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Abstract. Some applications in wireless sensor networks (WSNs) only need to
record the information of a target entering or leaving some specific regions of WSNs
perimeter. One important issue in this context is to detect the perimeter of the de-
ployed network to ensure that the sensor nodes cover the target area. In this paper
we propose two distributed algorithms to elect the perimeter nodes of query regions
in a WSN. We consider the most general case, where every sensor has a differ-
ent sensing radius. We provide performance metrics to analyze the performance
of our approach and show by simulation that the proposed algorithms give good
performance.

Keywords: Boundary estimation, distributed algorithm, heterogenous sensing ra-
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1 INTRODUCTION

WSNs are composed of many low cost, low power devices with sensing, local process-
ing and wireless communication capabilities [3, 8]. Typical applications of WSNs
may require a random deployment of sensor nodes over a large target area. In addi-
tion, military surveillance systems also require detection of any activities around the
boundaries of the target surveillance area. Therefore, the system should be capable
of detecting and identifying any object that enters or leaves the monitored area.
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As energy consumption is a limiting factor for the lifetime of a node, communica-
tion has to be minimized. Upon startup, the swarm of sensors form a decentralized
and self-organizing network that monitors the region. From an algorithmic point of
view, the basic characteristic of a WSN requires working under a paradigm that is
different from classical models: absence of a central control unit, limited capabili-
ties of nodes, and limited communication between nodes. These require developing
new algorithmic ideas that combine methods of distributed computing and network
protocols with traditional centralized network algorithm. In other words, the real
question is how can we use a limited amount of strictly local information in order
to achieve distributed knowledge of global network properties?

A perimeter is an area enclosing given, specified characteristics. In this paper,
we focus on the perimeter detection of query regions in a WSN with heterogeneous
sensing ranges, where perimeter detection has a wide range of uses in several areas,
including

military, (e.g., locating minefield or surrounding a target);
nuclear/chemical industries, (e.g., tracking radiation/chemical spills);
oceans, (e.g., tracking oil spills);

tracking forest fires; and

SNl

space, (e.g., planetary exploration) [4].

The nodes that represent the perimeter of the target area under surveillance are
called perimeter nodes. Hence, the development of mechanisms by which perimeter
nodes of network can be identified is an important and a challenging problem.

In this paper, we propose two distributed algorithms to elect the perimeter nodes
of a query region in a heterogenous WSN. Therefore, to consider specific region inside
the whole monitoring area, the end user will transmit the coordinate information of
the four vertices of the rectangle to the WSN. The sensor nodes within the query
region will become an independent WSN and execute our proposed approach to
determine the perimeter nodes of the region. The perimeter nodes cooperate with
each others to monitor the query region.

The rest of the paper is organized as follows: Section 2 describes related re-
search on perimeter detection problem. The description of relevant terms is listed
in Section 3. In Section 4, we introduce our approach to carry the proposed prob-
lem. Simulation of our approach is presented in Section 5. We conclude our work
in Section 6.

2 RELATED RESEARCH

With emerging need for environmental monitoring, military surveillance and security
protection, research on WSNs has recently received an increased interest [3, 8, 15,
16]. Many challenging research problems [17] are being looked upon that include
scalability of the algorithms so as to incorporate a large number of nodes, design
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of simple and efficient schemes for different network operations, devising power-
conserving protocols, defining security mechanisms, and development of exciting
new applications that exploit the potential of WSN to the fullest extent. In all
these applications, characteristics of the monitored area ought to be collected and
analyzed.

Boundary/Edge estimation is an important data processing problem in WSNs.
It is of considerable interest in detecting contours and boundaries in a scalar field,
like the temperature distribution [5] or when the phenomenon evolves over time,
like in scenarios with diffusion phenomena such as chemical leaks whose perimeter
needs to be tracked. In the context of WSNs, edge detection can be considered as
a powerful primitive which can be used as a building block for a variety of other
applications. Numerous perimeter detection approaches have been proposed in the
literature. The work described in [10] develops a non-localized distributed protocol
that allows nodes to identify themselves as being located near the boundary of the
polygonal region. The authors show that a restricted central stress is a useful index
for extracting topological boundary information from a geometrically distributed
WSN, provided distribution of nodes follows a random distribution. They compare
several centralized measures commonly used in the analysis of social networks and
show that a restricted central stress is particularly suited for geometric networks, and
finally they provide mathematical as well as experimental evidence for the accuracy
of this measure. In [21], Nowak and Mitra proposed an edge approximation method
for a WSN, using recursive dyadic partition (RDP). In [2] the authors proposed
approaches based on a localized edge detection technique for edge sensor detection;
namely, the statistical approach, the filter-based approach and the classifier-based
approach. The main difference between [21] and [2] is that a hierarchical network
architecture is assumed and utilized in [21] whereas no hierarchy is present among
sensors in [2]. Another major difference is that the real boundary has been approxi-
mated in [21] while only edge sensors were detected in [2]. Also, [2] outperforms [21]
in terms of the communication cost, which is critical in WSNs.

In [7], the authors proposed a technique for boundary estimation in WSNs where
observations from sensors are aggregated and confidence intervals around the true
boundary are obtained for a set of points. They have also provided a distributed
technique for realizing a non-parametric regression technique. They have also tack-
led the problem of satisfying accuracy constraints in terms of confidence interval,
using the optimal number of sensors to be ON.

In [26], the authors proposed and analyzed two novel algorithms for outlying
sensor identification and event boundary detection. These algorithms are purely
localized and thus scale well for large WSNs. Also, they show by simulation re-
sults that these algorithms can clearly detect the event boundary and can identify
outlying sensors with a high accuracy. Our approach differs in that the perimeter
detection is independent of any other observations made by the sensor nodes, i.e.,
no recorded sensor information is used in perimeter detection. The work reported
in [30] proposes a deterministic method for the boundary node detection based on
localized Voronoi polygons, the technique originated from the computational geome-
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try. The authors in [29] propose two deterministic, localized algorithms for coverage
boundary detection in WSNs. Their algorithms based on two novel computational
geometric techniques called localized Voronoi and neighbor embracing polygons. As
compared to their previous work in [30], their algorithms outperform in terms com-
putation and communication cost. A distributed localized algorithm for perimeter
detection is introduced in [18]. Their algorithm works correctly in dense WSNs that
satisfy a minimal degree of connectivity. The work in [26, 30, 29, 18] is close to
ours, while our approach is based on local neighborhood information and the sensor
nodes have heterogeneous sensing ranges.

Assuming a communication network follows a v/2/2-quasi UDG (v/2/2-QUDG)
model, A. Kroller et al. [13] introduced combinatorial structures called flowers and
augmented cycles in the network. This algorithm works in two stages: boundary
recognition and topology extraction. The success of Kroller’s design greatly depends
on the identification of the flower structure, which may not always be the case,
especially in a sparse network. Saukh et al. [23] extended the concept of patterns
in UDG and v/2/2-QUDG model to make it simple and tunable in sparse networks.
These solutions come at a high cost as they need a complex combinatorial structure
in a distributed manner. S. Funke [11] proposed an algorithm that finds out holes
and their boundaries inside the WSN. It uses iso-contours to detect holes boundaries
and the whole network boundaries. This algorithm requires more computational
power than what is typically assumed of sensor nodes, and therefore could not
be implemented in a distributed setting. Fang et al. [9] proposed simple greedy
and distributed algorithms, the Tent rule and BoundHole for determining boundary
cycles in the event that a transmission gets stuck at a node. A network node is
found to follow a local minima if its neighborhood reflects geometry as defined by
a tent rule. Using the tent rule, the detection of a boundary node as defined by
greedy routing it local; however, a probe is required to identify all remaining nodes
along the network edges. The main drawback of this algorithm is the lack of any
simulation results. Moreover, to find the boundary, the use of suppressed start is
required, which leads to a problem and use of enforce bit to solve this problem is not
clear, i.e., when to set the enforce bit. A prerequisite in the algorithm of Zeinalipour-
Yazti et al. [27] is that each node knows its own coordinate position along with the
neighboring nodes and then the node that has minimum y coordinates in the sensor
field is determined and marked as the starting perimeter node which then selects
the neighboring perimeter node by measuring the polar angles of all the neighboring
nodes on its z-axis. The line obtained by connecting the identified edge nodes is the
boundary of the sensor field.

The main difference between our work and [13, 23, 11, 9, 27] is that our work
provides remarkable energy savings. In addition, there are no restrictions on the
communication disk model and sensing range of the sensor nodes; we also assume
that the neighboring nodes can hear from each other.

In [31], the authors proposed three algorithms that use mobile sensor nodes to
detect a boundary for certain phenomenon in the area. They assumed that no con-
centration or gradient information is known to the sensors. The algorithms enforce
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the sensors to cooperate and detect the boundary efficiently based on their relative
locations, where mobile sensors provide their location information. An algorithm
presented in [6] detects and traces the contour of a scalar field. The algorithm
makes a mobile sensor node to approach a given contour. The algorithm uses local
communication between the mobile node and its immediate neighbors. In [24], the
authors proposed a simple distributed algorithm that correctly detects nodes on
the boundaries and connects them into meaningful boundary cycles. They do not
assume any knowledge of the node locations or inter-distances, and the communi-
cation graph does not follow the unit disk graph model. In our paper, we assume
that the sensor nodes are static nodes and the perimeter detection is independent
of any other observations. We propose a non-hierarchical decentralized localized
perimeter detection algorithm that focuses on the identifying perimeter nodes with
heterogenous sensing range.

In [14], Khedr et al. presented a decentralized localized algorithm where sensor
nodes determine whether they are located along the perimeter of a WSN. The pro-
posed algorithm uses the location neighborhood information in conjunction with the
Barycentric technique to determine whether the sensor node is enclosed by neigh-
boring nodes, and consequently, whether it is located within the interior of the
WSN. The main difference between our work and [14] is that our work removes the
restrictions on the sensing range of the sensor nodes.

3 PROBLEM OVERVIEW

In this section, we give the main assumptions, definitions and notations, and then
develop the formal definition our proposed problem.

3.1 Algorithm Assumptions

Our approach relies on the following key assumptions regarding the sensor field and
sensor nodes:

1. All the sensor nodes are randomly deployed in the monitoring region, while in
our paper we assume that the sensor nodes are static nodes and the perime-
ter detection is independent of any other observations. The sensor nodes are
deployed densely enough in which there is no existing isolated node and the
monitoring region is fully sensing covered.

2. The communication range of wireless sensors is fixed. However, we assume that
the sensing range may be larger or smaller than the communication range (i.e.,
heterogeneous sensing ranges).

3. Underlying Communication Protocol: We assume that there is an underlying
protocol that takes care of all the necessary communication of information within
the network.
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4. Localization: The position of each and every node is known in any arbitrary
global coordinate system, possibly by using a localization system from [20, 22,
25, 1, 19]. For simplicity, we assume that every node knows its location in
space in terms of an (x,y) coordinate. The neighbors of a particular node are
determined based on its radio range.

5. Stationary Nodes: The sensor nodes are assumed to be static. The phenomenon
being sensed can be dynamic.

3.2 Definitions and Notations

Definition 1. For a sensor node S, there is a region, called sensing region R(S),
which signifies the area in which sensor S can sense a given physical phenomenon.

The sensing range of a sensor S indicates the maximum distance between sen-
sor S and any point p in the sensing region of sensor S. A point p is covered or
monitored by a sensor node S if the Euclidean distance between p and S is less
than the sensing range of sensor S. The sensing region of node .S; can intersect with
the sensing region of node S; if the Euclidean distance between them is less than
the sum of the sensing range of S; and the sensing range of S;. We say node S;
is a coverage neighbor of node S; if and only if they have non-empty overlapping
sensing region, i.e., if R(S;) N R(S;) # ¢; then S; is called coverage neighbor of S;.

Definition 2. The communication region of sensor s defines the area in which the
sensor S can communicate with other sensor nodes directly.

The maximum distance between S; and any other node S}, where S; is in com-
munication range of S;, is called the communication range of sensor S;. Node S; can
communicate with node S} if the Euclidean distance between them is less than the
communication range of S;. Then S; is called a neighbor of S;. The set of neighbors
of S is represented by N(S). Two nodes S; and S; can communicate directly with
each other only if S; € N(S;) AS; € N(S;) , i.e., they are neighbor to each other.

Definition 3. We define the quarter sets as the ones generated by dividing the
communication space of a sensor node into four quarters, each quarter containing
a set of neighboring sensor nodes.

3.3 Problem Definition

Some applications may only need to record target’s entering or leaving information
of specific regions rather than the precise location or the moving trajectory. There-
fore, for such applications each sensor node should be able to recognize itself as
a perimeter node or not, and the perimeter nodes should be elected to enclose the
region. Furthermore, the elected perimeter nodes should cooperate with each other
to monitor the perimeter of the region and take the responsibility to detect when
the target enters or leaves. Thus, the global objective is to find out the Perimeter
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Nodes (PNs) and to elect as few PNs as possible, taking into consideration that
the sensing region of the PNs should overlap one by one and link with each other
to enclose the region and keeping the communication cost as minimum as possible.

4 PERIMETER FINDING IN HETEROGENOUS WSNS

To find out the perimeter nodes in the border area of the randomly deployed he-
terogenous WSN, we propose two algorithms, namely non-cautious and cautious.
Non-cautious algorithm has three phases: initial phase, election phase, and pruning
phase. The second one is the cautious algorithm.

4.1 Non-Cautious Algorithm
In this section, we outline the description of each of the three phases.

4.1.1 Initial Phase

Each sensor S discovers its neighbor nodes by broadcasting its location information
and sensing range along with its ID to its neighbor nodes. Then, according to the
Y-coordinate, S divides its neighbors list into two sets:

1. top nodes (T'Nodes) includes the nodes that have Y-coordinate less than its
Y-coordinate, and

2. down nodes (DNodes) includes the remaining nodes.
Then, S divides its neighbors list into two sets according to the X-coordinate:

1. left nodes (LNodes) includes the nodes that have X-coordinate less than its
X-coordinate, and

2. right nodes (RNodes) includes the remaining nodes.

From the generated sets, S finds the intersection between each pair of sets (Q; being
the intersection between T'Nodes and RNodes, ()2 being the intersection between
T Nodes and LNodes, (Q3 being the intersection between D Nodes and LNodes, and
Q4 being the intersection between DNodes and RNodes).

For more clarification, consider the following simple WSN in Figure 1. Sensor
nodes are uniquely identifiable and each node location specified as ordered pair of
(z,y) coordinates.

DNodes | TNodes | RNodes | LNodes
Node 6 4,5 2,7 2,74 5
Node 7 6,4,5 2,3 3,4 2,6,5

Table 1. DNodes, T Nodes, RNodes and LN odes sets for node 6 and 7
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(434,180)

(246,154)

@)
(333,183)

(214, 234)

Fig. 1. Wireless sensor network

The generated sets T Nodes, DNodes, LNodes, and RNodes, are shown in
Table 1 for nodes 6 and 7. Table 2 shows the quarter @1, (2, @3, and @, for
nodes 6 and 7.

Q1] Q2| Q3 | Q4
Node 6 | 27| O | 5 | 4
Node 7 | 3 2 16,5 4

Table 2. Quarter sets for node 6 and 7

S directly declares itself as perimeter node (PN), if it has one or more empty
quarter sets, and it considers itself as interior node if it has nonempty quarter sets.
In the election phase, each PN will elect the necessary neighbors to be the new PNs
and to complete its perimeter information.

4.1.2 Election Phase

If the perimeter information of PN is not complete, PN collaborates with its neigh-
bors to elect the necessary neighbors to be the new PNs by executing the following
steps:

1. Count the declaration messages from your 1-hop neighbors. If your count is less
than or to equal one, or if your neighboring list belongs to the same quarter,
decide that the network perimeter information is not completely discovered.

In this case, PN elects a new PN node from its neighbors (PN N); the election
process goes at every PN; as follows:

(a) Broadcast the RequiredToCompletePerimeter message to your neighbor no-
des containing your ID.

(b) Wait for the RequiredSupport messages from PNNs.

(c) Among the RequiredSupport messages from PN N, elect the the list of PN;s
that belong to your quarter and have minimum calculated distance.

(d) Send support message to the elected PNN to be the new PN.
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The PN N, that receives the RequiredToCompletePerimeter from PN; executes the
following steps:

1. Check whether the following conditions are satisfied for each PN; in your list:

(a) Both PN; and PN; do not belong to same quarter.
(b) R(PN;)NR(PNNy) # ¢ and R(PNN;) N R(PN;) # ¢
(c) PN; € N(PNN;) and PN; € N(PNNy).

2. If the above conditions are satisfied, PN N}, calculates the vertical distance (vd)
to the line between PN; and PNj:

(a) Send RequiredSupport message contains its ID, vd, and PN; ID to PNj,
(b) Wait for support message.

In this way, PN; will complete its perimeter information with PN;.

q ) Sensing Regibﬁﬂ O Communication Region

Fig. 2. New PN election process, PNNj has minimum distance from the virtual line
between PN; and PN;

For more clarification, in Figure 2, both light, and dark gray nodes have sensing
overlapping with PN; and PN;. They response to RequiredToCompletePerimeter
message from PN;. PN; supports the dark gray (PN Nj,) to be the new PN, because
it has the minimum distance from the joining line.

After the election phase, some redundant PNs may exist and require to be retired
and return to be PNNs to save energy (pruning phase).

4.1.3 Pruning Phase

The main task of this phase is to retire the redundant PNs and return them to be
PNNs for saving energy. Each PN’s sensing region must be intersected with two
PNs at different directions. This phase is divided into two main steps. In the first
step, each PN checks the information of its neighboring list to make sure that there
is no need to elect more new PNs and, in the second step, each PN decides to retire
or not.



810 A. M. Khedr, W. Osamy

Step One: if you have at least two PNs at different directions, execute step two,
otherwise return to the election phase.

Step Two: In each one of your quarters, elect the PN that has the largest sensing
range. Then check whether the elected PNs are coverage neighbors; retire and
return to be a PNN and declare yourself as a forward node between the elected
PNs; otherwise remain a PN.

4.2 Cautious Algorithm

In the cautious algorithm, the sensor nodes that have nonempty quarter sets are
called interior nodes. Each sensor S that has one or more empty quarter sets,
broadcasts its I D, sensing range, and its total number of empty sets to its neighbors.
Then, S declares itself as PN, if one of the following cases is satisfied:

e (Case one: If S has the largest number of empty quarter sets among its neighbor
nodes

e Case two: If S has the largest sensing range among its neighbor nodes; and its
empty quarter sets equal to the maximum empty quarter set of its neighbors

e (Case three: If S has the largest D among its neighbor nodes and its sensing
range equals to the maximum sensing range of its neighbors.

Once the PNs declare themselves, they will work as initiators and run the perime-
ter connectivity/coverage discovery procedure (Next. PN_Procedure) to complete the
discovery steps. In order to reduce the number of messages in the discovery process,
we restrict the number of involved sensors by using the following two techniques:

e First, based on predefined cases, we elect a sensor node that will initiate the
discovery process.

e Second, we restrict the discovery process to be in one direction (left direction)
by considering the set of coverage neighbors that are in the left direction, and
then from that set we elect the left-most node to be the new PN.

4.2.1 Next_PN_Procedure

Here, we explain in detail the perimeter connectivity/coverage discovery procedure.
Each sensor node is assumed to have the information of its coverage neighbors. Each
PN (PN;) executes the following steps:

1. PNj assigns virtual sliding window centered at PN;, with window size equal to
the PN; sensing range

2. PN; dividing the window into left and right parts and PN; considers only the
left window part

3. exut if there is a PN node in the left window part
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Algorithm 1 Non-Cautious Algorithm

1:

10:
11:
12:
13:
14:
15:
16:

20:

21:

27:

Initially: If you have one or more empty quarter sets, declare yourself as
a perimeter node (PN), otherwise declare yourself as an inner node.

PN Side: {The following code will be executed by PNs}
Count your PN neighbors.
if (the count of PN neighbors < 1) OR (all PN neighbors at the same quarter)
then
Send Required ToCompletePerimeter message to neighbors containing your ID.
else
Elect the PN neighbor which has the largest sensing range among your PN
neighbors.
if The elected PNs are sensing neighbors to each others then
Retire and return to be PN N,
Declare yourself as a forward node between the elected PNs
end if
end if
if RequireSupport messages received then
For each PN; that received in require to support messages.
Elect the PN N node that has minimum distance vd,
Send support message to the elected PNN to be new PN.
end if

PNN Side: {The following code will be executed by PN Ns}
if RequiredToCompletePerimeter messages received from PN; then
for each PN; in your neighbor list do
if (PN; and PNj are not at the same quarter) AND (R(PN;) NR(PNNy,) #
¢ and R(PNN,)NR(PN;) # ¢) And (PN; € N(PNN;) and PN; €
N(PNNy)) then
Calculate the minimum distance vd to the line between PN;, and PN;
{this help PN, to elect the nearest PNN to the line joining PN; and
PN; }.
Send RequireSupport message containing your ID, the calculated distance
vd, and PN; ID to PN;.
end if
end for
end if

. if Support message received then

Declare yourself as PN to complete the perimeter information between PN;
and PN;.
end if
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Algorithm 2 Cautious Algorithm

. Initially: Each sensor node S in query region determines its quarter sets.
Compute S.NoEmptySet (the number of empty quarter sets)

Broadcast S.NoEmptySet, S.ID, and S.Rs

Determine the maximum of NoEmptySet (MaxNoEmptySet) of your neigh-
bors.

Wy e

5. if S.NoEmptySet > MaxNoEmptySet then

6:  Declare yourself as PN node

7. Call Next_ PN _Procedure (.9)

8: else

9:  if S.NoEmptySet = MaxNoEmptySet then

10: Determine the maximum sensing range of your neighbors MaxRs
11: if S.Rs > MaxRs then

12: Declare yourself as PN node

13: Call Next_PN_Procedure (S)

14: else

15: if S.Rs = MaxRs then

16: Determine the maximum ID (MaxzID) of your neighbors;
17: if S.ID = MazID then

18: Declare yourself as PN node

19: Call Next_PN_Procedure (S)

20: end if

21: end if

22: end if

23:  end if

24: end if

4. otherwise, PN, elects the left-most node as new center of the window then send
‘Notify” message to it

5. each sensor node receives ‘Notify’ message from PN; and declares itself as PN
node and repeats what PN; did before.

5 SIMULATION RESULTS

A simulator has been designed to evaluate the performance of our proposed algo-
rithms. In our simulation, the sensor nodes are randomly deployed and uniformly
distributed in a two dimensional plane. In order to carry out our experiments, we
have taken the following performance metrics:

Energy consumption is measured by the total number of the network energy
dissipation that was used to discover perimeter sensor nodes.

Number of perimeter nodes are the selected nodes to be close to the monitoring
region.
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Algorithm 3 Next_PN_Procedure
1: Input: sensor node S
2. CN(S)= Coverage Neighbors of S
3. LCN(S) = Left Coverage Neighbors of (S) {the set of Coverage Neighbors that
are successors of S on the perimeter}
if Notify message received then
S declare itself as PN node;
end if
if 3 PN node € LCN(S) then
End Procedure;
end if
10: S; = Left-most node(LCN(S))
11: S send Notify message to S; to declare itself as PN node and run
Next_PN_Procedure (S;)

Communication overhead is measured by the total number of messages used in
discovering perimeter sensor nodes.

In our simulation, we consider the following tunable parameters:

e The number of deployed sensor nodes varies from 300 to 700 nodes with an in-
crement of 100 nodes.

e The communication range (R.) of every sensor node is fixed at 60 m,

e Each sensor has P sensing ranges (Rs) where P = 1,2, ..., 5 with values varying
from 30m to 70 m; the case with P sensing ranges allows each sensor to choose
sensing ranges Rg, = 30, ..., Rg, = 70. The case when P = 1 is the case
when all sensor have a fixed sensing range (Rs) with value = 30 m; in this case,
communication radius is larger than or equal to double the sensing radius (i.e.,
R. > 2Ry), the specification of R, > 2R, as pointed out in [28] it is enough
to ensure the network connectivity as long as the network region is completely
covered; this specification holds for most commercially available sensors [32].

In order to measure the energy dissipation of nodes, we use the same energy
parameters and radio model as discussed in [12], wherein energy consumption is
mainly divided into two parts: receiving and transmitting messages. The transmis-
sion energy consumption needs additional energy to amplify the signal, depending
on the distance to the destination. Thus, to transmit a k-bit message to a distance d,
the radio costs will be

o kEelec + kefsdQ d< (Gfs/ﬁmp)
Era(k, d) = { kEpee + kempd® > (1) emp)- (1)

and to receive this message, the radio costs will be

ERz(k) =kx* Eelec~ (2)
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The simulated model parameters are set as Eee. = 50nJ/bit, €7, = 10 pJ/bit/m?,
Emp = ﬁ pJ/bit/m?* and the initial energy per node = 2 J. Moreover, we assume
the whole WSN to be the query region and evaluate the performance of the query
over the WSN. To evaluate the performance of our algorithms in terms of predefined
metrics, we compare our algorithms with the Perimeter Algorithm (PA) proposed
by Demetrios Zeinalipour [27], considering the case where the network perimeter is
required.

In the first experiment, we compare the network energy dissipation of cautious,
non-cautious and PA algorithms, where we consider the sensing range at P = 1, and
vary the number of sensors between 300 and 700 with increment of 100. Figure 3
shows that energy consumption in our algorithms is less than the consumption
energy of PA. This is due to the fact that in our algorithms, each node can determine
whether it is a perimeter node or not. We can also observe that the difference
between the three algorithms increases with the size of the network area. In general,
it is obvious that our approach scales very well, fits large scale networks and can
achieve remarkable energy saving.

10 T T

—o6— PA Algorithm
—¥%— Cautious Algorithm
—+#&— Non-Cautious Algorithm

Network energy dissipation (J)

| | | | | | |
300 350 400 450 500 550 600 650 700
Number of sensors

Fig. 3. Network energy dissipation of cautious, non-cautious and PA algorithms

Figure 4 shows the number of elected perimeter nodes by our approach and by
the PA algorithm. We consider the sensing range at P = 1, and vary the number
of sensors between 300 and 700 with increment of 100. The monitoring region is
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assumed to be 300m x 300 m, and the communication range is fixed at 60 m. The
simulation result demonstrates that when we increase the number of nodes in the
network, the number of elected perimeter nodes is decreased in case of the cautious
algorithm. This happens because the cautious algorithm can always select the sensor
with the greatest contribution.

50 T T

—&— PA Algorithm
48 —— Cautious Algorithm B
—+&— Non-Cautious Algorithm

Number of Perimeter Nodes

Il Il Il Il Il Il Il
300 350 400 450 500 550 600 650 700
Number of Sensors

Fig. 4. Number of perimeter nodes by non-cautious, cautious and PA algorithms

We also observe that the number of elected perimeter nodes by non-cautious
algorithm is higher than the number of elected perimeter nodes by PA or by the
cautious algorithms. Since the optimal way to deploy the nodes that have the same
sensing radius to achieve the border coverage of the region of interest is to deploy
the nodes across the perimeter of the entire region such that any two adjacent nodes
are tangent to each other and their sensing region centers lie on the perimeter of the
entire region. Therefore, if we assumed that the region to be monitored is large in
comparison to the sensing region of an individual node, then the number of nodes (n)
required to cover the perimeter of the entire region equals to the perimeter length
of the entire region divided by the diameter of the node sensing region, i.e.,

(3)
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where L is the perimeter length of the entire region and R; is the sensing radius of
the node. From Equation (3), the lower bound to cover the perimeter of 300 x 300
network with sensor node with R; = 30 will be 20 nodes. According to our simulation
results, Figure 4 shows the final returned perimeter nodes using our algorithms
and PA algorithm above the lower bound, we can also observe that our cautious
algorithm has better performance than non-cautious and PA algorithms.

We compare the communication overhead in non-cautious, cautious and PA
algorithms and find that the communication overhead of our approaches are slightly
increased with increasing number of nodes. As shown in Figure 5, the percentage of
average communication overhead of non-cautious algorithm is more than with the
cautious algorithm. We can also observe that the communication overhead of our
algorithms is less than that of the PA algorithm.

2000 T
1800/ —6— PA Algorithm |
—&— Non-Cautious Algorithm

1600} —— Cautious Algorithm

1400

1200

1000

800

Number of Messages

600 b

400 ;—,49/6/8/]
u

2001 b

—7—

0 . X . ! . X .
300 350 400 450 500 550 600 650 700
Number of Sensors

Fig. 5. Number of messages overhead in non-cautious, cautious and PA algorithms

In the second experiment, we study the impact of heterogenous sensing ranges
with the number of sensors on our predefined metrics. We consider the sensing range
vary from P =1 to P = 5; then each node will elect its R, (Rs = 30 when P =1,
R, = 20, or 30 when P = 2, R, = 20, 30, or 40 when P = 3, R, = 20, 30, 40,
or 50 when P = 4, and R, = 20, 30, 40, 50, 60, or 70 when P = 5), and we vary
the number of sensors between 300 and 700 with increment of 100. The monitoring
region is assumed to be 300m x 300 m, and the communication range is fixed at
60 m.

Figures 6 and 7 indicate that increasing P implies decreasing of the network en-
ergy dissipation and of the number of messages in cautious algorithm, and increasing
network energy dissipation and the number of messages in non-cautious algorithm.
Also, increasing the number of deployed nodes implies increasing of the network
energy dissipation and the number of messages. This is due to the fact that number
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of neighbors for each node will be increased. This is attributed to the localized and
distributed characteristics of our algorithms. The results indicate a highly scalable
nature of our algorithms.

Comparing the cautious and non-cautious algorithms, the cautious algorithm
has a better performance in terms of network energy dissipation and the number
of message overhead than the non-cautious algorithm. This is because the cautious
algorithm each time elects a suitable perimeter node towards the network perimeter.

Figure 8 demonstrates that increasing number of nodes in the network implies
decreasing the number of elected perimeter nodes in cautious algorithm. This is
due to increasing the probability of electing nodes with higher sensing range, where
the monitoring region can be enclosed by fewer perimeter nodes with larger sensing
ranges.

Varying the number of available sensing ranges P, the simulation results indicate
that increasing P implies decreasing number of perimeter nodes produced by the
cautious algorithm and increasing the number of perimeter nodes in case of non-
cautious algorithm; this happened because in its start the non-cautious algorithm
elects the perimeter nodes according to empty quarter sets ignoring node’s sensing
range while the cautious algorithm elects each time the sensor node with the greatest
contribution to be the perimeter nodes.

These simulation results also show that heterogeneous sensing range can greatly
contribute to decreasing the network energy dissipation.

6 CONCLUSION

In this paper, we have proposed two distributed algorithms (cautious and non-
cautious) to elect the perimeter nodes of the query region in heterogenous WSNs.
Each algorithm divides the communication space of the sensor node into four quar-
ters, each quarter containing a set of neighbor nodes. Comparing our two algorithms,
the cautious algorithm has lower communication overhead, elects fewer perimeter
nodes, and has much better performance in terms of network energy dissipation than
the non-cautious algorithm. This is due to the fact that the cautious algorithm each
time elects the suitable perimeter node toward the network perimeter. The simu-
lation results also indicate a highly scalable nature of our algorithms showing that
heterogeneous sensing range can greatly contribute to decreasing the network energy
dissipation.
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