
Computing and Informatics, Vol. 31, 2012, 983–1002

ASPECT-ORIENTED APPROACH TO METAMODEL
ABSTRACTION

Ján Kollár

Department of Computers and Informatics

Faculty of Electrical Engineering and Informatics

Technical University of Košice

Letná 9, 042 00 Košice, Slovakia

e-mail: Jan.Kollar@tuke.sk

Michal Vagač

Department of Informatics

Faculty of Natural Sciences

Matej Bel University

Tajovského 40, 974 01 Banská Bystrica, Slovakia

e-mail: michal.vagac@gmail.com

Communicated by Ivan Luković

Abstract. A software system maintenance represents an important part of software
system’s lifetime. The most common reasons to change a software system are bug

fixes and adding of a new functionality. Software maintenance itself is a difficult
and complex process. Before applying a change, it is important to understand the
software system’s source code as well as the application domain. This paper presents
our innovative approach to improve software system comprehension in order to
simplify its maintenance. Instead of analyzing all the program code, our approach
focuses on parts which are built using predefined well known software libraries. The
knowledge of both – the libraries and the way they are used in software systems –
allows us to identify certain concepts of the software system. This information is
used to create metamodels of these concepts. The metamodel is created at a higher
level of abstraction than the level of concept implementation.

Keywords: Program comprehension, software adaptation, metalevel architecture,
metaprogramming, aspect-oriented programming



984 J. Kollár, M. Vagač

Mathematics Subject Classification 2010: 68N15, 68N20

1 INTRODUCTION

Computers (and software systems they run) help us with our everyday tasks. No
software system is perfect and sooner or later there is a requirement for a change.
Often, software systems model different problems of the real world. Continuous
changes in this world lead to a state in which the software system is becoming in-
sufficient. In that moment it is required to reflect these real world changes also
in the software system. Another reason for a change may be different constraints
during initial system development, or changes in order to constrain system’s inner
complexity growth [18, 21]. Because of all these reasons, a software system faces
many changes during its lifetime – in general most common reasons are bug fixes
and adding a new functionality. Software evolution represents a need for continuing
maintenance and development of software used in real world applications or to solve
problems in a real world domain [19]. It is more common to change the existing sys-
tem than to create a new one. Software system maintenance and evolution consumes
up to 80 percent of its lifetime [20].

The topic about applying a software change became an important field of re-
search. Software maintenance itself is a difficult and complex process. An important
area related to applying a software change is correct and effective program compre-
hension. Before applying a change, it is important to understand the software sys-
tem’s source code as well as the application domain. Only after a full understanding
of a program (or at least the affected submodule) it is possible to apply the required
change. Without sufficient knowledge it is easily possible to break the functionality
of the system. Computer program is subject not only to a computer, but also to
its developer – a programmer. To change a program, the programmer must read it
and understand it. Improvements in ways of program comprehension affect program
maintenance as well.

1.1 Program Comprehension

One of the first attempts to describe a theory about program understanding was
presented in [5]. Program understanding is described as a succession of knowledge
domains that bridge the problem being solved and the executing program. As exam-
ples of knowledge domains there are the application (or problem) domain, the al-
gorithm domain, the domain of translation of the algorithm into a programming
language, or the domain of execution of the program. One side of this succession
works with human-oriented terms (designed for human level communication), while
the other side uses vocabulary and grammar which are narrowly restricted and for-
mally controlled (designed for automated treatment) [2]. The programming process
is a construction of mappings from the application domain, through one or more



AOP Approach to Metamodel Abstraction 985

intermediate domains, to the implementation domain. The comprehension process
is the reconstruction of all or part of those mappings [35].

To understand a program, a programmer uses internal (comments, names in
code) and external (documentation) sources of information to successively refine
hypotheses about the program’s operation. These hypotheses are initially generated
from the programmer’s knowledge of the task domain and of programming. A de-
tailed analysis of the comprehension process is presented in [29]. As a programmer
reads a program code, he/she learns more about the program – this new knowledge
can be then reused in the following searches.

The paper [6] identified four essential properties of a software system which
make building software system a difficult task. All of these properties also influence
difficulty of program comprehension.

Complexity – software entities are one of the most complex human products. No
two parts are alike (if they are, we make two similar parts into one).

Conformity – much complexity comes from conformation to other interfaces; this
cannot be simplified only by redesigning of the software.

Changeability – the software entity is constantly subject to pressures for a change.

Invisibility – the software is invisible. To visualize the software several different
diagrams are used to display different properties of the software.

The method proposed in this paper deals with complexity and invisibility difficulties.
The work [30] describes comprehension by a triangular diagram (Figure 1). The

triangle has the vertices name, intension (concept, feature) and extension (imple-
mentation, plan). Intension can be seen as a simple general description, while ex-
tension can be seen as a concrete instance. The process of comprehension consists in
possibility of moving among all three vertices of the triangle. The triangle describes
six fundamental comprehension processes:

naming – gives a name to an intension

definition – finds the corresponding intension for a given name

recognition – recognizes in an extension a corresponding intension

location – finds for a given intension a corresponding extension

annotation – recognizes an extension and gives it a name

traceability – finds corresponding extensions for a given name.

The process of identification of fragments of the program code related to known
functionality of a program is known as concept (or feature) location [37]. A concept
represents a well understood abstraction of a system’s problem domain [34]. The task
is to identify mappings between domain level concepts and their implementations
in the source code [27]. The input of the mapping is the maintenance request,
expressed usually in the natural language, using the domain level terminology. The
output of the mapping is a set of components that implement the concept [8]. The
input and output of location process belong to different levels of abstraction.



986 J. Kollár, M. Vagač

Name

Intension Extension

* annotation

* traceability

* *
recognition location

naming *

definition *

Fig. 1. Fundamental comprehension processes [30]

Before software system maintenance, a developer must localize parts of a pro-
gram related to the change request. Therefore concept location is a prerequisite
of code changes. The literature reports concept location approaches built on static
analysis [2, 24, 41], dynamic analysis [37, 34], or their combination [22].

Our approach allows to automatically locate the predefined set of concepts in
an unknown program. The located concept is presented at a higher level of abstrac-
tion than its implementation. It means the automation in mapping between several
knowledge domains – the domains that the user would otherwise have to be familiar
with.

In the approach described, the located concept is presented as a metamodel –
one metamodel describes one located concept. Concept location and building of
metamodels use properties of aspect-oriented programming. Basics about metalevel
architectures and aspect-oriented programming are presented in next two subsec-
tions.

1.2 Metalevel Architectures

A metalevel architecture consists of different levels, where one level is controlled
by another one. From a view of object-oriented programming, where a program is
represented as a set of objects, it is possible to define several terms in the area of
metalevel architectures. An application describing a problem being solved is located
at the domain level. Domain objects are objects of this application. These objects
describe the problem being solved. A domain object protocol defines operations
provided by a domain object. A domain operation is an operation from the domain
object protocol.

Beside the domain level there is a metalevel, which provides a space for metaob-
jects. Metaobjects describe, control, implement or modify domain objects. In case of
a multilevel architecture, a metaobject can control another metaobjects. A metaob-

ject protocol (MOP) is an object-oriented interface allowing communication between
objects at the domain level and objects at the metalevel. It defines an applica-
tion programming interface which can be used to work with metaobjects. Finally,
a metaobject operation is an operation from a metaobject protocol.



AOP Approach to Metamodel Abstraction 987

Our approach is built as a metalevel architecture. The base level is represented
by a software system (legacy application). The metalevel contains a metasystem
which builds metamodels of located concepts.

1.3 Aspect-Oriented Programming

Aspect-oriented programming allowed modularization of crosscutting concerns. The
crosscutting concerns are concerns which are impossible to modularize by available
language constructs, such as classes or methods. Modularizing these concerns would
break modularization of other described concerns. Two concerns crosscut when they
have to be composed differently, but at the same time they must be coordinated [16].
A typical example of a concern that tends to be crosscutting is logging. Logging
affects every logged part of the system – thus cannot be modularized in one single
place. Crosscutting concerns result in a tangled code, which is difficult to understand
and reuse.

An aspect describes crosscutting concerns – it allows their modularization, which
results in a more simple code which is easier to maintain. Join points are points in
which an aspect crosscuts the basic program. By defining a pointcut, it is possible to
define a whole set of joint points. In the logging example, a pointcut could describe
each method invocation. An advice allows to define an action executed at points
defined by the pointcut (e.g. log information about method invocation). An aspect
represents a modular unit consisting of a pointcut and an advice. Composing defined
aspects and affected program is the task of the aspect weaver. The most common
way of aspect implementation is weaving the aspect code into the program code.

Beside clearer modularization possibilities, aspect-oriented programming allow-
ed adding a new functionality into an existing code. An aspect is defined in such
a way that join points are defined to point at the place in the program which needs
to be enhanced. An advice then contains an enhancement code.

The approach proposed uses this property of aspect-oriented programming. The
base level software system is enhanced with a new code, which traces program
execution and looks for implementation of predefined concepts. The same property
of AOP is used later to apply a software system change.

The rest of the paper is organized as follows: in the following section we present
our method of creating a metamodel at a higher level of abstraction than the imple-
mentation level and describe our experimental tool following this method. Then the
work related to our approach is described. In the last section we present conclusions.

2 METAMODEL AT A HIGHER LEVEL OF ABSTRACTION

As presented in Section 1.1, a change request is expressed in the natural language
using the domain level terminology. To implement a change, a developer must iden-
tify mappings between domain level concepts and their implementations in a source
code. Domain level concepts and implementation belong to different levels of ab-
straction.



988 J. Kollár, M. Vagač

To find mappings between different levels of abstraction, a developer must have
certain knowledge. The knowledge is gained from previous experiences and studies.
A scheme of a tool with the capability of a program understanding was outlined
in [30] or [36] (Figure 2).

Analyzer
Representation

Software

System

Program
Recognizer

Knowledge

Base

Recognized

Concepts

Fig. 2. A tool with capability of a program understanding

In the first step, the software system is analyzed. The analysis can be static
(analysis of source code) or dynamic (analysis of a system execution). The output
of the analyzer is a representation of the analyzed program. The representation can
describe all system or only its part. In the next step, the recognizer – with the help
of the knowledge base – recognizes familiar fragments in the analyzed system.

Source code analysis and execution traces analysis are commonly used proce-
dures. Unclear parts from the depicted figure are the knowledge base and the recog-
nizer. According to the information from the knowledge base, the recognizer must
recognize fragments in the program representation. The software system is usually
a very complex system – one problem can be solved in several different ways. To be
able to recognize all possible concepts, the knowledge base must contain all these
concepts pre-defined and their program representation (implementation).

When building a complex software system, a significant part of the implemen-
tation is repeatedly the same. To make the development process easier – without
reinventing the wheel – the modern programming languages provide a standard li-
brary with reusable software components which implement many different general
tasks.

Our approach focuses on the object-oriented paradigm. This paradigm is sup-
ported by the most widely used languages nowadays (Java, C++, C#, PHP). A pro-
gram developed in an object-oriented language is typically defined by a group of
classes and their instances – objects. Objects communicate with each other by
sending messages. The structure of a class and relationships between classes and
objects are specified by a program code.

To create a higher level of abstraction of the analyzed program automatically, it
is needed to find control structures, analyze relationships between classes (objects)



AOP Approach to Metamodel Abstraction 989

and to understand meaning of the classes. First two points can be realized by
different techniques of source code (or execution traces) analysis.

The situation is not so simple with the knowledge base. The knowledge base
must contain the information needed to map acquired program representation into
a recognized concept. As noted in the Introduction section, these two are situated
at different levels of abstraction (implementation domain vs application domain).

There are many possibilities how to build a program in a general-purpose pro-
gramming language, therefore it is hard (if possible) to prepare a knowledge base
which would allow to recognize all possible concepts. In the approach proposed, we
have focused on well-known parts represented by the software libraries used in the
program. In a program written in a general-purpose programming language, we will
search for parts which use standard libraries. The knowledge base will contain exact
information about concepts implemented by a standard library. This information
must include both – implementation details, concept details and the way of mapping
between these two.

Concept implementation must be described in a very high detail. To be able
to identify a concept from its implementation, there must be a knowledge about
classes which implement the concept and in what relationships those classes can
be. There is a possibility that the same class will be used to implement different
concepts. The knowledge base must distinguish such concepts from the way of their
implementation.

The next section describes architecture details of the proposed approach.

3 THE METAMODEL CREATION METHOD

The approach proposed is designed as a metalevel architecture. The base level of
this architecture is represented by the software system we deal with (a concept
implementation). The metalevel provides a method for analyzing and recognizing
concepts implemented in the base level. The result of the analysis and recognition –
a recognized concept – is presented as a metamodel. The metamodel is stored at
the metalevel.

To build the proposed architecture there is a need to solve several challenges.
According to Figure 2, the first step in the understanding process is a software
system analysis. The result of the analysis is stored as a program representation,
which serves as input to a recognition process. The recognition process uses the
knowledge base and tries to recognize the program representation.

As the analyzer has no information about a concrete concept (it has no con-
nection with the knowledge base), the analyzer must be general for all recognized
concepts. Also the program representation must be common for all analyzed data.
As a result, the program recognizer has to work with the same general data for all
recognized concepts.

In the approach proposed, we suggest to integrate analyzer and recognizer sub-
systems into one part with accesses to the knowledge base (Figure 3). In this case,



990 J. Kollár, M. Vagač

instead of analyzing the whole program and recognizing general program representa-
tion, the analyzer can focus only on those parts of implementation, which implement
predefined concepts. Since the analyzer has a direct access to the knowledge base,
it has exact information about the concept implementation. Since analysis is fo-
cused on a certain concept implementation, the result of the analysis is a recognized
concept. Thus, recognition is performed during analysis process.

Software

System
Analyzer &

Recognizer

Knowledge

Base

Recognized

Concepts

Fig. 3. Proposed tool with capability of a program understanding

The uniqueness of the class implementing the concept must be ensured. If
an application will define classes with exactly the same name as those in the standard
library (and defined in the knowledge base), the system will not be able to handle
this situation properly – the recognition will not work.

3.1 The Base Level Monitoring Aspect

Aspect-oriented programming together with a better modularization allowed also
extending the existing code with a new functionality [28]. It is even possible to add
a new functionality without access to the source code. This property is very helpful
for techniques depending on metadata as well – it is possible to extend the base level
system with a monitoring code [28]. This new code will get required information
which is used to build metamodel at the metalevel.

The mentioned properties of aspect-oriented programming were crucial for
choosing this paradigm as a way of collecting information about the base level
software system. With the help of aspect-oriented programming, the base level
system is extended with a new code, which has access to internal structures of the
base level system. This code analyses the presence and the usage of classes which
implement concepts defined in the knowledge base. By executing the base level
system, the aspect code tracks down information about known implementation. Af-
ter collecting all the sufficient information, a metamodel (concept representation) is
built.



AOP Approach to Metamodel Abstraction 991

Figure 4 shows basic architecture of the described metasystem. The base level
system is weaved with an aspect of dynamic system analysis. This aspect analyses
execution of the base level system. After the recognition of a predefined concept
implementation, a corresponding metamodel is created. The metamodel represents
a known state of the specified concept. As mentioned above, a crucial property is
the fact that because of the known way of the implementation of the monitored
concept it is possible to build a metamodel at a higher level of abstraction. The
metamodel presented to the user contains only information related to the specified
concept (at the problem domain level) and no details about the implementation.

Base System

Dynamic system

analysis

Meta System

Metamodel

changemetadata

metamodel

change

base level

metalevel

Fig. 4. A dynamic system analysis aspect is weaved into the base level system. This
aspect analyzes the base level system and creates a metamodel at the metalevel.
The metamodel is presented to the developer. After the metamodel change, this is
reflected in the base level system modification.

3.2 A Metamodel Change

Another important aspect of the method presented is application of a change. The
metasystem represents a barrier between implementation details and a metamodel
at a higher level of abstraction. Just like the knowledge base defines details about
concept implementation, concept model and mapping between these two, it can also
define possibilities for a change. This definition must contain information about
possible metamodel changes and about the way of related implementation modi-
fications. In this way all changes supported by the metamodel are automatically
propagated back to the base level system (Figures 4, 5). The base level system
modification is handled by aspect-oriented programming. For example, an around

advice is used to replace an existing method call with a new one (the original one
is simply not invoked). Although this way it is not possible to apply any change of
the base level system, for a certain type of changes it is sufficient.

The aspect of the base level system and the metamodel must be causally con-
nected – the metamodel must always represent the real state of the modelled concept



992 J. Kollár, M. Vagač

build
metamodel

Base
System
(t)

change
metamodel

apply
change

Base
System
(t+1)

Fig. 5. The metamodel and the base level system change. A metamodel is built from
a current state of the base level system in time t. After the metamodel change, the
change is applied also in the base level system (in time t + 1).

of the base level system. All possible metamodel changes must also be immediately
reflected in the base level system.

4 EXPERIMENTAL TOOL

This section describes two applications developed. The first one represents the base
level system (a legacy application). The second one represents a metasystem – an ex-
perimental tool, which demonstrates possibilities and usability of the method pre-
sented. Both applications are built in Java programming language (JDK1.6.0 25).
This language was chosen because of its wide use and its rich standard library (Java
Class Library). As for aspect-oriented extension, AspectJ 1.6.12 was used.

The aspects play a crucial role in the experimental tool. As noted in the previous
sections, the base level system is extended with a code which analyses the presence
and the usage of classes which implement predefined concepts. In the described
experimental tool, there is one aspect defined for each supported concept. With
the help of proper pointcut definitions, the aspect gets all necessary information
about the concept implementation. This way it is possible to get information about
a concept implementation at a very fine-grained level and to distinguish different
concepts (even if they are implemented by the same classes).

The following subsections describe the base level application and two predefined
concepts.

4.1 The Base Level Application

The base level system is represented by a simple Address Book application. The
application user may create new contacts and edit or remove existing ones. There is
a possibility to import contacts from an external system (communicating over the
network).



AOP Approach to Metamodel Abstraction 993

4.2 Properties of the Base Level Application

In the Java programming language, properties of an application are represented by
a class named java.util.Properties. Each property is represented by a key-value pair.
This concept can be easily modelled as a table with two columns – the key column
and the value column. Each row of the table represents a single application property.

The following code snippet depicts an aspect tracking implementation of an ap-
plication properties concept.

pointcut propertiesLoad(java.util.Properties p) :

call(* java.util.Properties.load(..)) && target(p);

after(java.util.Properties p) returning: propertiesLoad(p) {

ModelManager.getInstance().propertiesLoaded(p);

}

The experimental tool displays this concept as a table (Figure 6). It is possible
to change and save values – the change is automatically reflected in the base level
system. Since java.util.Properties class is thread-safe, changing application proper-
ties is a trivial task – it is sufficient to invoke a method setProperty on the class
instance referenced from the metamodel.

Fig. 6. Application properties change as presented by the experimental tool

Figure 7 depicts UML (Unified Modeling Language) sequential diagram of read-
ing the base level application property. The diagram was generated by Eclipse
TPTP (Test&Performance Tools Platform) and then adjusted (interactions with
unimportant classes were removed to reduce size of the diagram). It is evident that
the presentation of the concept as an abstraction at a problem domain level is much
clearer than the sequence diagram at the implementation level.

4.3 Graphical User Interface

The second example of a concept presents an abstraction of graphical user inter-
face dialogs. It is possible to describe dialogs of the graphical user interface as
a state diagram. Each state of the diagram represents a dialog while transitions be-
tween states represent (user) actions causing activating or deactivating the dialogs



994 J. Kollár, M. Vagač

AddressBook

-clinit- (main)

Properties

Properties

Properties

main (main)

-clinit- (main)

main (main)

load

load

UsersManager

actionPerformed

(AWT-EventQueue-0)

ImportManager

importUsers

importUsers

actionPerformed

(AWT-EventQueue-0)

getProperty

getProperty

Fig. 7. Sequence diagram of activities related to the base level application properties. The
first part depicts loading of properties, the second one reading a property during
an action of users import.

main

window

start dialog1 dialog2
open

open

close

close

dialog3

open

close

end

Fig. 8. A metamodel of a graphical user interface



AOP Approach to Metamodel Abstraction 995

(Figure 8). As the user works with an application, different dialogs are opening
(focusing) or closing.

The aspect tracking the state of the graphical user interface is much more com-
plicated than the one from the example of application properties and hence it is
not presented here. In contrast to the previous example, it is required to track
down several classes, their methods and the context in which the methods are in-
voked. As a result, the experimental tool automatically creates a state diagram
of the used base level application’s dialogs (Figure 9). A change in this state di-
agram (removing of a specified state) is automatically reflected as a modification
in the base level application – in this case an element opening the diagram state is
removed.

Fig. 9. A metamodel of a graphical user interface as presented by the experimental tool

In this case the resulting metamodel is also very clear and focuses on the model-
led concept only. All the implementation details are hidden behind the metamodel
abstraction.

5 RELATED WORK

There are many application areas, in which abstractions to metamodels may be
useful: for representation of spatial data [14] by metamodels, for systems refactor-
ing [17], for generalisation of forms in database systems [23]. Several authors utilized
metalevel architectures to improve possibilities of a system evolution [7, 1, 39]. How-
ever, these works expect a programmer to build a new system following the specific
rules. Such approaches are inappropriate in evolution of existing systems.

The work [31] proposes a programme of research leading to a software engineer-
ing environment which will maintain different views of the same system. These views
include low-level code views and high-level architectural views. Reflection will be
used to ensure that different views of the system are synchronised. Creating a soft-



996 J. Kollár, M. Vagač

ware system will involve manipulating these views. Our approach defines two differ-
ent still consistent levels of the system – an implementation level and a concept level.

Using aspect-oriented programming to visualize different aspects of a subject
software system is not a new idea. Paper [25] summarizes experiences with the
development of a reverse engineering tool for UML sequence diagrams. Authors
discuss technologies for retrieving information from Java software systems with the
purpose of generating instances of a metamodel for UML sequence diagrams. They
find aspect-oriented approach as the best solution – because of its elegance and
non-intrusiveness of the load-time weaving mechanism in combination with the low
performance impact and the expressiveness and flexibility of the join-point-based
filter mechanism. They note that a tool supporting the reconstruction of the behav-
ior of a running software system must address the major areas of data collection,
representation of this data in a suitable metamodel, and finally its graphical repre-
sentation.

Other approaches using aspect-oriented programming to generate UML sequence
diagrams are described in [4, 15]. Aspect-oriented programming is used to instru-
ment subject system with a tracing code; this code yields interesting information
for the purpose of visualization.

As depicted in Section 4, sequence diagrams (but also class diagrams or object
diagrams) are visualizing information close to the implementation level. This often
results in overloading users with irrelevant low-level details. The approach described
in this paper visualizes concept in a way which is close to the system’s problem
domain.

Paper [13] analyzes several trace exploration tools. In general, the result pro-
duced by these tools are variants of UML sequence diagrams, diagrams of intercon-
nections between objects or the sequences of method calls. Authors conclude that
the key aspect of reverse engineering is to extract different levels of abstraction of
a software system. The analyzed tools visualize the content of an execution trace at
some of the following levels of abstraction: statement level (the execution of every
single statement of the code); object level (method interactions among objects); class
level (objects of the same class are substituted with the name of their classes) and
architectural level (grouping classes into clusters). From the program understand-
ing point of view the last two levels are the most useful; but also these approaches,
though providing a slightly higher level of abstraction, are still working at the level
which is very close to the implementation level and far from application domain level.

Several works experiment with their own specific way of the system behavior
visualization [10, 12]. The presented approaches focus mostly on the problem of
huge amounts of trace data that are collected and need to be analyzed.

To use any of the described tools, the user must understand visualization output
which is closer to the implementation level than to the application domain level. We
see the problem in a general approach of all those methods. It is impossible to have
one simple general visualization suitable for different kinds of specific behaviours. As
stated in [32, 33], understanding the software behavior is a unique problem requiring
a specialized solution and a visualization.



AOP Approach to Metamodel Abstraction 997

Our approach utilizes aspect-oriented programming also for applying a change
in the base level application. The idea of a program modification utilizing AOP is
not new; it was used already in [9, 3, 42].

6 CONCLUSIONS

In the paper we have depicted a method of concept metamodel creation. The method
utilizes aspect-oriented programming to instrument the base level software system
with a new code. This code analyzes the executed system and automatically builds
a metamodel of a recognized predefined concept. There is also a support for prede-
fined metamodel changes – these are automatically reflected in the base level system
implementation. The base level system and the metamodel must be causally con-
nected – the metamodel must always represent a real state of the modelled concept
of the base level system, and vice versa – the metamodel change must be reflected
in the base level system.

The method proposed was confirmed by an experiment. The experiment tool
is able to automatically create a metamodel of a specified predefined concept of
the base level system. The metamodel is created at a higher level of abstraction
than the base level implementation. In the paper two predefined concepts were
described – the concept of application properties and the concept of graphical user
interface. These concepts were graphically presented to the user. It is more simple
to understand this metamodel in comparison with other visualization techniques (as
for example sequence diagrams). By changing the metamodel, it is possible to apply
a change to the base level application without a need to understand all details at
the implementation level.

The tool was built in Java programming language with AspectJ extension. This
AOP implementation allows to weave aspects also to classes without source code –
thus it is also possible to analyze and modify applications where no source code is
available. The method also allows applying changes during a system runtime – there
is no need to stop the base level application. All changes were implemented only by
changes in the base level application object model.

The disadvantage of the method is evident – its quality heavily depends on
the size and the quality of predefined concepts (defined in the knowledge base).
The difficulty of concepts definitions vary – some are trivial, some complicated. The
difficulty of specification of the projection between the implementation level and the
metamodel at a higher level of abstraction depends on a specific concept of the base
level application. The advantage is that once built knowledge base can be reused
with all applications built with the same (or compatible) environment version. The
process of building a complex software system consists of many repeatable parts,
even when it is built using general-purpose programming language. All these parts
could be the subject of the method proposed – it is not limited only to usage of the
standard library.



998 J. Kollár, M. Vagač

As the next step, we find essential to propose a general way to define a concept,
its implementation and a mapping between these. In the current solution, the heavy
work is handled by the aspect definition – there is an analysis as well as a metamodel
construction. We suppose that a metamodel format can be generalized – it seems
that there is only a limited amount of required different formats of metamodels. The
promising way for this generalisation – the concept model, implementation and the
mapping – is designing own domain specific language (DSL) for this purpose [26,
11, 38, 40].

After designing a more general way of a concept/implementation/mapping defi-
nition, we will build a basic knowledge base. Beside library-related concepts, there
are other areas suitable for concept definition (e.g. webservices, web applications,
security). The analysis of other suitable areas is also a candidate for a future re-
search.

When the knowledge base will be filled with a certain amount of different con-
cepts, it will be desirable to test the tool with different available software projects
to prove its usability.

Acknowledgement

This work was supported by VEGA Grant No. 1/0305/11 “Co-evolution of the
artifacts written in domain-specific languages driven by language evolution” and
by Project SK-SI-0003-10 of Slovak-Slovenian Science and Technology Cooperation
“Language Patterns in Domain-Specific Language Evolution”.

REFERENCES

[1] Arcelli, F.—Raibulet, C.: Evolution of an Adaptive Middleware Exploiting Ar-
chitectural Reflection. In: Proceedings of ECOOP Workshop on Reflection, AOP and
Meta-Data for Software Evolution, Nantes, France 2006.

[2] Biggerstaff, T. J.—Mitbander, B.G.—Webster, D.: The Concept Assign-
ment Problem in Program Understanding. In: Proceedings of the 15th international
conference on Software Engineering – ICSE ’93, Los Alamitos, CA, USA, IEEE Com-
puter Society Press 1993, pp. 482–498.

[3] Bluemke, I.—Billewicz, K.: Aspect Modification of an EAR Application.
CIS2E ’08, Krakow, Poland, Springer 2008.

[4] Briand, L.C.—Labiche, Y.—Leduc, J.: Toward the Reverse Engineering of
UML Sequence Diagrams for Distributed Java Software. IEEE Trans. Softw. Eng.,
Vol. 32, pp. 642–663, September 2006.

[5] Brooks, R.: Using a Behavioral Theory of Program Comprehension in Software
Engineering. In: Proceedings of the 3rd International Conference on Software Engi-
neering – ICSE ’78, Piscataway, NJ, USA, IEEE Press 1978, pp. 196–201.



AOP Approach to Metamodel Abstraction 999

[6] Brooks, Jr.—Frederick, P.: No Silver Bullet Essence and Accidents of Software

Engineering. Computer, Vol. 20, 1987, No. 4, pp. 10–19I, EEE Computer Society
Press, Los Alamitos, CA, USA, ISSN 0018-9162.

[7] Cazzola, W.—Sosio, A.—Tisato, F.: Shifting Up Reflection from the Imple-
mentation to the Analysis Level. In: Proceedings of the 1st OOPSLA Workshop
on Reflection and Software Engineering: Reflection and Software Engineering, Pa-
pers from OORaSE 1999, Springer-Verlag, London, UK, 2000, ISBN 3-540-67761-5,
pp. 1–20.

[8] Chen, K.—Rajlich, V.: Case Study of Feature Location Using Dependence Graph.
In: Proceedings of the 8th International Workshop on Program Comprehension –
IWPC ’00, IEEE Computer Society, Washington, DC, USA, 2000, p. 241.

[9] Cheng, L.T.—Patterson, J.—Rohall, S. L.—Hupfer, S.—Ross, S.: Weav-
ing a Social Fabric into Existing Software. In: Proceedings of the 5th International
conference on Aspect-oriented software development – AOSD05, Chicago, USA 2005,
pp. 147–159.

[10] Cornelissen, B.—Zaidman, A.—Holten, D.—Moonen, L.—van Deur-

sen, A.—van Wijk, J. J.: Execution Trace Analysis Through Massive Sequence
and Circular Bundle Views. Journal of Systems and Software, Vol. 81, 2008, No. 12,
pp. 2252–2268.

[11] Črepinšek, M.—Mernik, M.—Bryant, B.—Javed, F.—Sprague, F.: Infer-
ring Context-Free Grammars for Domain-Specific Languages. Electronic notes in the-
oretical computer science, Vol. 141, 2005, No. 4, pp. 99–116.

[12] Greevy, O.—Lanza, M.—Wysseier, C.: Visualizing Live Software Systems in
3D. In: Proceedings of the 2006 ACM Symposium on Software Visualization – Soft-
Vis ’06, ACM, New York, NY, USA, pp. 47–56.

[13] Hamou-Lhadj, A.—Lethbridge, T.C.: A Survey of Trace Exploration Tools
and Techniques. In: Proceedings of the 2004 Conference of the Centre for Advanced
Studies on Collaborative research – CASCON ’04, IBM Press 2004, pp. 42–55.

[14] Dlugolinský, Š.—Laclav́ık, M.—Hluchý, L.: Towards a Search System for the
Web Exploiting Spatial Data of a Web Document. In: Proceedings of Database and

Expert Systems Applications – DEXA 2010, R.R. Wagner (Ed.), Los Alamitos, IEEE
Computer Society 2010, pp. 27–31.

[15] Khaled, R.—Noble, J.—Biddle, R.: InspectJ: Program Monitoring for Visua-
lisation Using AspectJ. In: Proceedings of the 26th Australasian Computer Science
Conference – ACSC ’03, Australian Computer Society, Inc., Darlinghurst, Australia
2003, Vol. 16, pp. 359–368.

[16] Kiczales, G.—Lamping, J.—Mendhekar, A.—Maeda, C.—Lopes, C.V.—

Loingtier, J.M.—Irwin, J.: Aspect-Oriented Programming. In: Proceedings of
the 11th European Conference on Object-Oriented Programming – ECOOP 1997,
Jyväskylä, Finland, Vol. 1241 of Lecture Notes in Computer Science, pp. 220–242.

[17] Kitlei, R.—Lövei, L.—Nagy, T.—Horváth, Z.—Kozsik, T.: Layout Pre-
serving Parser for Refactoring in Erlang. Acta Electrotechnica et Informatica, Vol. 9,
2009, No. 3, pp. 54–63, ISSN 1335–8243.



1000 J. Kollár, M. Vagač

[18] Lehman, M.M.: Laws of Software Evolution Revisited. In: Proceedings of the 5th

European Workshop on Software Process Technology – EWSPT ’96, Springer-Verlag
London, United Kingdom 1996, pp. 108–124, LNCS 1149.

[19] Lehman, M.M.—Ramil, J. F.: An Approach to a Theory of Software Evolution.
In: Proceedings 4th International Workshop on Principles of Software Evolution –
IWPSE ’01, ACM Press, NY, USA 2001, pp. 70–74.

[20] Lehman, M.M.—Ramil, J. F.—Kahen, G.: A Paradigm for the Behavioural
Modelling of Software Processes using System Dynamics. Technical Report 2001/8,
Department of Computing, Imperial College, London, United Kingdom, September
2001, pp. 1–11.

[21] Lehman, M.M.—Ramil, J. F.—Wernick, P.D.—Perry, D.E.—Tur-

ski, W.M.: Metrics and Laws of Software Evolution – The Nineties Views. In: Pro-
ceedings of the 4th International Symposium on Software Metrics – METRICS ’97,
IEEE Computer Society Press, Washington, DC, USA 1997, pp. 20–32.

[22] Liu, D.—Marcus, A.—Poshyvanyk, D.—Rajlich, V.: Feature Location via
Information Retrieval Based Filtering of a Single Scenario Execution Trace. In: Pro-
ceedings of the 22nd IEEE/ACM International Conference on Automated Software
Engineering – ASE ’07, ACM, New York, NY, USA 2007, pp. 234–243, ISBN 978-1-
59593-882-4.

[23] Lukovic̀, I—Mogin, P.—Pavic̀evic̀, J.—Ristic̀, S: An Approach to Develop-
ing Complex Database Schemas Using Form Types. Software Practice&Experience,
Vol. 37, 2007, No. 15, pp. 1621–1656.

[24] Marcus, A.—Sergeyev, A.—Rajlich, V.—Maletic, J. I.: An Information Re-
trieval Approach to Concept Location in Source Code. In: Proceedings of the 11th

Working Conference on Reverse Engineering, IEEE Computer Society, Washington,
DC, USA 2004, pp. 214–223, ISBN 0-7695-2243-2.

[25] Merdes, M.—Dorsch, D.: Experiences with the Development of a Reverse Engi-
neering Tool for UML Sequence Diagrams: A Case Study in Modern Java Develop-
ment. In: Proceedings of the 4th International Symposium on Principles and Practice
of Programming in Java – PPPJ ’06, ACM, New York, NY, USA 2006, pp. 125–134.

[26] Mernik, M.—Heering, J.—Sloane, A.M.: When and How to Develop Domain-
Specific Languages. ACM Comput. Surv., Vol. 37, 2005, No. 4, pp. 316–344.

[27] Olszak, A.—Jörgensen, B. N.: Remodularizing Java Programs for Comprehen-
sion of Features. In: Proceedings of the First International Workshop on Feature-
Oriented Software Development – FOSD ’09, ACM, New York, NY, USA 2009,
pp. 19–26.

[28] Oriol, M.—Cazzola, W.—Chiba, S.—Saake, G.: Getting Farther on Software
Evolution via AOP and Reflection. Report on the 5th RAM-SE Workshop at ECOOP
2008, RAM-SE ’08, Springer-Verlag, Berlin, Heidelberg 2009, pp. 63–69, ISBN 978-3-
642-02046-9.

[29] Petrenko, M.—Rajlich, V.—Vanciu, R.: Partial Domain Comprehension in
Software Evolution and Maintenance. In: Proceedings of the 16th IEEE International
Conference on Program Comprehension – ICPC ’08, IEEE Computer Society, Wash-
ington, DC, USA 2008, pp. 13–22, ISBN 978-0-7695-3176-2.



AOP Approach to Metamodel Abstraction 1001

[30] Rajlich, V.: Intensions Are a Key to Program Comprehension. In: IEEE 17th

International Conference on Program Comprehension, ICPC ’09, May 2009, pp. 1–9,
ISSN 1063-6897.

[31] Rank, S.: Architectural Reflection for Software Evolution. In: Proceedings of the

2nd Workshop on Reflection, AOP and Meta-Data for Software Evolution – ECOOP
2005, Scotland.

[32] Reiss, S. P.: Visualizing Program Execution Using User Abstractions. In: Proceed-

ings of the 2006 ACM Symposium on Software Visualization – SoftVis ’06, ACM,
New York, NY, USA 2006, pp. 125–134.

[33] Reiss, S. P.: Visual Representations of Executing Programs. Journal of Visual
LanAOP Approach to Metamodel Abstraction Languages and Computing, Vol. 18,

2007, No. 2, pp. 126–148, ISSN 1045-926X.

[34] Roethlisberger, D.—Greevy, O.—Nierstrasz, O.: Feature Driven Browsing.
In: Proceedings of the 2007 international Conference on Dynamic languages, in con-

junction with the 15th International Smalltalk Joint Conference 2007 – ICDL ’07,
ACM, New York, NY, USA 2007, pp. 79–100, ISBN 978-1-60558-084-5.

[35] Rugaber, S.: Program Comprehension. A. Kent and J.G. Williams (Eds): Ency-

clopedia of Computer Science and Technology, April 1995, pp. 341–368.

[36] van Sickle, L.—Hartman, J.: Technical Introduction to the First Workshop on
Artificial Intelligence and Automated Program Understanding. 1992, pp. 12–16.

[37] Wilde, N.—Scully, M.C.: Software Reconnaissance: Mapping Program Features
to Code. Journal of Software Maintenance, Vol. 7, 1995, No. 1, pp. 49–62, ISSN
1040-550X.

[38] Porubän, J.—Václav́ık, P.: Extensible Language Independent Source Code
Refactoring. In: AEI 2008: International Conference on Applied Electrical Engi-
neering and Informatics, Greece, Athens, September 8–11. Košice: FEI TU, 2008,

pp. 58–63.

[39] Porubän, J.—Sabo, M.: Jessine: Integrating Rules in Enterprise Software Ap-
plications. Journal of Information, Control and Management Systems, Vol. 7, 2009,

No. 1, pp. 81–88.

[40] Porubän, J.—Sabo, M.: Preserving Design Patterns Using Source Code Anno-
tations. Journal of Computer Science and Control Systems, Vol. 2, 2009, No. 1,

pp. 53–56.

[41] Václav́ık, P.: Application Domain Name-Based Analysis. Journal of Computer
Science and Control Systems, Vol. 2, 2009, No. 2, pp. 66–69.

[42] Vranic̀, V.—Menkyna, R.—Bebjak, M.—Dolog, P.: Aspect-Oriented Change
Realizations and Their Interaction. e-Informatica Software Engineering Journal,
Vol. 3, 2009, No. 1, pp. 43–58.



1002 J. Kollár, M. Vagač

Ján Koll

�

ar is Full Professor of Informatics at Department of

Computers and Informatics, Technical University of Košice, Slo-
vakia. He received his M. Sc. summa cum laude in 1978 and his
Ph.D. in computer science in 1991. In 1978–1981 he was with the
Institute of Electrical Machines in Košice. In 1982–1991 he was
with Institute of Computer Science at the P. J. Šafárik University
in Košice. Since 1992 he is with the Department of Computer
and Informatics at the Technical University of Košice. In 1985
he spent 3 months at the Joint Institute of Nuclear Research in
Dubna, USSR. In 1990 he spent 2 months at the Department

of Computer Science at Reading University, UK. He was involved in research projects
dealing with real-time systems, the design of microprogramming languages, image pro-
cessing and remote sensing, dataflow systems, implementation of programming languages,
and high performance computing. He is the author of process functional programming
paradigm. Currently his research area covers formal languages and automata, program-
ming paradigms, implementation of programming languages, functional programming, and
adaptive software and language evolution.

Michal Vaga�s is Assistant Professor of Informatics at Depart-

ment of Computers and Informatics, Matej Bel University, Ban-
ská Bystrica, Slovakia. He received his M. Sc. in 2001. The sub-
ject of his research imcludes meta-programming, programming
paradigms, aspect-oriented programming and system evolution.


