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Abstract. Classification problem for imbalanced datasets is pervasive in a lot of
data mining domains. Imbalanced classification has been a hot topic in the academic
community. From data level to algorithm level, a lot of solutions have been proposed
to tackle the problems resulted from imbalanced datasets. SMOTE is the most
popular data-level method and a lot of derivations based on it are developed to
alleviate the problem of class imbalance. Our investigation indicates that there
are severe flaws in SMOTE. We propose a new oversampling method SNOCC that
can compensate the defects of SMOTE. In SNOCC, we increase the number of
seed samples and that renders the new samples not confine in the line segment
between two seed samples in SMOTE. We employ a novel algorithm to find the
nearest neighbors of samples, which is different to the previous ones. These two
improvements make the new samples created by SNOCC naturally reproduce the
distribution of original seed samples. Our experiment results show that SNOCC
outperform SMOTE and CBSO (a SMOTE-based method).
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1 INTRODUCTION

Classification is by far the most important machine learning topic. Various classi-
fication algorithms, such as decision tree, BP neural networks, Bayesian networks,
k-nearest neighbor, support vector machine, etc., were developed and widely used in
many fields. Almost all algorithms suffer from the problem of imbalanced dataset,
in which there are more instances belonging to some classes than others. Imbal-
anced data usually causes biases in classification and leads to poor generalization
performance. For many real-world applications, including fraud detection [1, 2],
bioinformatics [3, 4, 5, 6], text classification [7, 8], medical field [9, 10], etc., the
class of interest has a frequency of less than 0.01 among all cases. In these applica-
tions, the minority is most interesting and its identification is of utmost importance.
This requires a fairly high detection rate of the minority class and usually allows
a small error rate in the majority class since the cost of misclassifying a majority
instance can be relatively low. The class imbalance problem is of the crucial im-
portance. It can cause a significant bottleneck in the performance attainable by
standard learning methods which assume a balanced class distribution. Plenty of
works [11, 12, 13, 14, 15, 16, 17, 18] have shown the importance of this problem for
classification, and lots of studies [19, 20, 21, 22, 23, 24, 25, 26, 27] demonstrated
that sample balancing provides a significant quality improvement in real-world ap-
plication problems including control of financial risk, image recognition, medicine,
biology, text mining, time series, etc. Unbalanced data had been identified as one of
10 challenging problems in data mining research long ago [28]. In recent years, clas-
sification problem for imbalanced datasets has been a more and more hot research
topic.

Sun et al. [29] investigated the nature of imbalanced classification problem and
believed that imbalanced class distribution, small sample size, class separability and
within-class concepts were the main factors causing the problem. Corresponding
to different problem roots, people put forward different schemes of solution to im-
balanced classification. For example, in order to tackle the problem of imbalanced
class distribution, researchers devised a variety of sampling methods, such as random
over- or under-sampling, SMOTE [30] and other methods based on it, CBO [31].
Also a lot of pertinent algorithms (e.g. cost sensitive learning, one-class model, and
so on) are developed to alleviate the problem of class imbalance in classification.
The details of solution to problems of imbalanced classification can be found in
Section 2. Of all these solutions, SMOTE oversampling has received much more
attention in recent research. After that, researchers proposed some other methods
based on it, including Borderline-SMOTE [32], ADASYN [33], SMOTEboost [34],
CBSO [35], RAMOBoost [36], KSMOTE [37]. Their experiments show that all these
methods can alleviate the imbalance problem more or less. Despite the modifica-
tions in various scopes, the key idea of these methods is still essentially analogue to
SMOTE. Our investigation in this paper suggests that a severe flaw exists for this
type of oversampling. Specifically, new samples created in SMOTE invariably lie
in the line segment between seed samples. This is why new synthetic samples can-
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not really simulate the distribution of original samples. Besides, nearest neighbors
searching algorithm used in SMOTE does not take the distribution of subclasses
into account, which can lead to the problem of overlapping between classes. We
propose a new oversampling method SNOCC to overcome above defect. The basic
idea is to employ an improved method to avoid new synthetic samples confining in
the line segment between seed samples, and a different nearest neighbors searching
algorithm is adopted to tackle the problem of classes overlapping. SNOCC integrate
cluster based on distance and oversampling that is different from SMOTE. Our ex-
periments show that SNOCC oversampling can generate better synthetic samples
than SMOTE and other methods based on it.

Our paper is organized as follows. Section 2 briefly introduces the advancements
in the domain related to imbalanced data. In Section 3 we analyze the SMOTE
method and give the reason why it may cause a generalization error. Section 4
describes our SNOCC oversampling methods. Section 5 presents our experiment
result and compares it with results of other different methods. Finally, we present
our conclusions in the Section 6.

2 RELATED WORKS

Solutions to problems of imbalanced classification fall into two categories: data-level
methods and algorithm-level methods. The former try to relax the skewed degree
of dataset through the adjustment the distribution of classes, and the latter is to
design new classifier or improve the existing algorithms to increase the recognition
ratio of the positive class. Typical approaches of algorithm-level methods include
cost-sensitive learning [38], one-class learning [39, 40], ensemble learning [41, 42], etc.
These types of methods usually involve re-designing of a specific classifier, which is
out of the scope of our paper. In this paper, we mainly focus on the data-level
methods.

Data-level methods are to sample the dataset and create a balanced data dis-
tribution, which include oversampling and undersampling. Oversampling increases
the number of minority class instances to balance the distribution of classes. The
simplest oversampling is random oversampling, which simply duplicate minority in-
stances. The most severe weakness here is that it adds no new information to the
dataset and could cause overfitting of classifiers. The corresponding random un-
dersampling method is to stochastically delete some majority class instances so as
to adjust the data distribution. The main shortcoming of random undersampling
is that it does not make full use of information from deleted instances. Based on
these two random sampling methods mentioned, varieties of heuristic methods for
sampling are proposed.

1. Synthetic Minority Over-sampling TEchnique (SMOTE)

SMOTE [30] is a type of oversampling method. Its theory basis is that the
feature space of minority class instances is similar. For each instance x; in
minority class, SMOTE searches its k nearest neighbors and one neighbor is
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randomly selected as ' (we call instances x; and 2’ seed sample). Then a random
number between [0,1] ¢ is generated. The new artificial sample @, is created
as:

Tnew = Ti + (¥ — ;) X § (1)

Comparing with random oversampling method, SMOTE method can effectively
avoid the problem of overfitting of classifiers. The proposition of SMOTE
greatly inspired researches and some derivations of SMOTE such as Borderline-
SMOTE [32], ADASYN [33], SMOTEDboost [34], CBSO [35], RAMOBoost [36],
KSMOTE [37], were put forward. For more detailed analysis of SMOTE, see
Section 3.

2. Sampling methods based on data cleaning

Data cleaning technique can be used to clear out overlapped samples introduced
in oversampling. NCL (Neighborhood Clean Rule) [43] is based on improved
ENN (Edited Nearest Neighbor). ENN removes a sample where the class label
is different from others among three nearest neighbors. NCL method searches
3 nearest neighbors of sample x. If = belongs to the majority class, and at
least two of 3 nearest neighbors belong to the minority class, then x should be
cleared out. If  belongs to the minority class, and more than two of 3 nearest
neighbors belong to the majority class, then the majority class instances of
3 nearest neighbors should be deleted. Tomek links are also often-used as a data
cleaning method. Tomek links method is defined as a pair of samples that
belong to different classes and the distance to each other is the nearest. We
can delete Tomek links to clear samples generated from oversampling until all
nearest neighbors pairs belong to the same class.

3. Cluster-Based Oversampling (CBO)

CBO [31] is proposed to effectively manage the within-class imbalance problem.
It makes use of the K-means clustering technique. Before oversampling, both
minority and majority class samples should be clustered. In the majority class,
all the clusters, except for the largest one, are randomly oversampled so as to get
comparable number of training samples as the largest cluster. In the minority
class, all the clusters are randomly oversampled to get the same number until
the sample size of the minority is equal to that of majority.

3 DEFECTS OF SMOTE-BASED APPROACH

In this section we illustrate using examples that SMOTE-based oversampling will
cause problems on the distribution of samples and hinder the accuracy of the clas-
sifiers. New synthetic samples in SMOTE cannot really reflect the distribution of
original samples. When we learn classification model from these new samples, the
final classifier cannot obtain correct information on real samples data. This will
increase the probability that classifier misclassifies samples and lead to a bigger
generalization error.
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Figure 1. The process of classification

In order to analyze SMOTE methods, we begin with classification. In classi-
fication, classifier is used to assign a label to a sample with unknown class label
according to a sequence of rules. Such classifier is obtained through learning the
training data with known class labels. A standard classification process is shown in
Figure 1. First, we need to choose a proper classification method. Then the selected
model learns training data to generate final classifier. Finally, test data is used to
assess the classifier.

After choosing a model, the performance of a classifier is to a great extent de-
termined by the training-sample size. Features selection methods and the choice of
classification algorithm had only a modest impact on the predictor performance [44].
The study of GN Karystinos et al. shows that the generalization error may be un-
desirably large when the available training set size is too small [45]. In addition,
the within-class imbalance phenomena, which correspond to the imbalanced distri-
bution among subclasses [46], can also greatly impair the generalization ability of
the classifier. If the distribution of training data cannot include the whole samples
space of test data, it is nothing surprising that we will get a classifier with a greater
generalization error.

Now let us return to SMOTE. From Equation (1) we can see that the new
sample ., is created by the linear interpolation of two seed samples z; and z'.
As a result, the generated synthetic sample ., lies in the line segment between
x2; and 2’. Figures 2 and 3 show the distribution of new samples generated by
SMOTE oversampling. In Figure 2, there are 3 seed samples and 100 new synthetic
samples generated by SMOTE. In Figure 3, there are 10 seed samples and 500 new
synthetic samples generated by SMOTE. From these two figures, we can intuitively
say that the space of new synthetic samples generated by SMOTE cannot cover the
distribution area of seed samples. In other word, we may say that new synthetic
samples generated by SMOTE cannot correctly reproduce the distribution of original
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seed samples. When these new samples serve as training data, it is inevitable that

this will more or less cause additional error.
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Figure 2. The distribution of new samples for oversampling 3 samples 100 times using

SMOTE

We implement an example for classification to validate this statement. Figure 4
shows the distribution of positive and negative samples in original data. In the test,
we choose the vertex of polygon, which contains all positive samples, as seed sam-
ples of SMOTE. Then positive training samples are created by SMOTE. Negative
training samples are randomly selected from negative samples. Training set consists
of positive and negative training samples. The rest samples of original data are
used as a test set. The result of classification is shown as Figure 5. From Figure 5
we can find that most of misclassified positive samples lie in these triangular areas
divided by straight lines. This further confirms that if the test samples lie in the
area which the training dataset cannot cover, they will be misclassified in a large
probability. Since classifier cannot learn any information about these samples from
training data, when they appear in the test data, it is perfectly normal that they

will be misclassified. Our test also shows that for different classification models or
learning parameters, the probability that these samples are misclassified is different.
The reason is that there are differences in generalization abilities of classification
models or learning parameters.

Based on the experiments and analysis above we can conclude that the distribu-
tion space of new samples created in SMOTE is confined in the line segment between



Oversampling Method for Imbalanced Classification 1023

(] seed samples
. new samples _’
. L % 7
. .-'.‘. ‘o
Py ..-. ., 4
c . .,
. . . . . B
N el J Lttt e @)
IR ‘;" S .
" el P ° .
® o, . . 1
i . ve® . ’o
H S . ;o
‘h P .. . K
# . . .
- s
. * . ..' 4
" . vee o @
‘. -ee ]

Figure 3. The distribution of new samples for oversampling 10 samples 500 times using
SMOTE
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Figure 4. The distribution of all positive and negative samples in example for classification
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Figure 5. The distribution of training samples and misclassified samples (marked in red)
in the example for classification

seed samples and it cannot reproduce the distribution of original samples. This is an
important cause resulting in a bad performance of classifier. Since classifier cannot
get real information on original sample, there is a bigger probability that samples are
misclassified. Besides, SMOTE does not consider neighboring samples and that may
cause decision boundaries for the minority class to spread further into the majority
class space. This can result in the problem of overlapping between classes [35, 47].

4 SIGMA NEAREST OVERSAMPLING BASED
ON CONVEX COMBINATION

In consideration of defects of SMOTE, we propose an oversampling based on convex
combination (SNOCC, Sigma Nearest Oversampling based on Convex Combina-
tion).

Convex combination is a linear combination of points where all coefficients are
non-negative and sum up to 1. Given a finite number of points 1, s,..., T, in
a real vector space, a convex combination of these points is a point of the form:

T =T + Qg + ...+ apT, (2)

where the real numbers «; (i = 1,2,...,n) satisfy o; > 0 and ag + s+ ...+, = 1.
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In SMOTE, according to formula (1) we can get Zpe = (1 —0) X x; +d X
/. We may tell that z,., is the convex combination of z; and z’ according to
(1—-0)+ 06 = 1. This is the simplest form of convex combination (n = 2). We
extend formula (1) in order to new samples can distribute through sample space. In
our oversampling method, we generate new samples according to formula (2). The

detailed oversampling procedure of SNOCC is described in Algorithm 1.

Algorithm 1 Framework of SNOCC oversampling
Input:
Input Seed samples set of minority class, S
Amount of new samples, NV
Number of nearest neighbors, k
Output:
Output N new samples of minority class

1: For every sample s; in the seed samples of minority class S, calculate its k nearest
neighbors.

2: Calculate the mean m; of distance from every sample s; to its k£ nearest neigh-
bors. And let sigma equal to the average m; plus the standard deviation std of
all m;.

3: For every sample s; in S, search all nearest neighbors that their distance to s;
is not greater than sigma and mark their corresponding index. We call them
sigma nearest neighbors.

4: Randomly select one sample s; from S, and then randomly select two nearest
neighbors (s9 and s3) of s;.

5. Generate a random non-negative vector of 3 dimensions « (o, ag, ag) and
normalize « so that o + ag + az = 1.

6: Take sample s; and its two sigma nearest neighbors (ss and s3) as seed samples,
generate one new sample s according to formulation s = ;51 + agsy + a3ss.

7. Repeat step 4, 5, 6 N times.

8 return N new samples

In SNOCC, we refer xy, s, ..., x, as seed samples. In the course of oversam-
pling, the number of seeds (n) can be adjusted. For different n, the corresponding
distribution domains are different. Figures 6 and 2 show the distribution maps of
100 new samples of SNOCC and SMOTE oversampling for 3 original samples re-
spectively. It is obvious that the distribution domain of new samples is confined
on the line segments where endpoints are the seed samples for SMOTE oversam-
pling (Figure 2). For SNOCC oversampling (Figure 6), the new samples can be any
position of a convex hull constituted of seed samples.

Figures 7 and 3 are the distributions of new samples for oversampling 10 sam-
ples 500 times using SNOCC and SMOTE respectively. Figures 8 and 9 are the
distributions of new samples for oversampling 20 samples 500 times using SNOCC
and SMOTE respectively. It can be seen in Figures 5 and 11 that the distribution
domain of new samples in SMOTE oversampling is located at the line segments of
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Figure 6. The distribution of new samples for oversampling 3 samples 100 times using

SNOCC
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original samples. Comparing to Figures 7 and 3, Figures 8 and 9 show that new
samples of SNOCC oversampling can better reproduce the distribution of original
samples, even if the distribution is irregular (Figure 8).

It is natural for SNOCC to handle continuous feature. For ordinal feature, we
first map the values into an integer’s sequence. For example, if there are n distinct
values in an ordinal feature. The integer’s sequence is (1,2, ...,n). During oversam-
pling, it is not the original value in the ordinal feature but the integer’s sequence
calculated. The corresponding results are rounded to the nearest integer. Finally,
this integer will be mapped back into original value in the ordinal feature according
to the inverse mapping used above.

([ J seed samples
new samples

Figure 8. The distribution of new samples for oversampling 20 samples 500 times using

SNOCC

5 EXPERIMENTS

We conducted experiments to validate the efficiency of SNOCC. In order to compare
the performance of SNOCC and SMOTE oversampling, we implemented SMOTE
and CBSO [35], which is a new derivation of SMOTE. In our experiments, all twelve
datasets are from KEEL-dataset [48]. All datasets’ IR (Imbalance Ratio, the asym-
metry degree of imbalanced data, which is the ratio of the number of negative
examples to that of positive examples) is greater than 9. Information on datasets is
shown in Table 1.
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Figure 9. The distribution of new samples for oversampling 20 samples 500 times using
SMOTE

We employed naive-Bayes classifier to evaluate the efficiency of SMOTE, CBSO
and SNOCC. Variables are discretized before applying the classifier. All methods
used the same scheme of discretization. We used Laplace estimate to calculate the
prior probability. Laplace estimate shows good performance in naive-Bayes classifi-
cation [49]. One extra benefit of using Laplace estimate is that zero probability can
be avoided. F-measure for the minority (positive) class was used as the assessment
standard.

In our experiments, we used 3-fold cross-validation to measure the performance
of classifier learned from training dataset which is generated through different over-
sampling methods. The reason we do not adopt more folds but 3 folds is that
the number of positive samples is less than 10 in several datasets. In 3-fold cross-
validation, the whole dataset is randomly partitioned into 3 folds and each fold
contains approximately the same proportion of classes as the original datasets. Of
the 3 folds, a single fold is retained as the validation data for the model testing, and
the remaining 2 folds are used as training data. The cross-validation process is then
repeated 3 times, with each of the 3 folds used exactly once as the validation data.
The 3 results from the folds then are averaged to produce the estimation of one test.

Our experiment process is shown in Figure 10, which consists of 6 steps. All
steps are described below:

Step 1: The whole imbalanced dataset is randomly divided into training dataset
and test dataset.
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Number of Number of

Dataset Number of Sal.nple Positive Negative Imbalfmce
Features Size Ratio
Samples Samples
ecoli-0-1-3-7_vs_2-6 7 281 7 274 39.14
ecoli4 7 336 20 316 15.8
glass-0-1-6_vs_5 9 184 9 175 19.44
glassb 9 214 9 205 22.78
yeast-0-5-6-7-9_vs_4 8 528 51 477 9.35
yeast-1-2-8-9_vs_7 8 947 30 917 30.57
yeast-1-4-5-8_vs_7 8 693 30 663 22.1
yeast-1_vs_7 7 459 30 429 14.3
yeast-2_vs_4 8 514 51 463 9.08
yeast4 8 1484 51 1433 28.1
yeasth 8 1484 44 1440 32.73
yeast6 8 1484 35 1449 41.4

Table 1. Information of datasets
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Step 2: All positive samples in training dataset are picked up, and the numbers of
positive and negative samples are counted. The number of new positive samples
to be generated is the difference of the number of negative samples and that of
positive samples.

Step 3: Oversampling methods SMOTE, CBSO and SNOCC are called to create
new synthetic SMOTE, CBSO and SNOCC samples, respectively.

Step 4: Adding SMOTE, CBSO and SNOCC samples into original training dataset
to form new SMOTE, CBSO and SNOCC training dataset.

Step 5: Learning classifier from original, SMOTE, CBSO and SNOCC training
dataset, respectively.

Step 6: Classifying the samples in test dataset using classifier learned from Step 5
and calculating corresponding F-measure F-value for positive class.

In order to make a fair comparison with SMOTE, the number of nearest neigh-
bors k in SNOCC was set to 5, which is the same as the default value in SMOTE.
After oversampling, we obtained a training dataset of positive samples and negative
samples in equal portions, that is, a balanced dataset. To eliminate random effects,
for each dataset, we ran each oversampling algorithms 100 times and call naive-
Bayes classifier to get corresponding F-value for each time, resulting in 100 F-value
for each oversampling algorithm. Finally, t-test was used to verify the significance
of the F-value differences between methods.

We computed the mean values and standard deviations of the F-value of 100 clas-
sifications without oversampling, with SMOTE oversampling, with CBSO oversam-
pling and with SNOCC oversampling, respectively. The results are shown in Table 2.
In each dataset, the biggest among all F-value pertained to different oversampling
methods is bold-faced. Of all twelve biggest F-value, SNOCC accounts for nine and
the rest three are from CBSO. This shows that in generating new synthetic samples,
SNOCC performs much better. t-test was performed to compare the significance
of the results obtained from SNOCC with SMOTE, and SNOCC with CBSO, re-
spectively, at 0.05 significance level. The test results are presented in Table 3. By
combining with Table 2, we can determine which one is the winner. The h is 17
if SNOCC is winner and 1~ otherwise. From Table 3 we can find that SNOCC
outperforms SMOTE on ten of twelve datasets. And SMOTE outperforms SNOCC
on two datasets. SNOCC outperforms CBSO on eight of twelve datasets and there
are three datasets that CBSO outperforms SNOCC. On the whole, the experiments
results show that the SNOCC performances are significantly better than those of
SMOTE and CBSO.

6 CONCLUSIONS

After decades of development, classification techniques get matured day by day. But
most of the existing classifiers tend to identify majority class samples and usually
fail to classify minority class samples with a satisfactory accuracy. There are plenty
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Dataset RAW SMOTE CBSO SNOCC
ecoli-0-1-3-7_vs_2-6 0.2992+0.1906 0.5100£0.1404 0.50284+0.1336 0.5749+0.1413
ecoli4 0.3626+0.0746 0.6723+0.0539 0.6850+0.0586  0.6552+0.0484
glass-0-1-6_vs_b 0.5597+0.1651 0.5620+0.0445 0.6186+0.0685 0.7219+0.0855
glassh 0.5247+0.1394 0.5407+0.0402 0.5801+0.0743 0.6651+0.0871

yeast-0-5-6-7-9_vs_4 0.0356£0.0258 0.3272+0.0212 0.3459+0.0262 0.3363+0.0246
yeast-1-2-8-9_vs_7  0.0265£0.0348 0.0830+£0.0048 0.0826+0.0044 0.0947+0.0116
yeast-1-4-5-8_vs_7  0.0091£0.0216 0.1100+£0.0051 0.1079£0.0056 0.1286+0.0138

yeast-1_vs_7 0.1311+0.0658 0.2463+0.0235 0.2365+0.0183 0.2613+0.0380
yeast-2_vs_4 0.6057£0.0419 0.6739£0.0268 0.6748+0.0301  0.6630+0.0320
yeast4 0.0457£0.0289 0.1620£0.0094 0.18134+0.0108 0.1818+0.0114
yeastd 0.4758+0.0540 0.5279£0.0125 0.5368+0.0121 0.5747+0.0201
yeast6 0.1882+0.0703 0.2041£0.0141 0.22884+0.0169 0.3903+0.0309

This table shows F-measure value of classification pertained to different oversampling methods. Oversampling
methods is the column title. The second column titled RAW is the F-value without oversampling. Each grid is
filled with average F-valuetstandard derivation. In each row, the biggest F-value is bold-faced.

Table 2. F-values of different oversampling methods

of imbalanced data in the application domain. The basic reason is that either it is
very difficult to collect data or positive samples in collected data are rare [50, 51].
This poses a challenge to academic community. SMOTE oversampling proposed by
Chawla et al. gave us a good start to tackle the problem of imbalanced distribution.
And based on SMOTE, researchers did a lot of fruitful work.

Even so, we find some weakness of SMOTE. In classification, the distribution
of training data can greatly influence the generalization ability of a classifier. New
samples generated by SMOTE oversampling are confined in the line segment between
two seed samples (Figures 2, 3 and 9). That means that new samples created by
SMOTE oversampling cannot fully cover the distribution space of original samples.
This is a major factor that causes generalization error of the classifier. Besides,
SMOTE introduces the problem of classes overlapping [35, 47].

SNOCC proposed in the paper can remedy the defect of SMOTE. In SNOCC,
the method that creates new samples makes each new sample likely to locate in any
place of convex hull formed by seed samples. We can see this from Figures 6, 7
and 8. In order to minimize the adverse effects of classes overlapping on the per-
formance of classification, we do not use k-nearest-neighbors but nearest-neighbors
based on distance to search neighbors of samples. This change can improve the
efficiency of oversampling and our results of experiment also support this conclu-
sion. SNOCC method can generate samples that naturally model the distribution of
original samples. Our experiment results show that SNOCC outperforms SMOTE
and methods derived from it. Our method failed in 2 and 3 datasets, respectively.
However, the difference of performance in these datasets between our method and
the others is marginal. We can see that from Table 3. The smallest p value was
0.000131774 in these datasets while it was less than 107® in most datasets that
our method won. We think that the possible reason which causes this difference is
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t-test 1 t-test 2
dataset h D h D
ecoli-0-1-3-7_vs2-6 1T 0.001391304 1T  0.00029264
ecoli4 1= 0.019986531 1~ 0.000131774
glass-0-1-6_vs_5 1t 463 %1073 1t 153 x 10717
glassb 1t 451 %1072 1+ 397 x 10712

yeast-0-5-6-7-9_vs4 1T 0.006099216 1~ 0.008741365
yeast-1-2-8-9_vs_7 1t 225 %1077 1t 1.89 x 10718
yeast-1-4-5-8_vs_7 1t 299%x1072" 1t 6.01 x 10731

yeast-1_vs_7 1T 0.000997247 1 1.89 x 1078
yeast-2_vs_4 1= 0.010792733 1~ 0.008674209
yeast4 17 357x107% 0 0.777325853
yeasth 1T 251x107% 1t 9.15x 10738
yeast6 1T 4.03x 107121 1+t 713 x 107107

Column t-test 1 shows the result of t-test that tests the significant difference between F-value of SMOTE and that
of SNOCC with the 5% significance level. And sub-column A is the result and p the corresponding p value. A 1+
indicates that the performance of SNOCC method is significantly better than that of SMOTE, and 1~ indicates
a reverse result.

Column t-test 2 shows the result of t-test that tests the significant difference between F-value of CBSO and that
of SNOCC with the 5% significance level. And sub-column A is the result and p the corresponding p value. A 1+
indicates that the performance of SNOCC method is significantly better than that of CBSO, and 1~ indicates
a reverse result.

The zero value of h shows that there is no significant difference between two methods at 5% significance level.

Table 3. The result of t-test

that the problem of overlapping between classes in these data sets either is not so
bad, or does not exist at all. So, there are few or no negative effects on SMOTE
or CBSO. Besides, comparing it to these benchmark methods, from the result of
our experiment we can see that our method can obtain much better performance in
data sets with greater imbalance ratio. More experiments will be done to improve
it in the next work. In our work, SNOCC can only handle continuous and ordinal
feature. Future work will be focused on how to deal with categorical and Boolean
attribute.
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