.—Xue, J.: Compiler-Directed Scratchpad Memory Management
via Graph Coloring. ACM Transactions on Architecture and Code Optimization,
Vol. 6, 2009, No. 3, Art. No. 9.

[42] Li, L.—Gao, L.—Xue, J.: Memory Coloring: A Compiler Approach for Scratch-
pad Memory Management. Proceedings of the 14th International Conference on Par-
allel Architectures and Compilation Techniques (PACT ’05), IEEE Computer Society,
2005, pp. 329–338.

[43] Mann, Z. Á.: GPGPU: Hardware/Software Co-Design for the Masses. Computing
and Informatics, Vol. 30, 2011, No. 6, pp. 1247–1257.

[44] Mattson, T. G.—Riepen, M.—Lehnig, T.—Brett, P.—Haas, W.—Ken-
nedy, P.—Howard, J.—Vangal, S.—Borkar, N.—Ruhl, G.—Dighe, S.:
The 48-Core SCC Processor: The Programmer’s View. Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC ’10), IEEE Computer Society, 2010, pp. 1–11.

[45] McCool, M. D.: Data-Parallel Programming on the Cell BE and the GPU Using the
RapidMind Development Platform. GSPx Multicore Applications Conference, Santa
Clara, CA, USA, October 2006.

[46] McIlroy, R.—Dickman, P.—Sventek, J.: Efficient Dynamic Heap Allocation
of Scratch-Pad Memory. Proceedings of the 7th International Symposium on Memory
Management (ISMM ’08), ACM, 2008, pp. 31–40.

[47] Metzlaff, S.—Uhrig, S.—Mische, J.—Ungerer, T.: Predictable Dynamic
Instruction Scratchpad for Simultaneous Multithreaded Processors. Proceedings of
the 9th Workshop on Memory Performance (MEDEA ’08), ACM, 2008, pp. 38–45.

[48] Miller, J. E.—Agarwal, A.: Software-Based Instruction Caching for Embed-
ded Processors. Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-XII), ACM,
2006, pp. 293–302.

[49] Malardalen Real-Time Research Center (MRTC): WCET Benchmark Suite. Available
online: http://www.mrtc.mdh.se/projects/wcet/benchmarks.html, 1999.

[50] Nguyen, N.—Dominguez, A.—Barua, R.: Memory Allocation for Embedded
Systems with a Compile-Time-Unknown Scratch-Pad Size. ACM Transactions on
Embedded Computing Systems (TECS), Vol. 8, 2009, No. 3, Art. No. 21.

1198 S. Alam, N. Horspool

[51] University of Toronto Digital Signal Processing (UTDSP): UTDSP Benchmark Suite.
Available online: http://www.eecg.toronto.edu, 1992.

[52] Pakzad, P.—Anantharam, V.: A New Look at the Generalized Distributive Law.
IEEE Transactions on Information Theory, Vol. 50, 2004, No. 6, pp. 1132–1155.

[53] Park, J.—Moon, S.-M.: Optimistic Register Coalescing. ACM Transactions on
Programming Languages and Systems, Vol. 26, 2004, No. 4, pp. 735–765.

[54] Patterson, D. A.—Hennessy, J. L.: Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2007.

[55] Pham, D.—Aipperspach, T.—Boerstler, D.—Bolliger, M.—Chaud-
hry, R.—Cox, D.—Harvey, P.—Harvey, P. M.—Hofstee, H. P.—
Johns, C.—Kahle, J.—Kameyama, A.—Keaty, J.—Masubuchi, Y.—
Pham, M.—Pille, J.—Posluszny, S.—Riley, M.—Stasiak, D. L.—
Suzuoki, M.—Takahashi, O.—Warnock, J.—Weitzel, S.—Wendel, D.—
Yazawa, K.: Overview of the Architecture, Circuit Design, and Physical Implemen-
tation of a First-Generation Cell Processor. IEEE Journal of Solid-State Circuits,
Vol. 41, 2006, No. 1, pp. 179–196.

[56] Qureshi, M. K.—Thompson, D.—Patt, Y. N.: The V-Way Cache: Demand
Based Associativity via Global Replacement. Proceedings of the 32nd Annual Inter-
national Symposium on Computer Architecture (ISCA ’05), IEEE Computer Society,
2005, pp. 544–555.

[57] Ren, M.—Park, J. Y.—Houston, M.—Aiken, A.—Dally, W. J.: A Tun-
ing Framework for Software-Managed Memory Hierarchies. Proceedings of the 17th

International Conference on Parallel Architectures and Compilation Techniques
(PACT ’08), ACM, 2008, pp. 280–291.

[58] Rutter, P.—Orost, J.—Gloistein, D. B.: Binary to Printable ASCII Converter
Source Code. Available online: http://www.bookcase.com/library/software/

msdos.devel.lang.c.html.

[59] Schneider, S.—Yeom, J.-S.—Rose, B.—Linford, J. C.—Sandu, A.—Niko-
lopoulos, D. S.: A Comparison of Programming Models for Multiprocessors with
Explicitly Managed Memory Hierarchies. ACM SIGPLAN Notices, Vol. 44, 2009,
No. 4, pp. 131–140.

[60] Scott, K.—Kumar, N.—Velusamy, S.—Childers, B.—Davidson, J. W.—
Soffa, M. L.: Retargetable and Reconfigurable Software Dynamic Translation. Pro-
ceedings of the International Symposium on Code Generation and Optimization
(CGO ’03), IEEE Computer Society, 2003, pp. 36–47.

[61] Seo, S.—Lee, J.—Sura, Z.: Design and Implementation of Software-Managed
Caches for Multicores with Local Memory. IEEE 15th International Symposium on
High Performance Computer Architecture (HPCA 2009), IEEE Computer Society,
2009, pp. 55–66.

[62] Shankar, K.—Lysecky, R.: Non-Intrusive Dynamic Application Profiling for Mul-
titasked Applications. Proceedings of the 46th ACM/IEEE Annual Design Automa-
tion Conference (DAC ’09), ACM, 2009, pp. 130–135.

[63] Shivakumar, P.—Jouppi, N. P.: CACTI 3.0: An Integrated Cache Timing, Power,
and Area Model. Compaq Western Research Laboratory Report, 2001.

A Survey: Software-Managed On-Chip Memories 1199

[64] Silberstein, M.—Schuster, A.—Geiger, D.—Patney, A.—Owens, J. D.:
Efficient Computation of Sum-Products on GPUs Through Software-Managed
Cache. Proceedings of the 22nd Annual International Conference on Supercomput-
ing (ICS ’08), ACM, 2008, pp. 309–318.

[65] Sweeney, P. F.—Hauswirth, M.—Cahoon, B.—Cheng, P.—Diwan, A.—
Grove, D.—Hind, M.: Using Hardware Performance Monitors to Understand the
Behavior of Java Applications. Proceedings of the 3rd Conference on Virtual Machine
Research and Technology Symposium (VM ’04), USENIX Association, 2004, pp. 5–5.

[66] Taylor, M. B.—Kim, J.—Miller, J.—Wentzlaff, D.—Ghodrat, F.—
Greenwald, B.—Hoffman, H.—Johnson, P.—Lee, J.-W.—Lee, W.—
Ma, A.—Saraf, A.—Seneski, M.—Shnidman, N.—Strumpen, V.—
Frank, M.—Amarasinghe, S.—Agarwal, A.: The Raw Microprocessor:
A Computational Fabric for Software Circuits and General-Purpose Programs. IEEE
Micro, Vol. 22, 2002, No. 2, pp. 25–35.

[67] Tullsen, D. M.—Eggers, S. J.—Levy, H. M.: Simultaneous Multithreading:
Maximizing On-Chip Parallelism. ISCA ’98: 25 Years of the International Symposia
on Computer Architecture (Selected Papers), ACM, 1998, pp. 533–544.

[68] Udayakumaran, S.—Dominguez, A.—Barua, R.: Dynamic Allocation for
Scratch-Pad Memory Using Compile-Time Decisions. ACM Transactions on Embed-
ded Computing Systems (TECS), Vol. 5, 2006, No. 2, pp. 472–511.

[69] Wulf, W. A.—McKee, S. A.: Hitting the Memory Wall: Implications of the Ob-
vious. SIGARCH Comput. Archit. News, Vol. 23, 1995, No. 1, pp. 20–24.

[70] Banakar, R.—Steinke, S.—Lee, B.-S.—Balakrishnan, M.—Marwedel, P.:
Comparison of Cache and Scratch-Pad Based Memory Systems with Respect to Per-
formance, Area and Energy Consumption. Technical Report No. 762, University of
Dortmund, 2001.

Shahid Alam is currently Postdoctoral Research Fellow at
Qatar Foundation in Doha, Qatar. He received his Ph.D. de-
gree from University of Victoria, BC, in 2014 and his M.Sc. de-
gree from Carleton University, Ottawa, ON, in 2007. He has
more than 6 years of working experience in the software indus-
try. His research interests include programming languages, com-
pilers, software engineering and binary analysis for software se-
curity. Currently he is looking into applying compiler, binary
analysis and artificial intelligence techniques to automate and
optimize Android malware analysis and detection.

1200 S. Alam, N. Horspool

Nigel Horspool is Professor of computer science at the Uni-
versity of Victoria. He received his M.Sc. and Ph.D. degrees in
computer science from the University of Toronto in 1972 and
1976, respectively. From 1976 until 1983, he was Assistant Pro-
fessor and then Associate Professor in the School of Computer
Science at McGill University in Montreal. He joined the Com-
puter Science Department at the University of Victoria in 1983.
His research interests are mostly concerned with the compilation
and implementation of programming languages. He is the author
of the book C Programming in the Berkeley UNIX Environment

and co-author of the book C# Concisely. He is one of the editors-in-chief of the journal
of Software: Practice and Experience.

