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Abstract. Automatic synthesis of control for a kind of DES (discrete-event sys-
tems) is discussed and an approach to it is proposed and presented. The approach

consists in the proposal of the control synthesis procedure based on bipartite di-
rected graphs yielding both the feasible control trajectories and the corresponding
state ones. Soundness of the approach is tested on examples. Then, the usage of
the approach is combined with the supervisor synthesis in order to complement
it. Applicability of such approach is demonstrated by means of several illustrative
examples of both the single agents and the agent cooperation in MAS.
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1 INTRODUCTION

Discrete-event systems (DES) are systems driven by occurring discrete events. Thus,
their behaviour is discrete in nature. The behaviour of an agent as an entity can
also be understood to be a kind of DES as well as the behaviour of several agents
cooperating with each other in multi agent system (MAS), because their behaviour
is also discrete in nature. In [1] causality of the DES behaviour was analysed as
well as the Petri nets (PN)-based model, more precisely place/transition PN (P/T
PN)-based model was introduced. Moreover, the method of control synthesis for
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DES modelled by P/T PN was presented there. It was based on the reachability
tree (RT) and the reachability graph (RG) of the P/T PN-based model. That
procedure, performed in virtue of PN-based methods, yields the space of feasible
state trajectories from a given initial state to a desired terminal state. This paper
immediately goes on to solve the DES control synthesis problem in order to automate
this process as soon as possible, even to achieve the automatic control synthesis. The
earlier results concerning the bipartite directed graph (BDG)-based model presented
in [2, 3] for the control synthesis of the special kind of P/T PN – for the state
machines (SM) – will also be utilized in this paper; namely, their validity will be
considerably extended. The main aims of this paper are both extending the BDG-
based approach to be applicable for P/T PN with general structure (not only for
SM) and usage of the proposed method not only by itself but also together with
the methods of supervision [5, 6, 7, 8, 11, 9, 12, 13] in order to point out that such
complementary usage can be mutually advantageous.

2 PRELIMINARIES

First of all it is necessary to briefly introduce the mathematical expression of the
PN-based model of DES to be used in this paper. To observe the DES behaviour it
is necessary to have not only states of the system available, but also the causal de-
pendency among states and discrete events occurred in the system. The causality in
the DES behaviour was explained in [1]. DES are frequently modelled and analysed
by means of PN, especially by the P/T PN. For DES modelled by PN the control
synthesis can be performed also in virtue of PN-based methods. In [1] the method
of such kind was introduced. It yields the space of feasible state trajectories from
a given initial state to a desired terminal state. Not to repeat all results presented
in [1], this paper will be frequently referred to as well as the earlier results presented
in [2, 3]. However, what is necessary to repeat is the mathematical expression of the
PN-based model of DES in order to set a starting basis for evolving novelties. The
model has the form

xk+1 = xk +B.uk, k = 0, . . . , N (1)

B = GT − F (2)

F.uk ≤ xk. (3)

It means that it is represented by the linear system circumscribed by the unequality,
where k is the discrete step of the dynamics development; xk = (σk

p1
, . . . , σk

pn
)T is the

n-dimensional state vector of DEDS in the step k; σk
pi
∈ {0, 1, . . . , cpi}, i = 1, . . . , n

express the states of the DEDS elementary subprocesses or operations by 0 (passivi-
ty) or by 0 < σpi ≤ cpi (activity); cpi is the capacity of the DEDS subprocess pi as to
its activities; uk = (γk

t1
, . . . , γk

tm)
T is the m-dimensional control vector of the system

in the step k; its components γk
tj
∈ {0, 1}, j = 1, . . . , m represent occurrence of the

DEDS elementary discrete events (e.g. starting or ending the elementary subpro-
cesses or their activities, failures, etc.) by 1 (presence of the corresponding discrete
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event) or by 0 (absence of the event); B, F, G are structural matrices of constant
elements; F = {fij}n×m, fij ∈ {0,Mfij}, i = 1, . . . , n, j = 1, . . . , m expresses the
causal relations among the states of the DEDS (in the role of causes) and the dis-
crete events occurring during the DEDS operation (in the role of consequences) by 0
(nonexistence of the corresponding relation) or by Mfij > 0 (existence and multi-
plicity of the relation); G = {gij}m×n, gij ∈ {0,Mgij}, i = 1, . . . , m, j = 1, . . . , n
expresses very analogically the causal relations among the discrete events (causes)
and the DEDS states (consequences); the structural matrix B is given by means of
the arcs incidence matrices F and G according to (2); (.)T symbolizes the matrix or
vector transposition.

3 WHAT IS THE DES CONTROL PROBLEM?

Considering the introduced system (1)–(3) to be the model of DES, from the system
theory point of view the problem of control is the problem of finding a suitable
sequence of control vectors {u0,u1, . . . ,uN−1} transferring the system form of a given
initial state x0 to a prescribed terminal state xN . Usually, there are several possibi-
lities of the further course in any step k of the system dynamics development (i.e. in
any state xk of the system). In the PN terminology, there are (theoretically) several
PN transitions which are enabled in the step k. The problem of control consists in
the choice of the most suitable one. To illustrate the situation the simple situation
is displayed in Figure 1.
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Fig. 1. Example of possible courses during the DES states development

A primitive way to control synthesis consists in finding (computing) possible
routes of the dynamics development advancement in any step k on the basis of simple
logical consideration: if we are not able to directly compute which transitions are
enabled in the step k, but we are able to compute only which transitions are disabled
in this step, we can eliminate the disabled transitions. It means that logically

uk = neg
(

FT .neg(xk)
)

(4)

where neg(.) formally represents the operator of negation. Applying this operator
for the vector v = (v1, v2, . . . , vn)

T of integers yields the vector neg(v) = w =
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(w1, w2, . . . , wn)
T , where

wi =

{

1 if vi = 0
0 otherwise

i = 1, . . . , n. (5)

Simultaneously, the condition (3) has to be satisfied for any iuk.
However, because the development of the PN-based model is consecutive (suc-

cessive), in case when several transitions are enabled in the step k (i.e. when the
vector uk contains more than one non-zero entry), only one of them can be fired.
It means that there exists only one route (course) how to proceed from the exist-
ing state to another one – see Figure 1. Because of the consecutiveness, any iuk,
i = 1, 2, 3 in Figure 1 has only one non-zero entry. It means that from global point
of view in any step k a branching of the system dynamics development (depending
on the choice of the control interferences) can occur. Hence, if uk contains r non-
zero entries (i.e. when r transitions are enabled in the step k), theoretically there
are mostly r possibilities of the further development of the system dynamics. Thus,
uk has to be decomposed into r control vectors iuk, i = 1, . . . , r with single non-
zero entry in such a way that

∑r
i=1

iuk = uk. Moreover, all of the control vectors
have to satisfy the condition (3). Therefore, the branching makes such a procedure
too complicated for satisfying the usage. Moreover, we do not know which way is
a part of trajectory leading to the prescribed terminal state (if any). Without ad-
ditional backward (“backtracking”) information we are not able to find the solution
of the control problem by means of such a “blind” procedure. Therefore, it is better
(and simpler in general) to compute the reachability tree (RT) corresponding to
PN-based model. The RT yields information about the branching process in the
whole. However, even the RT does not give us directly any solution of the control
problem. Namely, we have to find the trajectory (or trajectories) between concrete
pair of the states (namely, the initial state and the terminal one) and to “extract”
the trajectory (or trajectories) from the global RT. In case of large scale RTs it
is not a simple problem. Namely, in general the terminal state can be a multiple
leaf of the tree. Consequently, this paper is motivated by the endeavour to find the
automatic procedure for the DES control synthesis.

4 BDG-BASED AUTOMATIC SYNTHESIS FOR CONTROL OF DES

It is well known from PN theory – see e.g. [10] – that from the structural point of
view PN are bipartite directed graphs (BDG) with two kinds of nodes (i.e. places
and transitions) and two kinds of edges (the arcs directed from places to transitions
and the arcs directed conversely), i.e.

〈P, T, F, G〉 (6)

where P is the set of PN places, T is the set of PN transitions, F is the set of
the edges oriented from places to transitions and G is the set of edges oriented
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from transitions to places. The sets F , G can be expressed by the PN incidence
matrices F, G. Starting from results presented in [1–3] we are able to compute the
functional adjacency matrix Ak of the RT as well as the set of feasible state vectors
reachable from the given initial state x0 of the PN-based model. Such a space
of feasible states is represented by the matrix Xreach, where the vectors create its
columns. The Matlab procedure, able to find Ak and Xreach on the basis of F,
G, x0, is introduced in [3]. The method for DES control synthesis based on the
intersection of both straight-lined and backward RT was presented in [1].

4.1 The Procedure for State Machines

A P/T Petri net is named to be the state machine (SM), if every transition has
exactly one input place and one output place. On the contrary, the P/T Petri net
where each place is allowed to have only single input transition and only single output
transition is named the marked graph (MG). Hence, there can not be conflicts in
MGs. It is clear that these classes of P/T PN are subclasses of P/T PN with general
structure, where any transition can have more input and/or more output places as
well as any place can have more input and/or more output transitions.

Consider P/T PN being SM. Let S = {P, T} be the set of BDG nodes. Let
D ⊆ S × S be the set of BDG edges. Thus, the occurrence of the edges can be
expressed by the ((n+m)× (n+m)) BDG adjacency matrix

ABDG =

(

0/n×n F
G 0/m×m

)

(7)

where 0/i×j is in general the (i× j) zero matrix; G is the (m× n) incidence matrix
expressing T × P ; F is the (n × m) incidence matrix representing P × T . The
matrices F and G are the same as the matrices in the PN-based model (1)–(3), of
course. As we will see below, the transpose of the ABDG, i.e. the following matrix
D will be very useful.

D = AT
BDG =

(

0/n×n GT

FT 0/m×m

)

(8)

In general, being in a state xk the system can develop its dynamic behaviour
either in the straight-lined direction or (fictively) also in the backward one. The
former development is performed by means of the matrix D given in (8) used in the
state Equation (9) while the latter one by means of the transpose DT = ABDG.

To synthesize the DES control from a given initial state x0 to a desired ter-
minal state xt = xN the straight-lined development of the system dynamic can be
computed – see [1] – by means of the following state equation

{sk+1} = D.{sk} , k = 0, 1, . . . , 2N − 1 (9)
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with sk being the augmented (n+m)-dimensional vector defined as follows

{sk} =







(

{xk/2}
T , 0/Tm

)T

if k = 0, 2, 4, . . . , 2N − 2
(

0/Tn , {u(k−1)/2)}
T
)T

if k = 1, 3, 5, . . . , 2N − 1
(10)

where 0/j is in general the j-dimensional zero vector; xk/2 = GT .u(k−2)/2, k =

2, 4, . . . , 2N − 2; u(k−1)/2 = FT .x(k−1)/2, k = 1, 3, 5, . . . , 2N − 1. In general, {z}
symbolizes an aggregate of vectors. To be sure that during the straight-lined deve-
lopment the prescribed terminal state will be met, the backward development of the
system dynamics can be computed by means of the following state equation

{sk−1} = DT .{sk} = ABDG.{sk} , k = K,K − 1, . . . , 1. (11)

However, because of the special block form of both the matrix D and the vector sk
we can alternate step-by-step two procedures with dimensionality n, m, respectively.
In such a way two matrices 1X and 1U with dimensionality (n× (N +1)), (m×N)
can be written as follows

1X =
(

x0,
1{x1},

1{x2}, . . . ,
1{xN}

)

(12)
1U =

(

1{u0},
1{u1}, . . . ,

1{uN−1}
)

. (13)

The left upper index 1(.) points out performing the straight-lined procedure. The
backtracking (backward) procedure yields

2X =
(

2{x0},
2{x1},

2{x2}, . . . ,xN

)

(14)
2U =

(

2{u0},
2{u1}, . . . ,

2{uN−1}
)

(15)

where 2U is (m×N) matrix and 2X is (n× (N + 1)) matrix. The left upper index
2(.) points out performing the backtracking procedure.

The final phase of the control problem solving consists in the special intersection
described above. In such a way we have both the system state trajectories and
corresponding control strategies

X = 1X ∩ 2X (16)

X = (x0, {x1}, . . . , {xN−1},xN) (17)

U = 1U ∩ 2U (18)

U = ({u0}, {u1}, . . . , {uN−1}) . (19)

Using the zero blocks is eliminated this way as well. Although the described ap-
proach seems to be very hopeful as to automatic synthesis of the DES control, its
usage is strongly limited. Namely, in such a form it is suitable for SM only. Using
such an approach also for P/T PN with a general structure, which does not satisfy



Automatic Control Synthesis for Agents and Their Cooperation in MAS 1051

this restriction, is impossible. In order to be applicable also for P/T PN with a ge-
neral structure, the approach has to be modified. Namely, we have to work with the
RT adjacency matrix appertaining to such PN.

4.1.1 Example 1

To illustrate the approach consider the simple P/T PN in the form of SM given in
Figure 2.
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Fig. 2. The simple structure of the PN being the SM (left) and the corresponding RG
(right)

The model parameters are

F =













1 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 0













; G =

























0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 0 0 1 0
0 1 0 0 0

























; B = GT − F

The RG is given in Figure 2 (right). It has the same adjacency matrix as RT.
It is obtained by connecting RT leaves with the same names. Using the Matlab
procedure presented in [3] we obtain the adjacency matrix of the RT ART and
the set of feasible state vectors creating the RT nodes (represented by the matrix
Xreach = (X1, . . . ,X5)

T ) in the form

ART =













0 3 0 0 0
0 0 1 4 0
2 0 0 7 0
0 0 8 0 5
0 6 0 0 0













; Xreach =













0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1















1052 F. Čapkovič

Understanding the SM to be the bipartite graph, its adjacency matrix has the
form (7). Its transpose D = AT

BDG has the form (8) and can be utilized in the
procedure of the control synthesis described above in mathematical terms. Hence,
using the procedure [3] of the control synthesis (programmed in Matlab) we have

X =













0 1 0 0
0 0 1 0
1 0 0 1
0 0 0 0
0 0 0 0













; UT =





0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0





Hence, it can be seen that there is only one feasible state trajectory, namely, X1
t3−→

X2
t1−→ X3

t2−→ X1 which corresponds to the control trajectory t3
X2−→ t1

X3−→ t2. In
the original PN-based model (being SM) it means that the trajectories are (see the

structure of Xreach) as follows: p3
t3−→ p1

t1−→ p2
t2−→ p3 and t3

p1
−→ t1

p2
−→ t2.

4.2 Extending the Approach for P/T PN Having the General Structure

The above described BDG-based approach handles matrices F, G as well as the
PN transitions. However, the new approach proposed does not know either these
matrices or the transitions, only the functional adjacency matrix Ak. Thus, after
enumerating the matrix ART we have to disassemble this matrix into the matrices
FRT , and GRT . In addition, the original P/T PN transitions can occur more than
once among the elements of ART . Consequently, some confusions could occur during
the computational process and decline it. To avoid these difficulties, it is necessary
to rename the original P/T PN transitions in order to obtain fictive transitions that
occur only once. The number of them is Tr being the global number of the elements
of ART . The renaming is performed row-by-row so that the non-zero elements are
replaced by integers – ordinal numbers starting from 1 and finishing at Tr. Thus,
the auxiliary matrix ATr

is obtained. The disassembling of the matrix ATr
into the

incidence matrices FRG and GRG is accomplished as follows: for i = 1, . . . , nRT ,
j = 1, . . . nRT the elements of these matrices are as follows

Ttr(ART (i, j),ATr
(i, j)) =

{

1 if ART (i, j) 6= 0 & ATr
(i, j) 6= 0

0 otherwise
(20)

FRG(i,ATr
(i, j)) =

{

1 if ART (i, j) 6= 0 & ATr
(i, j) 6= 0

0 otherwise
(21)

GRG(ATr
(i, j), j) =

{

1 if ART (i, j) 6= 0 & ATr
(i, j) 6= 0

0 otherwise.
(22)

Here, Ttr is the transformation matrix between the original set of transitions and
the fictive ones. Hence, U = Ttr.U

∗ where the matrix U∗ yields the control strate-
gies (13) computed by means of the set of the fictive transitions.
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4.2.1 Example 2

Consider the simple PN with more general structure (i.e. different from the state
machine) given in Figure 3 (left). Its RT and RG are, respectively, in Figure 3
(center and right). As we can see n = 5, m = 3, x0 = (2, 0, 1, 0)T and the structural
(incidence) matrices as well as ART and Xreach are as follows:

F =









2 0 0
0 1 0
0 0 1
0 2 0









G =





0 1 1 0
1 0 0 0
1 0 0 2



B =









−2 1 1
1 −1 0
1 0 −1
0 −2 2









ART =





















0 1 3 0 0 0 0
0 0 0 3 0 0 0
0 0 0 1 0 0 0
2 0 0 0 3 0 0
0 0 2 0 0 1 0
0 0 0 2 0 0 3
0 0 0 0 2 0 0





















Xreach =









2 0 3 1 2 0 1
0 1 0 1 1 2 2
1 2 0 1 0 1 0
0 0 2 2 4 4 6








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Fig. 3. The PN-based model model (left), the corresponding reachability tree (center) and
the reachability graph (right) of the model

To use the BDG-based approach the renamed set of the transitions is needed
(their number is Tr = 11 in this case). Thus, the transformation matrix TrT t is
enumerated by means of ART and the auxiliary matrix ATr

constructed on the
basis of ART . Hence, the matrices FRG, GRG are computed. All of the matrices in
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question are as follows:

A =





















0 1 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 1 0 0 0
1 0 0 0 1 0 0
0 0 1 0 0 1 0
0 0 0 1 0 0 1
0 0 0 0 1 0 0





















; ATr
=





















0 1 2 0 0 0 0
0 0 0 3 0 0 0
0 0 0 4 0 0 0
5 0 0 0 6 0 0
0 0 7 0 0 8 0
0 0 0 9 0 0 10
0 0 0 0 11 0 0





















; TT
rTt =





































1 0 0
0 0 1
0 0 1
1 0 0
0 1 0
0 0 1
0 1 0
1 0 0
0 1 0
0 0 1
0 1 0





































FRG =





















1 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 1





















; GT
RG =





















0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0
0 0 1 1 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1





















In case when xt = x6 = (1, 2, 0, 6)T is chosen to be the terminal state, the ODG-
based methods of the DEDS control synthesis yields the solution (23) of the state
trajectories. Its graphical expression is in Figure 4 (left). When the BDG-based
method is used the solution of the state trajectories is the same like that in the
ODG-based method presented in [1]. The solution of the control trajectories is
given by (25) and graphically expressed in Figure 4 (right).

1X =





















1 0 0 2 0 0
0 1 0 0 2 0
0 1 0 0 4 0
0 0 2 0 0 8
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2





















2X =





















2 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
3 0 0 1 0 0
0 2 0 0 1 0
0 0 1 0 0 1





















X =





















1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





















(23)
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1U∗ =





































1 0 0 2 0
1 0 0 2 0
0 1 0 0 2
0 1 0 0 4
0 0 2 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 2 0
0 0 0 0 2
0 0 0 0 2
0 0 0 0 0





































2U∗ =





































1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
1 0 0 0 0
2 0 0 1 0
0 1 0 0 0
0 1 0 0 1
0 0 1 0 0





































U∗ =





































1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0





































(24)

U = TrT t.U
∗ =





1 1 0 1 0
0 0 0 0 0
1 1 1 0 1



 (25)
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Fig. 4. The solution of the state trajectories (left) and the control trajectories (right)

It means that there are two feasible state trajectories, namely, X1
t1−→ X2

t3−→

X4
t3−→ X5

t1−→ X6
t3−→ X7 and X1

t3−→ X3
t1−→ X4

t3−→ X5
t1−→ X6

t3−→ X7 as

well as two corresponding control trajectories t1
X2−→ t3

X4−→ t3
X5−→ t1

X6−→ t3 and

t3
X3−→ t1

X4−→ t3
X5−→ t1

X6−→ t3.

4.3 Automatic Procedure of the DES Control Synthesis

Let us outline the principle of the automatic approach to DES control synthesis.

1. Given are the P/T PN-based model of DES to be controlled, the initial state
x0 and the desired terminal state xt. The model is specified by the incidence
matrices F,G.
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2. If all of theG rows and all of the F columns contain only single non-zero element,
the P/T PN is of a special kind – it is the state machine. In such a case we can
proceed in two different ways:

(a) To use F,G,x0 in order to compute the RT parameters. Afterwards, the
RG-based model can be utilized to compute the straight-lined RT (SLRT)
from x0 towards xt as well as to compute the backward RT (BTRT) from
xt towards x0 (however, its edges are oriented towards xt). The mutual
intersection (of a special kind) both of the trees yields the space of feasible
state trajectories. This approach was sufficiently described in [1].

(b) To understand SM to be the bipartite directed graph. Then, the matrix
D = AT

BDG can be utilized in the procedure computing not only the feasible
state trajectories but (simultaneously) also the control trajectories. Namely,
the state trajectories are the DES responses to the corresponding control
trajectories. In such a way both the feasible state trajectories and the con-
trol trajectories (strategies) are found automatically. This approach was
comprehensively described in [2].

3. If any G row and/or any F column contain more than one non-zero elements,
P/T PN is not an SM but it has a general structure. Here, two different ways
are also possible:

(a) To compute the RT parameters on the basis of F,G,x0. Consequently, the
RG-based model [1] can be automatically computed and utilized in order to
find the space of feasible trajectories, analogically to the procedure used for
SM.

(b) To use the BDG-based approach. However, the BDG-based approach suit-
able for SM cannot be directly used here in automatic finding of the feasible
state trajectories and of the control ones. In this case, it is necessary to
unfold the set of the PN-transitions into the set of fictive (mutually differ-
ent) transitions in order to obtain unambiguous decomposition of the RG
adjacency matrix into the matrices FRG,GRG. This activity is performed
automatically too. Afterwards (when the fictive artificial BDG is obtained
in such a way), the BDG based approach can be utilized in order to auto-
matically find the feasible state trajectories and the control ones. Because
the control trajectories were computed by means of the fictive transitions,
return into the original space of the real transitions is necessary. It is very
simple and can be performed automatically too.

4.4 The Concluding Remark about Applicability

The proposed method can be used autonomously either for a single agent or for
a group of cooperating agents in MAS. However, it is gratifying that it can be suc-
cessfully used also in combination with other control synthesis methods. In the
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following sections we will use it in conjunction with supervisory control, where we
will point out how both approaches complement each other. Namely, the supervisor
synthesis methods produce the results (the structure of the supervisor) that ensure
only such properties and behaviour of the supervised object that correspond to the
conditions for which the supervisor was synthesized. Although on the one hand
the supervision indeed represents the method able to ensure a prescribed behaviour
within the bounds of possibility, on the other hand it does not yield either the state
trajectories or the control trajectories (which yield the sequences of all the control
interferences, not only those cohering with the supervision but in general) of the
whole complex – i.e. the supervised system together with the supervisor. Thus,
the control synthesis method proposed and presented in this paper complements
the results and makes possible complex analyzing the behaviour of the supervised
system and its control within full range. Namely, for our approach the supervised
system represents the system in general, not any specific one, even if it is super-
vised. On the other hand, the supervision helps our approach in such a way that
it yields (sometimes strongly) limited extent of possibilities how the system to be
controlled by our method can behave. In an ideal case, only one sequence of control
interferences could occur, i.e. there could exist only one control trajectory and con-
sequently only one state trajectory. In such a case we could say that the supervision
comprehensively covers the control synthesis and it remains the automatic control
instead of supervision. However, in general, the ideal cases are usually only wishful
thinking.

5 SUPERVISORY CONTROL OF DES

The agents and group of cooperating agents are typical entities of distributed sys-
tems. The agents need not have only software fundamentals. They can also have
a material substance – see e.g. [4] – of different kinds (e.g. robots and other intel-
ligent technical devices like automatically guided vehicles, etc.). Even, there exist
also social agents of human origin. Varied forms of the agents cooperation call for
coordination activities or at least for a form of supervising. Namely, the elemen-
tary agents working in real environment are not able to control either themselves
or each other. Many times a need of the supervising agent is very important. The
possibility of utilizing the results of DES control theory (see e.g. [11]) and PN ap-
plications [5, 12] on this way is pointed out in this paper. Especially, the knowledge
about the supervision based on the P-invariants [6, 13, 7, 8] will be applied.

5.1 P/T PN Invariants and their Use

Two kinds of invariants in PN theory are defined, namely the P-invariants concern-
ing the PN places and the T-invariants having the relationship with PN transitions.
Their formal definitions are very simple – see e.g. [10]. The P-invarians are the n-di-
mensional vectors v of integers satisfying the homogenous system of linear equations
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in the form BT .v = 0. The T-invariants are the m-dimensional vectorsw of integers
satisfying the homogenous system of linear equations in the form B.w = 0. How-
ever, both kinds of invariants are very important in PN analysis and testing their
properties [10]. Even, they are very important also in the PN control synthesis. The
P-invariant v ≥ 0 is called nonnegative P-invariant. Analogically, the T-invariant
w ≥ 0 is called nonnegative T-invariant. In [10] the set of all possible minimal sup-
port P-invariants and the set of all possible minimal support T-invariants are also
defined. These sets of invariants are called generators of invariants, because any
invariant can be written as the linear combination of minimal support invariants.

From the definition of T-invariants a very interesting PN property results. Na-
mely, T-invariant is a sequence of transitions which (however only in case when the
sequence is firable) transfers the system into its initial state.

P-invariants are vectors, v, with the property that multiplication of these vectors
with any state vector x reachable from a given initial state vector x0 yields the same
result (the relation of the state conservation)

vT .x = vT .x0.

Taking into account the consecutive states (obtained by firing of only one transition),
it results that

vT .colt(B) = 0

for each transition t. Here, colt(B) is the column of B corresponding to the transi-
tion t. That means that, algebraically, these vectors are solutions of the equation

BT .v = 0/ or vT .B = 0/T

where v is n-dimensional vector (n expresses the number of PN places) and 0/ is
m-dimensional zero vector. This equation is (as already mentioned) usually pre-
sented as the definition of the P-invariant v of PN.

On the other hand, the P-invariants can be utilized in supervisor synthesis [9, 12].
Starting from the definition of the P-invariant v, in case of several invariants (e.g. nx)
the set of the P-invariants is created by the columns of the (n × nx)-dimensional
matrix V (nx expresses the number of invariants) being the solution of the equation

VT .B = 0/. (26)

It is this equation which represents the basis for the supervisor synthesis method.
Namely, some additional PN places (so called slacks) can be added to the PN in
question. These slacks will create the places of the PN-based model of the supervisor.
In PN with the slacks (i.e. the original PN together with the extension by means
of the slacks) we have to use the following structure of the previous equation – the
structure with the augmented matrices

[L, Is].

[

B
Bs

]

= 0/
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where Is is (ns×ns)-dimensional identity matrix with ns being the number of slacks,
(ns×n)-dimensional matrix L represents (in a suitable form) the conditions imposed
on marking of the original PN and the (ns×m)-dimensional matrix Bs yields (after
its finding by computing) the structure of the PN-based model of the supervisor.
Consequently, in general

L.B+Bs = 0/; Bs = −L.B and Bs = GT
s − Fs

where the actual structure of the matrix L has to be respected. The augmented
state vector (the state vector of the supervised system – i.e. the state vector of the
original PN connected together with the supervisor) and the augmented matrices
are as follows

xa =

[

x
xs

]

; Fa =

(

F
Fs

)

; GT
a =

(

GT

GT
s

)

where the submatrices Fs and GT
s correspond to the interconnections of the incor-

porated slacks with the actual PN structure. Because of the prescribed conditions
we have

[L|Is].

[

x0
sx0

]

= b

where b is the vector of the corresponding dimensionality (i.e. ns) with integer
entries representing the limits for number of tokens. Many times b = 1. Here 1 is
the vector with all its entries equal to 1. Because

L.x0 +
sx0 = b

the initial state vector of the supervisor is given as

sx0 = b− L.x0.

5.1.1 Example 3

Consider the PN given in Figure 5 which adapts a PN model from [9] of an unreliable
machine [5].
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Fig. 5. The original structure of the PN model of the system
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Fig. 6. The structure of the system with the supervisor

Although the PN seems to be very simple, the RT is very complicated (although
it contains only 19 nodes, there are many edges and cycles) because of the tran-
sition t1. Namely, t1 is permanently enabled. Consequently, it can consecutively
generate (by its firing) further and further input tokens for the place p1. Even this
process is infinite. There exist many “auto-cycles” (self-loops) in the RT. A cycle
is a path with the same node at the beginning and the end. By the “auto-cycle”
we mean the cycle where an edge emerges from the node and simultaneously enters
the same node. There are even several “auto-cycles” in some nodes of the RG, each
created by the edge labelled by a different PN transition. From the control theory
point of view, such a system behaviour is unacceptable (such a system can be un-
derstood to be e.g. unstable). In order to forbid such a situation, a supervisor (see
e.g. [11, 6, 9, 12]) can be synthesized. The parameters of the P/T PN based model
as well as the initial state vector are as follows:

F =





















0 1 0 0 1 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 1 0
0 0 0 0 0 0 1





















; G =





















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0





















; x0 =





















0
0
0
1
0
0
1





















Consider the conditions for the supervisor synthesis as follows:

σp1 + σp2 + σp5 ≤ 1 (27)

σp3 + σp6 ≤ 1 (28)

i.e. only one of the places p1, p2, p5 can possess the token at the same time. The
same prescription is valid for the possession of the token by the places p3 and p5. In
the controlled system the RT is a lot less than that of the uncontrolled one and the
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stability of the system is better. The supervisor is synthesized as follows:

L =

(

1 1 0 0 1 0 0
0 0 1 0 0 1 0

)

; Fs =

(

1 0 0 0 0 0 0
0 0 0 1 0 0 1

)

GT
s =

(

0 0 1 0 0 1 0
0 0 1 0 0 1 0

)

; sx0 = 1− L.x0 = (1, 1)T .

The system controlled by the supervisor has the following parameters:

Fa =





























0 1 0 0 1 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 1 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 0 0 1 0 0 1





























; Ga =





















1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 1
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 1 1
0 0 0 0 0 1 0 0 0





















; x0a =





























0
0
0
1
0
0
1
1
1





























The structure of the supervised system is given in Figure 6. Although the supervisor
assures the prescribed conditions, it does not assure anything more, even it gives no
information about the supervised system behaviour.

5.2 Behaviour of the System Controlled by the Supervisor

Let us illustrate that also in such a case our approach to the automatic synthesis
(introduced above) can be utilized. Namely, not even in the supervised system the
control problem of the system is fully solved. Although the supervisor keeps the
system within the prescribed conditions, it is not able to choose either the most
suitable transition (from enabled ones in the step k of the dynamic development)
to be fired in an existing state xa or how to reach a prescribed terminal state xta
of the supervised system from the given initial state x0a. Our approach yields such
a possibility and offers both the set of feasible state trajectories and the set of control
ones.

5.2.1 Example 4

Let us continue in the previous example. The parameters of the corresponding RT
(the adjacency matrix and the set of nodes being the feasible states) are as follows:
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ARTa =









































0 1 4 7 0 0 0 0 0 0 0 0
0 0 0 0 2 4 5 7 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 4 7 0 0
0 0 0 0 0 0 0 0 2 0 5 0
0 0 0 0 0 0 0 0 0 0 4 7
0 0 0 0 0 0 0 0 0 2 0 5
3 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0









































Xreacha =





























0 1 0 0 0 1 0 1 0 0 0 0
0 0 0 0 1 0 0 0 1 1 0 0
0 0 1 0 0 1 0 0 1 0 1 0
1 1 0 1 1 0 1 1 0 1 0 1
0 0 0 0 0 0 1 0 0 0 1 1
0 0 0 1 0 0 0 1 0 1 0 1
1 1 1 0 1 1 1 0 1 0 1 0
1 0 1 1 0 0 0 0 0 0 0 0
1 1 0 0 1 0 1 0 0 0 0 0





























The corresponding RG is shown in Figure 7.
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Fig. 7. The reachability graph of the system controlled by the supervisor

Set Da = AT
RTa. Now, we can use the method for the automatic synthesis in

this case as well. It is useful at least when analysing the system behaviour. In case
of a working cycle – when the xta = x0a, using the Matlab procedure we can obtain
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X =









































1 0 0 0 1
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0









































; U∗ =





































































1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 1





































































(29)

Because of the transformation matrix

TrT t =





















1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0





















we finally have

U = TrT t.U
∗ =





















1 2 0 0
0 1 1 0
0 0 0 1
1 1 1 0
0 1 1 0
0 0 0 1
1 1 1 0





















Here, one can be startled that there is the integer 2 in the matrix U. However, it
does not mean that a control vector uk in a step k contains such an entry greater
than 1. It only means (because U represents control trajectories) that in this point
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two different control trajectories “touch” each other. The first of them is trajec-
tory t4, t1, t2, t3 and the second one is the trajectory t7, t1, t5, t6 – it can be checked
in Figure 7. Just this fact is expressed by means of the integer 2. The control
trajectories are given in Figure 8 (left), where the enabled transitions from the set
T = {t1, . . . t7} are displayed on the vertical axis.

` ` ` `

` ` ` `

` ` ` `

` ` ` `

` ` ` `

` ` ` `

` ` ` `

B
B
B
B
B
B
B
BN

HHHjA
A
A
A
AAU

J
J
J
Ĵ
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Fig. 8. The solution of the control trajectories (left) and the solution of the corresponding
state trajectories (right)

The responses of the system to these control trajectories are the state trajectories
given in Figure 8 (right).

6 SUPERVISING THE COOPERATION OF DES SUBSYSTEMS
AND AGENTS IN MAS

Now, let us try to utilize the combination of both the supervisor synthesis and
our approach to automatic control synthesis, which was illustrated in the previous
two examples, for the cooperation of DES subsystems and agents in MAS. In order
to bring DES subsystems to a better cooperation or to forbid agents in MAS (e.g.
autonomous robots, automatically guided vehicles (AGV), etc.) to be selfish at usage
of common sources (like energy, raw materials, yards, roads, etc.) the supervisor can
be designed by the above-mentioned method. There are many possible strategies as
to the supervisor synthesis. Note two of them.

6.1 Mutex Form of Supervising

The cooperation introduced here has the Mutex (mutual exclusion) form. It means
that the aims of a whole are preferred over the aims of its elementary agents. A rule
for behaviour of agents is forced in order to avoid any selfish behaviour of agents
which weakens the whole.
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6.1.1 Example 5

In Figure 9 (left) the PN model of cooperation of two general subsystems/agents is
introduced.
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Fig. 9. The PN model of the system (left) and the corresponding causal model represented
by means of the full RG (right)

The model parameters and the initial state are given as follows:

F =





























0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1





























; GT =





























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 1 0 0 0 1 0 0





























; x0 =





























0
1
0
0
0
1
0
0
1





























The RG of the system is given in Figure 9 (right). It can be computed by Matlab
and its parameters are as follows:

Xreach =





























0 0 0 0 0 0 1 0 0 0 1 0
1 0 1 0 0 1 0 0 0 1 0 0
0 1 0 0 1 0 0 0 1 0 0 1
0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1
1 1 0 1 0 0 1 0 0 0 0 0
0 0 1 0 1 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 1 0 0 0
1 1 1 0 1 0 0 0 0 0 0 0




























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A =









































0 3 7 0 0 0 0 0 0 0 0 0
0 0 0 4 7 0 0 0 0 0 0 0
0 0 0 0 3 8 0 0 0 0 0 0
0 0 0 0 0 0 1 7 0 0 0 0
0 0 0 0 0 0 0 4 8 0 0 0
0 0 0 0 0 0 0 0 3 5 0 0
2 0 0 0 0 0 0 0 0 0 7 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 5
6 0 0 0 0 0 0 0 0 0 0 3
0 0 2 0 0 0 0 0 0 0 0 0
0 6 0 0 0 0 0 0 0 0 0 0









































The single agent looks like that in Figure 10. It can execute its autonomouos acti-
vities without any restrictions from without. Its parameters are

1F =









0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0









; 1GT
1 =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









; 1x0 =









0
1
0
0









The same is valid for another agent with same structure (but its elementary activities
can be different from the former agent). The structural parameters of both the non-
cooperating agents are as follows:

F =

(

1F 0/
0/ 2F

)

; GT =

(

1GT 0/
0/ 2GT

)

; B =

(

1B 0/
0/ 2B

)

x0 =

(

1x0
2x0

)

= (0, 1, 0, 0, 0, 1, 0, 0)T.

Let us synthesize the supervisor for these agents based on the requirement that only
one of the activities represented by the PN place p1, p4, p5, p8 can run at the same
time. Hence,

L = (1, 0, 0, 1, 1, 0, 0, 1); Bs = −L.B = (0, 1, 0,−1, 0, 1, 0,−1)

Fs = (0, 0, 0, 1, 0, 0, 0, 1); GT
s = (0, 1, 0, 0, 0, 1, 0, 0); sx0 = 1− L.x0 = 1

Fa =

(

F
Fs

)

; GT
a =

(

GT

GT
s

)

; Ba =

(

B
Bs

)

x0a =

(

x0
sx0

)

= (0, 1, 0, 0, 0, 1, 0, 0, 1)T

Comparing these results with Figure 9 we can see that the structure was synthesized
correctly.

Of course, the approach can also be used for more than two agents. When we
consider e.g. four agents of the same structure and the same initial state, i.e.
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Fig. 10. The simple agent

F =









1F 0/ 0/ 0/
0/ 1F 0/ 0/
0/ 0/ 1F 0/
0/ 0/ 0/ 1F









; GT =









1GT 0/ 0/ 0/
0/ 1GT 0/ 0/
0/ 0/ 1GT 0/
0/ 0/ 0/ 1GT









; x0 =









1x0
1x0
1x0
1x0









we can model different kinds of their mutual cooperation. Let us analyse at least
two of them:

1. Pure Mutex – when the simultaneous work of agents is absolutely excluded.
Then only one of these agents can work and no cooperation exists. Here,

L =
(

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
)

; Fs =
(

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
)

GT
s =

(

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
)

; sx0 = 1.

In this case the supervisor consists of one PN-place with one token (see sx0)
and its connections with the elementary agents are given by means of matrices
Fs (its non-zero entries represent connections oriented to corresponding agent
transitions) andGs (its non-zero entries represent connections oriented from cor-
responding agent transitions to the supervisor place). The matrix L represents
the conditions for the supervisor synthesis.

2. Partial Mutex – when there are e.g. two groups of agents: {A1, A2, A3} and
{A3, A4}. Only one agent from each group (a representative of the group) can
cooperate with the agent from other group. Here,

L =

(

1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1

)

; Fs =

(

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

)

GT
s =

(

0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

)

; sx0 =

(

1
1

)

.

Here, the supervisor consists of two PN-places. Each of them has one token.
The sense of the matrices is the same as in the previous case.
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6.2 Mutual Influence of Agents Due to Cooperation

The approach is also suitable for more complicated (practically arbitrary) structures
of agents as well as for their interconnections. It is very important as to mutual
cooperation of agents in a group. Let us introduce a simple illustrative example.

6.2.1 Example 6

Consider the agent system with structure given in Figure 11 (left).
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Fig. 11. The PN-based model with a general structure (left) and the corresponding RG of
the supervised system

The parameters of the autonomous agents are as follows:

1F = 2F =









2 0 0
0 1 0
0 0 1
0 2 0









; 1G = 2G =





0 1 1 0
1 0 0 0
1 0 0 2



 ; 1x0 =









2
0
1
0









; 2x0 =









0
1
1
0









F =

(

1F 0/
0/ 2F

)

; G =

(

1G 0/
0/ 2G

)

; B = GT − F; x0 =

(

1x0
2x0

)

Let us request that p1 and p5 may keep maximally two tokens together. It may
correspond to a real situation from the manufacturing area, where two different
machine tools depend on a common source of a material or half-finished products.

p1 + p5 ≤ 2 or after introducing the slack p9 : p1 + p5 + p9 = 2.

However, it simultaneously yields a “space” for an agreement among the agents.
Namely, the agents can coalesce when the ratio p1:p2 will be 2:0, 1:1 or 0:2. Thus,

L =
(

1 0 0 0 1 0 0 0
)

; b = 2; Bs = −L.B =
(

2 −1 −1 2 −1 −1
)

Fs =
(

0 1 1 0 1 1
)

; GT
s =

(

2 0 0 2 0 0
)

; sx0 = b− L.x0 = 2− 2 = 0.
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The RG of the closed loop structure of the agents together with their supervisor is
given in Figure 11 (right). Here, the nodes of the RG are given by columns of the
following matrix:

Xreach =





































2 0 1 0 2 1 0 0 1 0 1 0
0 1 1 1 1 1 1 2 2 2 2 2
1 2 1 2 0 1 2 1 0 1 0 1
0 0 2 0 4 2 0 4 6 4 6 4
− − − − − − − − − − − −
0 0 0 1 0 1 2 0 0 1 1 2
1 1 1 1 1 1 0 1 1 1 1 0
1 1 1 0 1 0 0 1 1 0 0 0
0 0 0 2 0 2 0 0 0 2 2 0
− − − − − − − − − − − −
0 2 1 1 0 0 0 2 1 1 0 0



















































Agent 1















Agent 2

}

Supervisor

Any state vector consists of three subvectors – the state of the Agent 1, the state of
the Agent2 and the state of the supervisor. The supervisor is the PN subnet con-
sisting of the place p9 and the corresponding connections with subnets representing
the agents. These connections are expressed by means of the submatrix Bs in the
matrix Ba of the closed loop system. This is displayed in the following relation as
well as in the initial state vector of the closed loop system:

Ba =

(

B
Bs

)

=





































−2 1 1 0 0 0
1 −1 0 0 0 0
1 0 −1 0 0 0
0 −2 2 0 0 0
− − − − − −
0 0 0 −2 1 1
0 0 0 1 −1 0
0 0 0 1 0 −1
0 0 0 0 −2 2
− − − − − −
2 −1 −1 2 −1 −1





































;x0a =

(

x0
sx0

)

=





































2
0
1
0
−
0
1
1
0
−
0





































Using our approach, we can find e.g. the feasible trajectories from the initial state
x0a = X1 to the terminal state xta = X6. The feasible state trajectories and the
control ones are shown in Figure 12.

7 CONCLUSION

The procedure of the automatic synthesis of control for DES and agents and/or
MAS which can be described and modelled by P/T PN was proposed and presented
here. In the first step the BDG-based method was extended in order to be used
for P/T PN with general structure. Namely, till now it could be used only for the
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Fig. 12. The feasible state trajectories (left) and the control trajectories (right)

special class of P/T PN named SM, where each PN transition is allowed to have only
single input and single output PN place. After extending, each P/T PN transition is
allowed to have more than one input PN places and/or more than one output ones.
The approach was illustrated on examples. In the second step common utilization
of both the proposed approach and of the supervisor synthesis was pointed out and
illustrated on several examples. Namely, the supervisor synthesis methods yield the
structure of the supervisor. However, the supervisor guarantees only such properties
and behaviour of the supervised object that correspond to the conditions for which
the supervisor was synthesized, nothing more. It does not yield either the state
trajectories or the control trajectories. On the other hand, the approach proposed
in this paper yields the sequences of all the control interferences (not only of those
cohering with the supervision but in general) of the whole complex (the supervised
system together with the supervisor) as well as the feasible state trajectories. Thus,
it complements the results achieved by the supervision and allows complex analysis
of the behaviour of the supervised system and its control within a full range. Namely,
the supervised system is understood to be a system in general, not any specific one,
in spite of the fact that it has already been supervised. The supervision helps our
approach by means of yielding the (sometimes strongly) limited extent of possibilities
how the system to be controlled by our method can behave.
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