
Computing and Informatics, Vol. 31, 2012, 1003–1024

FIVO/QSTORMAN SEMANTIC TOOLKIT
FOR SUPPORTING DATA-INTENSIVE APPLICATIONS
IN DISTRIBUTED ENVIRONMENTS

Renata S lota, Darin Nikolow, Jacek Kitowski

AGH University of Science and Technology
ACC Cyfronet AGH
ul. Nawojki 11, 30-950 Krakow, Poland
&
AGH University of Science and Technology
Faculty of Electrical Engineering, Automatics, Computer Science and Electronics
Department of Computer Science
al. A. Mickiewicza 30, 30-059, Krakow, Poland
e-mail: rena@agh.edu.pl

Dariusz Król, Bartosz Kryza

AGH University of Science and Technology
ACC Cyfronet AGH
ul. Nawojki 11, 30-950 Krakow, Poland

Communicated by Ernest Jamro

Abstract. In this paper we present a semantic-based approach for supporting data-
intensive applications in distributed environments. The approach is characterized
by usage of explicit definition of non-functional quality parameters regarding storage
systems, semantic descriptions of the available storage infrastructre and monitoring
data concering the infrastructure workload and users operation, along with an im-
plementation of the approach in the form of a toolkit called FiVO/QStorMan. In
particular, we describe semantic descriptions, which are exploited in the storage
resource provisioning process. In addition, the paper describes results of the per-
formed experimental evaluation of the toolkit, which confirm the effectiveness of
the proposed approach for the storage resource provisioning.

1004 R. S lota, D. Król, B. Kryza, D. Nikolow, J. Kitowski

1 INTRODUCTION

Modern scientific research becomes more and more dependent on the access to high
performance computational and storage resources, usually available in distributed
form through various Grid or Cloud platforms. Over the last 10 years, technology
oriented scientific activities on scheduling, load balancing and point-to-point data
transfer has been sufficiently advanced to offer higher quality level of research in
that domain.

Although the available Grid or Cloud middleware solutions support scientists
in accessing to the high performance computing infrastructure, the collaboration
between different groups of researchers performed completely on top of the Grid
environment, as required by e-Science community, is still very limited. The concept
of Virtual Organization (VO) [1], introduced in the early papers on the Grid, is
still constrained to basic solutions such as VOMS [2], which have no means of sup-
porting complex collaboration functionality such as definition and enforcement of
agreement between the partners, advanced security and access control, monitoring
of VO level Quality of Service and VO dynamics concerning participation of part-
ners as well as automatic detection of Service Level Agreement violations. These
issues have been discussed in depth in [3], including identification of such challenges
as governance of Virtual Organizations, metrics and assessment, standards and in-
frastructure, policies and contracts as well as automation of the VO deployment
process.

In order to address these issues we have developed a framework called FiVO
(Framework for Intelligent Virtual Organizations) [4], which aims at providing
a comprehensive tool for enabling collaborations in distributed environments
through semantic based VO management platform, supporting dynamic VO incep-
tion, including such functionality as partner discovery, VO goal definition, contract
negotiation and VO execution monitoring and contract enforcement.

However, based on the analysis of VO challenges from [3], another important
issue in large scientific collaborations is still missing, i.e., support for SLA controlled
and QoS aware data management in data intensive applications [5]. In this paper we
present a new component of the FiVO system, called QStorMan, which addresses
that problem. QStorMan uses the information stored in the VO contract related
to the non-functional requirements of data management, and thus allowing to sig-
nificantly improve the data management and performance for data-intensive jobs
within a Virtual Organization. Due to the fact that QStorMan is a semantic toolkit
it is possible to achieve semantic interoperability between the various elements of
the FiVO system.

The paper is organized as follows. In Section 2 we present related work on the
area of optimization of data management in distributed environments. In Section 3
we present the overview and architecture of our system. In Section 4 we present
the semantic approach to description of storage resources and user requirements. In
Section 5 we present the experimental evaluation results and finally conclude the
paper in Section 6.

FiVO/QStorMan Semantic Toolkit 1005

2 RELATED WORKS

Although semantic technologies have been existing for several years now, it is hard to
find their adoption to the data management problem in distributed environments.
The state of the art systems use semantics mainly to integrate information ga-
thered from heterogeneous subsystems or components. Knowledge which is stored
in ontologies can be used by various clients as a shared data model with a defined
meaning.

Such an approach is described in [6] with regards to Cloud environments. The
presented system, called “eCloudManager”, exploits semantic technologies to ad-
dress the topics of data integration, collaborative documentation and annotation
and intelligent information access and analytics. The “eCloudManager” suite is
a multi-layer, Java-based software solution, which allows to manage a highly he-
terogeneous and changing set of resources encountered in enterprise data centers.
As a result, provisioning time and the complexity of the support environment can
be dramatically reduced. However, the “eCloudManager” suite can be used only
by administrators of a company resources to increase their efficiency. There is no
solution for automating some of the cumbersome work, e.g., resource provisioning or
data management. Thus, it can be used only to decrease the size of the management
problem rather than eliminating it.

In the data management field, one of the few tools, which uses knowledge is the
“integrated Rule Oriented Data System” (iRODS) [7] tool. It is a data manage-
ment system that organizes distributed data and their metadata in the Grid. It is
a successor of Storage Resource Broker (SRB). iRODS uses knowledge in the form of
rules instead of ontologies to define policies of managing data. A component which
interprets the rules, called “Rule Engine”, allows to define data storage, data access
and data processing in a flexible way. Altough iRODS exposes a set of interfaces to
interact with, there is no means to supporting legacy code, i.e., applications, which
cannot be modified. The most similar suitable interface for supporting legacy code
is the iRODS Standard I/O library, which can handle C applications only that will
access files with the regular I/O functions but each file name has to be prefixed with
“irods”: string, which needs source code modification.

Though it is hard to find semantic supported systems for data management,
many researchers addressed the issue of data management in the Grid. Most of the
existing solutions have covered the problem of reading data rather than storing data.
One of the most commonly exploited methods is the replication. In [8], a concept of
a self-managing replication system for Digital Libraries is proposed. Such a system
will provide transparent and consistent access to distributed data. It dynamically
controls the creation and maintenance of replicas. The described system will be
based on an accepted replication protocol for database clusters. Unfortunately, only
a concept of the system is presented and no implementation is available yet. There is
a number of publications regardings different algorithms concerning the replication
mechanism like [11, 12, 13, 14]. For example, in [11] the authors describe a modified
version of the Bandwith Hierarchy Replication algorithm. It is based on the network

1006 R. S lota, D. Król, B. Kryza, D. Nikolow, J. Kitowski

level locality of Grid sites. The algorithm tries to replicate popular files within
a region where broad bandwidth is provided within sites.

An existing system for transparent access to remote data by using native I/O
function calls is described in [9]. The system, called “Spigot”, addresses both access
transparency and latency hiding. For access transparency, “Spigot” provides a client
application with a global namespace to access geographically distributed files. For
latency hiding, “Spigot” uses the on-demand scheme for file transfering to avoid
unnecessary data transfer and also adopts a co-allocation (parallel) download stra-
tegy and a pre-fatching strategy to improve data transfer performance. The system
is implemented using the Filesystem in Userspace (FUSE) [10] project. Although,
“Spigot” does not impose any changes to applications, it requires modification in
a worker node operating system. Specifically, a dedicated kernel module has to be
loaded at each worker node. Then, a dedicated directory is created (“/Spitgot”)
where all the files of an applications must be written to access the “Spigot” func-
tionality. While “Spigot” always finds the most efficient storage node at the time to
either store or get data, it does not enable the end users to decide, which parameters
of the storage system they are interested in. It rather uses the “one size fits all”
rule, which is not true in a general case and can lead to infrastructure throughput
reduction.

3 FIVO/QSTORMAN TOOLKIT OVERVIEW

The FiVO/QStorMan toolkit is a set of tools developed to facilitate the data ma-
nagement process based on an explicit definition of non-functional requirements
for storage resources. The toolkit is a subset of Framework for Intelligent Virtual
Organizations (FiVO), which is a more general framework for managing Virtual
Organizations.

The main features of the FiVO system include:

Partner discovery and selection – FiVO supports the idea known from the VO
research community called Virtual Breeding Environment (VBE), which defines
a group of organizations and entities, which are interested in collaborating on
pursuing some goal. FiVO provides means for each entity to publish their seman-
tic description, including capabilities and resources, which can be then discov-
ered by other partners. The VBE is implemented using a distributed semantic
registry, where each organization can publish description of their resources in se-
mantic form. In order to facilitate this process, we have developed a tool called
X2R [15] for automating the process of translating legacy metadata descrip-
tion from relational, LDAP or XML databases into Web Ontology Language –
OWL [16].

Definition of VO goal – in order to properly build and operate a VO a clear goal
needs to be defined and analysed from the perspective of its realization, which
is also one of the key points in the above mentioned paper [3]. FiVO allows to
define the goal of the VO in terms of products and metrics defined semantically,

FiVO/QStorMan Semantic Toolkit 1007

which can be evaluated at any point during the VO operation and any deviations
from the agreement can be identified.

Contract negotiation – this issue is another major aspect of future partners col-
laborations based on the idea of dynamic Virtual Organization supported by
distributed computing platforms such as Grid. FiVO allows the partners of the
VO to negotiate a formal agreement describing their cooperation within the VO,
their responsibilities and obligations, resources they will provide to the VO, and
roles each partner and users will play in the VO as well as security assertions
regarding these roles. Furthermore, the contract allows definition of Service
Level Agreement including various QoS parameters, between any combination
of parties within the VO. The format is defined using Web Ontology Language,
which allows extensions to the generic schema by provision of domain specific
concepts and relation describing particular application. The entire process is
performed in a fully distributed manner and supported by Eclipse [17] based
Graphical User Interface for negotiations.

Security configuration – based on the contract, the security enforcement com-
ponent is able to automatically configure the underlying security infrastructure
using the definition of roles, attributes and access control rules from the con-
tract and translated automatically to VOMS [2] or any XACML [18] based
authorization system. It identifies the different roles within the contract, their
obligations and restrictions, as well as access control rules, and generates access
policies, which allow the members and services of the new VO to gain access to
necessary resources within the infrastructure.

SLA monitoring – the system provides means for continuous monitoring on VO
level of the fullfilment of the VO contract, based on low level monitoring in-
formation collected from the monitoring systems already deployed in the infra-
structure, thus allowing notification and possible reaction to any irregularities
in the VO operation. The reaction service can perform several actions including
notification of responsible users or services, automatic deployment of additional
services in order to improve certain Quality of Service metric or stopping of the
VO due to some major problem.

3.1 The QStorMan Toolkit

While FiVO aims at supporting every part of the VO lifecycle, from the process
negotiation to the SLA enforcement, QStorMan focuses on the QoS provisioning
for data-intensive applications. As a framework input, a set of non-functional re-
quirements which should be maintained is given. As a result, a location of storage
nodes which are suitable for the given requirements is returned. The architecture
of FiVO/QStorMan is depicted in Figure 1. The toolkit consists of the following
components:

1008 R. S lota, D. Król, B. Kryza, D. Nikolow, J. Kitowski

Application

SES-librariesSES-service

QStorMan portlet

SMED monitoring

Enterprise Service Bus

Storage nodes

GOM

Monitoring
requests

Data	storage	request

Data	storage	request

Find	the	most	suitable
storage	node

VO	configura�on	
request

Find	the	most	suitable	
storage	node

Non-func�onal	
requirements
persistance

Fig. 1. The architecture of the QStorMan toolkit

• A distributed knowledge based called GOM [19], which stores all the information
required in order to support inception and management of Virtual Organiza-
tions, including semantic description of organizations resources, capabilities and
interests, the contracts of all Virtual Organizations as well as domain specific
knowledge related to particular applications. Moreover, GOM is responsible
for storing configuration of the storage environment along with defined non-
functional requirements from the users. It exposes an interface for SOAP-based
web services.

• A monitoring system – SMED – which monitors storage resources and provides
information about values of different QoS parameters, e.g., freeCapacity or aver-
ageWriteTransferRate. The SMED subsystem exposes an interface compatible
with the REST model [20], which supports clients developed with different pro-
gramming languages as well as using different technologies. The SMED subsys-
tem exploits semantic descriptions of different storage resources to monitor their
specific features in a plugin-based way, i.e., the core of the SMED subsystem is
independent of concrete set of storage resource types and can be extended to
monitor other types of storage resources easily. The subsystem‘s implementa-

FiVO/QStorMan Semantic Toolkit 1009

tion is based on the Enterprise Service Bus (ESB), thus it can scale with ease if
necessary.

• A portal – QStorMan portlet – is a web-based interface where the users can
define non-functional requirements for storage resources. In addition, the users
can search for a worker node in a distributed environment, which meets the
given QoS parameters at the moment. As a result of this action, the QStorMan
portlet returns a part of a Job Description Language (JDL) [21] file, which can
be used to send the Grid job to the selected worker node. The QStorMan portlet
is based on the open-source Liferay portal [22] and meets the JSR-168 portlet
specification [23] in order to be integrable with a wide set of existing portals
easily. A screenshot from the QStorMan portlet is depicted in Figure 2.

• A service – Storage Element Selection service (SES-service) – is the central ele-
ment of the QStorMan toolkit. It processes requests for finding storage nodes
or worker nodes, which meet QoS requirements defined for one of the following
object: an application, user or Virtual Organization. The defined requirements
are taken by the SES-service from the GOM knowledge base. The service ex-
poses an interface compatible with the REST model, which is both language
and technology independent.

• On the user side the QStorMan toolkit provides two programming libraries for
interacting with the server side part of the toolkit, called SES-libraries. The
first library – called libSES-wrapper – is a system-level C library for supporting
applications without modifying their source code, which are often called legacy
applications. The libSES-wrapper works at a filesystem access level, allowing to
intercept applications file creation requests in which applications data will be
stored. Based on the QoS requirements stored in the knowledge base, the files are
created on suitable storage nodes. To activate the libSES-wrapper library, either
the user who starts an application or the worker node administrator has to set
the LD PRELOAD system variable to the path to the libSES-wrapper library. This
technique is known as the library pre-loading technique. The second library –
called libSES – provides an Application Programming Interface (API) in C++
for managing file creation from the application source code level. It can be used
to create new Grid applications, which heavily exploit storage systems. Using
this library, application developers can store the applications data with more
control. The libSES library is a standard C++ dynamic programming library
and can be used as any other library of this type.

Most of the described components are located at the server-side in order to
decrease the amount of computation on the user(application)-side.

The QStorMan toolkit is developed using modern technologies and models like
ESB and REST. Also, the scalability of the implementation was particularly taken
into account in order to handle a large number of users requests simultaneously.

1010 R. S lota, D. Król, B. Kryza, D. Nikolow, J. Kitowski

Fig. 2. The QStorMan portlet

4 SUPPORTING STORAGE RESOURCES PROVISIONING
WITH SEMANTICS

The QStorMan toolkit exploits semantic descriptions to integrate different compo-
nents with a single, shared data model. By using ontologies stored in the GOM
knowledge base, each of the QStorMan toolkit subsystems uses the same set of
concepts with a defined meaning. In ontologies, the QStorMan toolkit stores infor-
mation about available storage resources and defined non-functional requirements
for different subjects, i.e., VOs, users or applications.

Information about available storage resources and non-functional requirements
for storage resources can be generated based on a VO contract. In such a case, the

FiVO/QStorMan Semantic Toolkit 1011

VO contract created during the negotiation phase is represented with statements
from the Contract Ontology. Statements regarding storage resources and required
QoS are transformed to QStorMan specific ontologies.

In the following subsections, we describe how and which ontologies are used to
represent VO contracts and then which information is especially important for the
QStorMan toolkit.

4.1 Ontologies in FiVO

VO contract is created using concepts defined within the Contract Ontology in Web
Ontology Language. The Contract Ontology is constituted with a set of concepts
representing possible contract statements. Each type of statements allows for repre-
sentation of different contract elements. Main types of statements covered by the
Contract Ontology include:

• VO lifetime

• resource provision

• QoS requirement

• role assignment

• role definition

• authorization policy

• security requirement

• penalty clause.

These concepts provide only generic structure of the contract, which can be
automatically procesed by the components of the FiVO framework. However, all
of them can be extended by definition of domain specific concepts related to the
application at hand, which will be still processable by the FiVO tools. The Contract
Ontology depends on several ontologies in order to define additional concepts related
to the attributes of the statements, such as QoS ontology (QoSOnt2), VO ontology
and security ontology [24].

Beside the Contract Ontology, there are two more ontologies exploited by the
FiVO system and the QStorMan toolkit in particular. The first one is the Stor-
age Resource Ontology (described in Subsection 4.2), which contains information
about the available storage environment. The second one is the Requirement On-
tology, which includes statements regarding non-functional requirements for storage
systemns. The Requirement Ontology is described in Subsection 4.3 in more detail.

4.2 Storage Resource Ontology

Definitions of different storage resources available in a distributed environment are
described in a single ontology called Storage.owl. In this ontology, different types

1012 R. S lota, D. Król, B. Kryza, D. Nikolow, J. Kitowski

of storage resources were defined and described along with their specific features.
The ontology is depicted in Figure 3. It is based on the previously created ontology
within the OntoStor project [25] and is compatible with the C2SM model [26]. Each
type of storage resource has a number of attributes attached (represented by the
Attribute class), each representing measurable quality parameter of the resource,
e.g., currentReadTransferRate or freeCapacity. All storage resources have been
divided into two groups: physical storage resources, which represent hardware de-
vices dedicated to store data, e.g., hard drives or disk arrays. Such devices are often
accessible via a standard file system.

However, if there is a need to provide users with a coherent view of very large
capacity, one can aggregate several hardware devices (physically distributed) into
a single system. Therefore, a concept of a virtual storage resource has been intro-
duced. This class encompasses, e.g., distributed file systems, which can consist of
several physical devices. An example of such a resource is a concept of a pool in the
Lustre file system [27], which simply describes a set of disks.

Each storage resource needs an access server through which the users can ac-
cess provided storage space. In our ontology, this type of service is represented by
the AccessResource concept, which is linked with the StorageResource class via the
hasAccessResource relationship.

Thing

DiskArray

AccessResource

PhysicalStorageResource

StorageResource

Attribute

is-ais-a

is-a

is-a

VirtualStorageResource

Server

LocalDisk

HSM

LustrePool

is-a

is-a

is-a

is-a

is-a

is-a

Fig. 3. An ontology describing storage resources

For testing purpose, an instance of the ontology was developed to describe dis-
tributed environment in, which the tests described below were performed. The
instance ontology is used by the SES and SMED subsystems to:

• select appropriate method of measuring parameters of a resource depending on
the resource type,

• find the most suitable storage node for the given non-functional requirements
but only from the available ones,

• request values of quality parameters for storage resources depending on the
resource type.

FiVO/QStorMan Semantic Toolkit 1013

In Figure 4, a sequence diagram of the main QStorMan toolkit use case, i.e.,
finding the most suitable storage node for given requirements is depicted. The se-
quence diagram contains only actions, which are relevant to the semantic interaction
between components. An instance of SMED in each site retrieves storage resources
for the site from GOM at a start time. This is a one time operation. The main part
of the use case starts when a client, e.g., one of the SES-libraries, sends a request for
finding the most suitable storage node for the given non-functional requirements.
The first action performed by the SES-service after retrieving the request is getting
all of the available storage nodes. Then, from each SMED instance the SES-service
collects current values of the given parameters. As a result, information about the
most suitable storage node is returned to the SES-libraries.

4.3 Non-Functional Requirements Ontology

The second ontology used by the QStorMan toolkit defines non-functional require-
ments for storage resources at different levels of abstraction. The ontology is depicted
in Figure 5. Non-functional requirements (represented by the NonFunctionalRequire-
ment class) can be linked with a Virtual Organization, a user or an application via
an instance of the DataSLA class. At the Virtual Organization level, the defined
requirements can be treated as global settings for all users who are members of the
concrete VO. Currently, only administrators of the Virtual Organization can define
requirements at this level directly in the VO knowledge base. At the user level,
the defined requirements regard all of the users applications. The lowest level of
requirements concerns the application themselves, i.e., each application can have
different requirements defined.

Both the user and the application requirement levels are supported by the
QStorMan portlet. Basic operations such as creation, overwriting and removing
are provided by clickable and intuitive Graphical User Interface in the portal (see
Section 3.1). For testing purpose, an instance of the ontology was developed to
describe sample requirements for test users. The instance ontology is used by the
SES subsystem, i.e., libSES and SES service, to:

• get requirements of an application or virtual organization for a given user,

• find a Virtual Organization of which a given user is a member.

5 EXPERIMENTAL EVALUATION

The toolkit is developed within the PL-Grid project [28] whose one of the main
goals is to support the Polish scientific community with new tools and programming
frameworks that will enable scientists to run advanced scientific applications in a fast
and reliable manner on Grid-based distributed infrastructure. The FiVO/QStorMan
toolkit is one of the tools that will be deployed at the PL-Grid production infrastruc-
ture. Specifically, the QStorMan portlet is going to be embedded into the PL-Grid

1014 R. S lota, D. Król, B. Kryza, D. Nikolow, J. Kitowski

SES-service

SES-libraries

SM
ED

G
O

M

loop

[for each site]

loop

[for each storage nodes]

getStorageResourcesW
ithFeatures(site)

siteStorageResources()

findM
ostSuitableStorageNode(requirem

ents)

getAllStorageResources()

storageResources()

getParam
eterValues(param

eterList)

param
eterValues()

m
ostSuitableStorageNode()

Fig. 4. A sequence diagram of the “finding storage node” use case

FiVO/QStorMan Semantic Toolkit 1015

Thing

UserAccount

NonFunctional
Requirement

DataSLAContractStatement

Host

User

CNO VO

Application

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

Fig. 5. An ontology describing non-functional requirements for storage resources

portal. An instance of each server-side component of QStorMan, i.e., SES-service,
GOM and SMED, will be deployed at a dedicated server within each site of the
project infrastructre.

The current version of the QStorMan toolkit distributes data within a dis-
tributed file system Lustre [29], which will be used in the PL-Grid project as
the storage system for temporary data coming from applications running on the
Grid.

In order to verify whether the presented approach to data management is ef-
ficient, a set of tests was performed. Testing computer systems, which operate in
highly distributed and dynamic environments such as Grids is not a trivial task.
There are several factors, which testers should keep in mind, e.g., network traffic or
node failure. To overcome these problems, many simulators of Grid environments
were developed, e.g., OptorSim [30], which allows to test dynamic replication strate-
gies used in optimising data location within a Grid. Each simulated site contains
several storage or computing elements. However, due to Grid complexity, it is hardly
possible to simulate a Grid in every detail. Thus, the results obtained with such
a simulator cannot lead to right conclusions.

Therefore, we decided to test the QStorMan toolkit with an infrastructure si-
milar to the Grid. We accept the fact that there may occur perturbations on the
test infrastructure caused by, e.g., a huge number of users who decide to stress
the infrastructure by running many data-intensive applications. By monitoring the
workload of the infrastructure, we were able to minimize the impact of such situa-
tions.

1016 R. S lota, D. Król, B. Kryza, D. Nikolow, J. Kitowski

5.1 Testing Environment

As a testing environment, a part of the PL-Grid infrastructure was used. It consists
of three nodes in three different Polish computing centers, namely ACC Cyfronet
AGH in Cracow, Poznan Supercomputing and Networking Center (PSNC) and In-
terdisciplinary Center of Mathematical and Computational Modelling (ICM) in War-
saw. Characteristics of the nodes are as follows:

1. ACC Cyfronet AGH (Cracow)

• Scientific Linux SL release 5.5 (Boron)

• 2 × Intel R© Xeon R© CPU L5420 @ 2.50 GHz (4 cores, 1 thread per core)

• 16 056 MB RAM

• 12 TB storage capacity, 150 MB/s read transfer rate, 70 MB/s write transfer
rate

2. PSNC (Poznan):

• Scientific Linux CERN SLC release 5.5 (Boron)

• Intel R© Xeon R© CPU 5160 @ 3.00 GHz (2 cores, 1 thread per core)

• 1 000 MB RAM

• 14 TB storage capacity, 55 MB/s read trasfer rate, 46 MB/s write trasfer rate

3. ICM (Warsaw):

• CentOS release 5.5 (Final)

• Intel R© Xeon R© CPU X3430 @ 2.40 GHz (4 cores, 1 thread per core)

• 7 975 MB RAM

• 5 TB storage capacity, 50 MB/s read trasfer rate, 27 MB/s write trasfer rate.

A map of the testing environment is depicted in Figure 6. The client machine,
i.e., the machine from which the test scripts were executed, was a standard worker
node located at the ACC Cyfronet AGH center. Both service: SES-service and
GOM were deployed on different machines. Each storage node represents an access
resource to the Lustre file system installation at each supercomputing center. In each
supercomputing centre an instance of SMED subsystem was deployed. We omit the
network connection details as well as details of storage resources connection within
each supercomputing center to keep the map simple.

5.2 Testing Scenario

A developed testing scenario is a data-intensive application, which alternately per-
forms computation and then write data to a storage node. This is a common be-
haviour when an application generates such amount of data, which has to be stored
in an external memory. An example of this type of applications is particle simu-
lation. Such a simulation is divided into a number of iterations and within each

FiVO/QStorMan Semantic Toolkit 1017

SES-service

CYFRONET
storage
node

PSNC
storage
node

 ICM
storage node

Client

1 GigE

1 GigE

 Fast
ethernet

 Fast
ethernet GOM

 Fast
ethernet

 Fast
ethernet

SMED SMED SMED

 Fast
ethernet

 Fast
ethernet Fast

ethernet

National
Computer
Network

Fig. 6. A map of the QStorMan testing environment

iteration the particle’s positions for the current time-step are computed and stored
in an output file for later trajectory analysis. Each file represents a single iteration
of such a simulation.

In the developed scenario, the QStorMan toolkit has been used to select a site
where a job will run according to measured current write transfer rates in available
sites. Thus, it simulates the use case where a user interacts with the QStorMan via
a web portal. The scenario was parametrized with the following values:

• the number of users running in parallel: 6 (4 of which uses the QStorMan
toolkit),

• a single file size output: 2 GB,

• the number of output files to write: 20, 40, 50.

5.3 Results and Discussion

The performance evaluation metric used in the presented tests is data write time.
The metric represents total time of writing data within a single test job. In the
performed tests, this is the time of writing 2 × 20 = 40 GB, 2 × 40 = 80 GB and
2 × 50 = 100 GB of data.

1018 R. S lota, D. Król, B. Kryza, D. Nikolow, J. Kitowski

The results from the previously described testing scenario are depicted in Fi-
gure 7. The chart consists of four groups of bars that represent total data write
time of a number of files from the X axis. The smaller bars mean better results.
In most cases, the QStorMan users data write time was smaller from 10 % up to
40 % compared to the users who did not use QStorMan. It is worth mentioning that
this scenario simulated the case where no QStorMan specific modification has to be
made to the application source code.

20 40 50

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Avg write time (file size = 2GB, iteration count = 20)

QstorMan User 1

QstorMan User 2

QstorMan User 3

QstorMan User 4

Classic user 1

Classic User 2

Files count

D
a
ta

 w
ri
te

 t
im

e
 [
s
]

20 40 50

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Avg write time (file size = 2GB, iteration count = 20)

QstorMan User 1

QstorMan User 2

QstorMan User 3

QstorMan User 4

Classic user 1

Classic User 2

Files count

D
a
ta

 w
ri
te

 t
im

e
 [
s
]

Fig. 7. Test results from data-oriented Grid job simulation

Another important parameter which was measured is an overhead generated by
the QStorMan including the usage of semantic technologies in particular for the
global execution time of users application. The overhead is presented in Table 1.
As the QStorMan toolkit exposes its functionality via the SES-service, thus the
overhead can be defined as the SES-service request response. Each request can be
divided into three stages:

FiVO/QStorMan Semantic Toolkit 1019

• gathering data from GOM about available storage resources,

• getting information from SMED about given QoS parameters of the resources,

• and finding the most suitable storage node.

Getting storage
resources time [s]

Getting data from
SMED time [s]

Finding storage
node time [s]

Total processing
request time [s]

1.007 1.123 0.003 2.134

Table 1. An overhead of the QStorMan toolkit

The results presented in Table 1 show that the SES-service processes a single
request within 2.134 seconds, which is rather fast compared to data write time for
a single job. Notice that 6 users run in parallel, thus there were 3 requests processed
by the SES-service simultaneously. If there would be only one user, then the process
time could be less than 1 second. The first stage of processing a request, i.e.,
getting information from GOM about available storage resources, takes about 47 %
of the overall processing time while the communication with SMED takes about
52 %. This time includes the processing time by each component as well as network
communication. The stage of finding the most suitable storage node is negligible
due to taking less than 1 % of the overall processing time.

Exploitation of semantic technologies generates only a minor overhead compared
to data write time for a job. However, it allowed us to create a storage provisioning
system whose components are integrated at the semantic level. Thus it can be easily
extended with e.g., new definitions of QoS parameters or types of storage devices.
Also new components, e.g., an accounting tool, can be added in a loosely coupled
manner if necessary.

6 CONCLUSIONS AND FUTURE WORK

In this paper we have discussed how semantic definition of requirements related to
VO level data management in a data-intensive application can improve end user
experience of performing high performance computing research on the Grid. The
results show that allowing the VO users to define their requirements related to data
management using extensible and machine processable format allows the system to
optimize the data access times significantly.

An implementation of the proposed approach to the data management process –
the FiVO/QStorMan toolkit – provides a few different ways to define non-functional
requirements regarding storage systems. By using a programming library, the user
can decide how each of the files created by an application should be managed. This
approach requires modifications in the application source code. On the other hand,
in our approach the user can define application-wide requirements by using a system
library. In this case, no modification to the application source code is needed.

The performed tests show a possible speed up of data write time up to 40 %
of a job, which is scheduled with the QStorMan toolkit comparing to a job, which

1020 R. S lota, D. Król, B. Kryza, D. Nikolow, J. Kitowski

is scheduled without taking into account information about non-functional require-
ments of the job and the current workload of the infrastructure.

The future work will include further experiments with the proposed system in the
framework of the PL-Grid project as well as application of the proposed approach
to Cloud based infrastructures. Also, enhancements to the area of requirements
definition are planned. By futher exploiting the semantic technologies, we plan
to enable users to define their requirements at a higher, more application-specific,
level of abstraction. We also consider an adoption of some fuzzy logic [31] and
machine learning [32, 33] techniques for monitoring and retrieving of user’s data
access patterns and trends.

Acknowledgements

This research is supported partly by the European Regional Development Fund
program No. POIG.02.03.00-00-007/08-00 as part of the PL-Grid Project and by
Polish Ministry of Science and Higher Education Grant No. 690/N-EGI/2010/0.
We thank Kornel Ska lkowski and Micha l Orzechowski for help in preparing and
performing tests of the QStorMan toolkit. We thank Bart lomiej Burba (PSNC),
Marcin Stolarek (ICM), Patryk Lasoń (Cyfronet), Marek Magryś (Cyfronet) and
 Lukasz Flis (Cyfronet) for help in preparing the testing environment based on the
PL-Grid testing infrastructure.

REFERENCES

[1] Foster, I.—Kesselman, C.—Tuecke, S.: The Anatomy of the Grid: Enabling
Scalable Virtual Organizations., Int. J. High Perform. Comput. Appl., Vol. 15, 2001,
No. 3, pp. 200–222.

[2] Alfieri, R.—Cecchini, R.—Ciaschini, V.—dell’Agnello, L.—Frohner,
Lorentey, K.—Spataro, F.: From Gridmap-File to VOMS: Managing Authoriza-
tion in a Grid Environment. Future Generation Comp. Syst., Vol. 21, 2005, No. 4,
pp. 549–558.

[3] Cummings, J.—Finholt, T.—Foster, I.—Kesselman, C.—Lawrence, K. A.:
Beyond Being There: A Blueprint for Advancing the Design, Development, and
Evaluation of Virtual Organizations. Technical report, National Science Foundation,
available at http://www.ci.uchicago.edu/events/VirtOrg2008 (retrieved March
30, 2011).

[4] Kryza, B.—Dutka, L.—S lota, R.—Kitowski, J.: Dynamic VO Establish-
ment in Distributed Heterogeneous Business Environments. LNCS, Vol. 5545, 2009,
pp. 709–718.

[5] S lota, R.: Storage QoS Provisioning for Execution Programming of Data-Intensive
Applications. Scientific Programming, Vol. 20, 2012, No. 1, DOI 10.3233/SPR-2012-
0339, IOS Press, pp. 6980.

FiVO/QStorMan Semantic Toolkit 1021

[6] Haase, P.—Mathass, T.—Schmidt, M.—Eberhart, A.—Walther, U.:
Semantic Technologies for Enterprise Cloud Management. http://uidops.

net/wp-content/uploads/downloads/2010/08/Publications/iswc2010.pdf, as
of April 2, 2011.

[7] The iRODS project website: https://www.irods.org, as of April 2, 2011.

[8] Akal, F.—Schuldt, H.—Schek, H.: Toward Replication in Grids for Digital
Libraries with Freshness and Correctness Guarantees. Concurrency and Computation:
Practice and Experience, Vol. 20, 2008, No. 17, pp. 1981–1993.

[9] Chen, P.—Chang, J.—Su, J.—Shieh, C.: On-Demand Data Co-Allocation with
User-Level Cache for Grids. Concurrency and Computation: Practice and Experience,
Vol. 22, 2010, No. 18, pp. 2488–2513.

[10] The FUSE project website: http://fuse.sourceforge.net/, as of April 2, 2011.

[11] Sashia, K.—Thanamani, A.: Dynamic Replication in a Data Grid Using a Modi-
fied BHR Region Based Algorithm. Future Generation Comp. Syst., Vol. 27, 2011,
No. 2, pp. 202–210.

[12] Pérez, J.—Carballeira, F.—Carretero, J.—Caldern, A.—Fernndez, J.:
Branch Replication Scheme: A New Model for Data Replication in Large Scale Data
Grids. Future Generation Comp. Syst., Vol. 26, 2010, No. 1, pp. 12–20.

[13] S lota, R.—Nikolow, D.—Skita l, L.: Implementation of Replication Methods
in the Grid Environment. LNCS, Vol. 3470, 2005, pp. 474–484.

[14] S lota, R.—Skita l, L.—Nikolow, D.: Algorithms for Automatic Data Replica-
tion in Grid Environment. LNCS, Vol. 3911, 2006, pp. 707–714.

[15] My lka, A.—My lka, A.—Kryza, B.—Kitowski, J.: Integration of Heteroge-
neous Data Sources Into an Ontological Knowledge Base. Computing and Informatics,
Vol. 30, 2012, No. 1, pp.189–223.

[16] OWL Web Ontology Language project website: http://wiki.lustre.org/index.

php/Creating_and_Managing_OST_Pools, as of April 2, 2011.

[17] Eclipse project website: http://www.eclipse.org/, Retrieved on April 4, 2011.

[18] XACML standard: http://www.oasis-open.org/committees/xacml/, as of
April 2, 2011.

[19] Kryza, B.—S lota, R.—Majewska, M.—Pieczykolan, J.—Kitowski, J.:
Grid Organizational Memory-Provision of a High-Level Grid Abstraction Layer Sup-
ported by Ontology Alignment. Future Generation Comp. Syst., Vol. 23, 2007, No. 3,
pp. 348–358.

[20] Fielding, R. T.: Principled Design of the Modern Web Architecture. ACM Trans-
actions on Internet Technology, Vol. 2, 2002, pp. 115–150.

[21] The Job Description Language (JDL reference website: http://www-numi.fnal.

gov/offlinesoftware/srt_public_context/GridTools/docs/jobs_jdl.html, as
of April 2, 2011.

[22] The Liferay portal website: http://www.liferay.com/, as of April 2, 2011.

[23] JSR-168 specification. http://jcp.org/aboutJava/communityprocess/_nal/

jsr168/index.html, as of April 2, 2011.

1022 R. S lota, D. Król, B. Kryza, D. Nikolow, J. Kitowski

[24] Fibinger, J.—Puzon, B.—Kryza, B.—S lota, R.—Kitowski, J.: Virtual Or-
ganization Security Layer Deployment Assistance. In: M. Bubak, M. Turala, K. Wiatr
(Eds.), Proceedings of Cracow Grid Workshop – CGW ’09, 2009, ACC-Cyfronet AGH
Krakow 2010, pp. 88–95.

[25] The OntoStor project website: http://www.icsr.agh.edu.pl/ontostor/en.html,
as of April 2, 2011.

[26] Polak, S.—S lota, R.: Organization of Quality-Oriented Data Access in Mod-
ern Distributed Environments Based on Semantic Interoperability of Services and
Systems. In: Salvatore F. Pileggi and Carlos Fernandez-Llatas (Eds.), Semantic In-
teroperability: Issues, Solutions, Challenges, River Publishers, 2012, ISBN 978-87-
92329-79-0, pp. 131–152.

[27] The Lustre pool mechanism: http://wiki.lustre.org/index.php/Creating_and_
Managing_OST_Pools, as of April 2, 2011.

[28] The PL-Grid project website: http://www.plgrid.pl, as of April 2, 2011.

[29] The Lustre filesystem website: http://wiki.lustre.org, as of April 2, 2011.

[30] Bell, W.—Cameron, D.—Millar, A.—Capozza, L.—Stockinger, K.—
Zini, F.: Optorsim: A Grid Simulator for Studying Dynamic Data Replication
Strategies. International Journal of High Performance Computing Applications,
Vol. 17, 2003, No. 4, pp. 403–416.

[31] Funika, W.—Szura, F.—Kitowski, J.: Agent-Based Monitoring Using Fuzzy
Logic and Rules. Computer Science, Vol. 12, 2011, pp. 103–113, ISSN 1508-2806.

[32] Śnieżyśki, B.—Dajda, J.: Comparison of Strategy Learning Methods in Farmer-
Pest Problem for Various Complexity Environments Without Delays. Journal of
Computational Science, 2012, ISSN 1877-7503, Available online 30 March 2012,
10.1016/j.jocs.2012.03.003.

[33] Śnieżyśki, B.: Agent Strategy Generation by Rule Induction. Computing and In-
formatics, in press.

Renata S lota works at the Department of Computer Science
of the AGH University of Science and Technology in Krakow,
Poland. She obtained her Ph. D. in 1998 in computer science
at the same university. She is the author or co-author of about
110 scientific papers. Her topics of interest include distributed
systems, grid and cloud environments, data management and
storage systems, knowledge engineering. She has been involved
in many national (currently: PLGrid Plus, KMD2) and inter-
national projects, most notably in EU IST: CrossGrid, Pellucid,
K-WfGrid, GREDIA, and Int.eu.grid projects. She is a Pro-

gram Committee member of International Conference on Computational Science (ICCS)
and reviewer of: Computing and Informatics (CAI), Future Generation Computer Systems
(FGCS), and Computer Science (CSCI) journals.

FiVO/QStorMan Semantic Toolkit 1023

Dariusz Kr�ol received his M. Sc. in Computer Science at the
University of Science and Technology in Krakow, Poland, in
2009. Now he is a Ph. D. student at the same university and
a scientific programmer at ACC CYFRONET AGH. He is the
author or co-author of about 20 scientific papers. He has been
involved in many national and international projects, funded
by European Commission and EDA, e.g. ViroLab, GREDIA,
PL-Grid, EDA EUSAS. He is a Program Committee member of
International Conference on Cloud Computing, GRIDs, and Vir-
tualization (CLOUD COMPUTING) and reviewer of the Com-

puter Science (CSCI) journal. His topics of interest include cloud computing, storage
systems, autonomic computing, large-scale web applications and high availability systems.

Bartosz Kryza is researcher and developer at the Academic
Computer Center CYFRONET in Krakow. He has participated
in several EU-IST projects as task or WP leader, including
FP5 CrossGrid, FP5 Pellucid, FP5 MAGIC (during research
internship in France), FP6 K-Wf Grid, FP6 GREDIA and FP7
PRACE. His main areas of interest are at the convergence of
Grid systems and semantic technologies, SOA architectures and
virtual organisations, distributed data management and P2P
technologies. He is the author or co-author of about 30 research
papers published in international journals or conference proceed-
ings.

Darin Nikolow obtained his Ph. D. in Poland at the AGH
University of Science and Technology in 2003. He is a lecturer
at the Department of Computer Science of AGH UST with spe-
cialization in data protection technologies. His reserch interests
include storage systems and distributed computing.

Jacek Kitowski (Full Professor of Computer Science) gradu-
ated in 1973 at Electrical Department of the AGH University
of Science and Technology in Krakow (AGH-UST, Poland). He
obtained his Ph. D. in 1978 and D. Sc. in 1991 in computer scien-
ce at the same university. He is the Head of Computer Systems
Group at the Department of Computer Science of the AGH Uni-
versity of Science and Technology in Cracow, Poland, and se-
nior researcher at the Academic Computer Centre CYFRONET-
AGH, being responsible for developing high-performance

1024 R. S lota, D. Król, B. Kryza, D. Nikolow, J. Kitowski

systems and grid environments. He is the author or co-author of about 200 scientific

papers. His topics of interest include large-scale computations, multiprocessor architec-

tures, parallel/distributed computing, Grid services and Cloud computing, SOA systems,

knowledge engineering and semantic technologies. He participates in program committees

of many conferences, and was/is involved in many international and national projects,

like EU funded Crossgrid, Pellucid, int.edu.grid, K-WfGrid, Gredia, gSLM and EDA EU-

SAS. He is Polish expert (nominated by the Ministry of Science and Higher Education)

in EU Program Committee e-Infrastructures (EU Unit F3 Research Infrastructures) and

Director of PL-Grid Consortium coordinating the PL-Grid and PLGrid PLUS projects

co-funded by the European Regional Development Fund as part of the Innovative Eco-

nomy Program (National Grid Initiative, Polish NGI), closely cooperating with EGI.eu

and EGI InSPIRE. He is a Member of the Interfaculty Commission of Technical Sciences

of the Polish Academy of Arts and Sciences (PAU) and of the Computational Science

Section of the Polish Academy of Sciences (PAN), Committee on Informatics. as well as

the Editor-in-chief of Computer Science Journal (published by AGH-UST).

