
Computing and Informatics, Vol. 31, 2012, 1295–1328

ALGEBRAIC APPROACH TO LOGICAL INFERENCE
IMPLEMENTATION

Boris Kulik

Institute of Problems in Machine Science
Russian Academy of Sciences (RAS)
61 Bolshoi pr., 199178 St. Petersburg, Russia
e-mail: ba-kulik@yandex.ru

Alexander Fridman, Alexander Zuenko

Institute for Informatics and Mathematical Modelling
Kola Science Centre of RAS
24A Fersman str., 184209 Apatity, Russia
e-mail: {fridman, zuenko}@iimm.kolasc.net.ru

Communicated by Ivan Plander

Abstract. The paper examines the usage potential of n-tuple algebra (NTA) de-
veloped by the authors as a theoretical generalization of structures and methods
applied in intelligence systems. NTA supports formalization of a wide set of lo-
gical problems (abductive and modified conclusions, modelling of graphs, semantic
networks, expert rules, etc.). This article mostly describes implementation of logi-
cal inference by means of NTA. Logical inference procedures in NTA can include,
besides the known logical calculus methods, new algebraic methods for checking
correctness of a consequence or for finding corollaries to a given axiom system.
Inference methods consider (above feasibility of certain substitutions) inner struc-
ture of knowledge to be processed, thus providing faster solving of standard logical
analysis tasks. Matrix properties of NTA objects allow to decrease laboriousness of
intellectual procedures as well as to efficiently parallel logical inference algorithms.
In NTA, we discovered new structural and statistical classes of conjunctive normal
forms whose satisfiability can be detected for polynomial time. Consequently, many
algorithms whose complexity evaluation is theoretically high, e.g. exponential, can
in practice be solved in polynomial time, on the average. As for making databases
more intelligent, NTA can be considered an extension of relational algebra to know-
ledge processing. In the authors’ opinion, NTA can become a methodological basis
for creating knowledge processing languages.

1296 B. Kulik, A. Fridman, A. Zuenko

Keywords: Data processing, knowledge representation, intelligence system, multi-
place relation, general theory of relations, n-tuple algebra, flexible universe, logical
inference, knowledge processing language, parallel computing

1 INTRODUCTION

Developers of modern intelligence systems face certain challenges resulting from fun-
damentally different approaches used in constructing databases (DB) and knowledge
bases (KB). KB design is based on a mathematical system that is named by a number
of terms: formal approach, axiomatic method, symbolic logic, theory of formal sys-
tems (TFS). Development of TFS began in the works of B. Russell, L. Wittgenstein,
D. Hilbert, G. Peano and others at the beginning of 20th century when paradoxes
of set theory were discovered and the algebra of sets and Boolean algebra were no
longer the most important approaches to foundations of logic.

In TFS, inference rules are defined in the way that allows to interpret new symbol
constructions as corollaries to or new theorems from the symbol constructions or
statements that are axioms or theorems in the given formal system.

Additionally, in TFS we need to reduce many logical analysis tasks to satisfia-
bility checks for a certain logical formula, this check being able to return only two
possible answers (“yes” or “no”). Despite a substantial number of positive results
that have been obtained in this field, such a reduction is not sufficiently simple yet.
Moreover, the reduction is unrealizable in cases when we need not only to receive
a “yes/no” answer but also to estimate the value of some parameters in the formal
system or to assess the structure and/or number of objects that satisfy the given
conditions. That is why artificial intelligence languages based on declarative ap-
proach grew much more complicated due to the necessity of furnishing them with
different non-declarative procedures and functions.

Today, mathematical logic is based on strict rules of pure calculus. This calculus
has been proven to be isomorphic to some algebraic systems; for instance, propo-
sitional calculus is isomorphic to Boolean algebra. However, algebraic (procedural)
approach is fairly seldom used by itself in theoretical research on classical logic to-
day. On the other hand, algebraic methods are widely used in applied research,
particularly in software implementation of mentioned non-declarative functions in
intelligence systems.

Algebraic techniques, e.g. those of relational algebra are most commonly used in
constructing data processing systems. Note that the term “data processing lan-
guages” (DPL) is very popular in data management while intelligence systems
mostly deal with knowledge representation languages (KRL). This shows the de-
clarative origin of KRLs and the procedural basis of DPLs. In other words, DPLs
regulate the way actions are performed on data, whereas KRLs specify what is to
be done with the knowledge without determining how to do this. Thus, algebraic
approach seems to be a rational supplement to traditional formal methods in logic

Algebraic Approach to Logical Inference Implementation 1297

for improving logical analysis techniques and creating knowledge processing lan-
guages (KPL) that allow to flexibly program and compare algorithms for intelligent
procedures.

Methodical differences in constructing DBs and KBs make using them within
a single integrated software system complicated. This problem was first posed at the
IJCAI ’95 (The International Joint Conference on Artificial Intelligence in Montreal,
Canada on August 19 through 25, 1995) and now it becomes even more topical as
making database management systems (DBMS) more intelligent by developing DB
semantic interfaces, deductive DBs, etc., becomes more important. This is why
developing a unified methodology of data and knowledge processing is required.
In our opinion, this can be achieved through algebraic methods if the concept of
multiplace relation is used as a base concept. This idea allows to represent many
data and knowledge systems not only as an artificial language, but also as a totality
of relations with different diagrams that are subject to certain operations similar to
those of algebra of sets.

Below we briefly describe conventional mathematical sections dealing with rela-
tions, and propose a mathematical system named n-tuple algebra (NTA) [9, 11] and
developed for solving the set of problems described above [13, 21]. We believe that
NTA can be used as a base for creating knowledge processing languages.

2 RELATIONS IN MATHEMATICS

A general theory of relations has not been developed yet. The term “theory of rela-
tions” is usually used either for theory of binary relations or for theory of multiplace
relations based on relational algebra. In any case, these theories accept the classical
mathematical definition of a relation through Cartesian product. If D is a Cartesian
product of n different or equal sets, then an n-place relation R is a certain subset of
elementary n-tuples contained in D.

Such a definition of a multiplace relation allows treating relations as ordinary
sets if they are defined on the same Cartesian product D. If so, the complement of
a multiplace relation R is the set difference D \R. For example, if

D = {1, 2, 3, 4, 5} × {1, 2, 3, 4, 5},

and R is a relation “less than” in the set of numbers {1, 2, 3, 4, 5}, then after elimi-
nating all elementary n-tuples belonging to R, from D we get a set of elementary
n-tuples corresponding to the relation “more than or equal to”.

However, this conformity between algebra of multiplace relations and algebra of
sets is no longer valid in totalities of relations defined on various Cartesian products
since it is impossible to determine operations of union and intersection for these.
Besides, algebra of multiplace relations includes operations of composition and join
that have no equivalent operations in algebra of sets.

According to the classical definition, a multiplace relation is a set of elemen-
tary n-tuples; however, this definition is not always practical since it results in

1298 B. Kulik, A. Fridman, A. Zuenko

redundancy due to multiple copying the same data to memory. Let us consider as
an example a relation which reflects the fact that a professor Smith teaches subjects
Mathematics, Logic, and Physics : {(Smith,Mathematics), (Smith,Logic), (Smith,
Physics)}. This relation can be compacted as a Cartesian product {Smith} ×
{Mathematics,Logic,Physics}. Obviously, not every relation can be represented
as a single Cartesian product composed of non-elementary sets. For example, the
following relation cannot be expressed this way:

P =

Smith Mathematics
Smith Logic
Smith Physics
Burns Logic
Burns Philosophy

Nevertheless every relation can be represented as a union of certain Cartesian

products that are, in a general case, composed of subsets of corresponding attributes.
In our example, this union is P = {Smith} × {Mathematics,Logic,Physics} ∪
{Burns} × {Logic,Philosophy}. Transition from elementary n-tuples to ones com-
posed of sets rather than elements provides a significant reduction in computational
resources used for processing relations (calculating unions, intersections, comple-
ments, etc.) and data storing.

Theoretical basics of mathematical logic are set forth in formal language of pred-
icate calculus [16]; but interpretation of logic uses a system that can be represented
as a totality of relations with elements being sequences of symbols. The formulas of
mathematical logic can be expressed as sets of satisfiable substitutions, i.e. relations
as well.

There exist different descriptive languages in artificial intelligence; but, as a rule,
we can transform examples introduced in publications for illustrating different me-
thods and approaches to structures like N(E1, E2, . . .) where N is a name of a re-
lation or a predicate and E1, E2, . . . are names of objects belonging to certain
totalities of values of properties (attributes) [17]. Operations on such structures
completely correspond to those of theory of relations.

Apart from this, an initial relation defined on a Cartesian product D = X1 ×
X2 × . . . × Xn can be often split into blocks corresponding to relations on some
projections of D, which greatly reduces laboriousness of operations on this relation
by using its matrix properties. This allows to process every block separately using
known features of Cartesian products, for instance, by paralleling the necessary
operations.

Since blocks reflect relations defined on different diagrams, it is necessary to
provide specific algebraic operations to recover the initial relation from the blocks.

This article introduces n-tuple algebra that uses Cartesian product of sets rather
than sequences of elements (elementary n-tuples) as a basic structure, and imple-
ments the general theory of multiplace relations. NTA supports formalization of
a wide set of logical problems (abductive and modified conclusions, modelling of

Algebraic Approach to Logical Inference Implementation 1299

graphs, semantic networks, expert rules, etc. [13, 19]). Below we will focus on per-
forming logical inference by means of NTA.

“Compacted” representation of relations allows to apply algebraic approach not
only in database management systems, but in knowledge systems as well, as it re-
duces computational laboriousness of logical inference in many cases. As for making
DBs more intelligent, NTA can be considered an extension of relational algebra to
knowledge processing.

3 BASICS OF N-TUPLE ALGEBRA

3.1 Basic Concepts and Structures

N -tuple algebra was developed for modeling and analysis of multiplace relations.
Unlike relational algebra used for formalization of databases NTA can use all mathe-
matical logic’s means for logic modeling and analysis of systems, namely logical
inference, corollary trueness’ check, analysis of hypotheses, abductive inference, etc.
N -tuple algebra is based on the known properties of Cartesian products of sets which
correspond to the fundamental laws of mathematical logic. In NTA, transitional
results can be obtained without representation of structures as sets of elementary
n-tuples since every NTA operation uses sets of components of attributes or n-tuples
of components.

Definition 1. N-tuple algebra is an algebraic system whose support is an arbi-
trary set of multiplace relations expressed by specific structures, namely elementary
n-tuple, C-n-tuple, C-system, D-n-tuple, and D-system, called n-tuple algebra ob-
jects. So, apart from the elementary n-tuple, NTA contains four more structures
providing a compact expression for sets of elementary n-tuples.

Names of NTA objects consist of a name proper, sometimes appended with
a string of names of attributes in square brackets; these attributes determine the
relation diagram in which the n-tuple is defined. For instance, if an elementary
n-tuple T [XY Z] = (a, b, c) is given, then T is the name of the elementary n-tuple
(a, b, c), X, Y , Z are names of attributes, and [XY Z] is the relation diagram (i.e.
space of attributes), a ∈ X, b ∈ Y and c ∈ Z. A domain is a set of all values of
an attribute. Domains of attributes correspond to definitional domains of variables
in mathematical logic, and to scales of properties in information systems. Hereafter
attributes are denoted by capital Latin letters which may sometimes have indices,
and the values of these attributes are denoted by the same lower-case Latin letters.
A set of attributes representing the same domain is called a sort. Structures defined
on the same relation diagram are called homotypic ones. Any totality of homotypic
NTA objects is an algebra of sets.

N -tuple algebra is based on the concept of a flexible universe. A flexible universe
consists of a certain totality of partial universes that are Cartesian products of
domains for a given sequence of attributes. A relation diagram determines a certain
partial universe.

1300 B. Kulik, A. Fridman, A. Zuenko

In a space of properties S with attributes Xi (i.e. S = X1 × X2 × . . . × Xn),
the flexible universe will be comprised of different projections i.e. subspaces that use
a part of attributes from S . Every such subspace corresponds to a partial universe.

Definition 2. An elementary n-tuple is a sequence of elements each belonging to
the domain of the corresponding attribute in the relation diagram. An example of
an elementary n-tuple T [XY Z] is given above.

Definition 3. A C-n-tuple is an n-tuple of sets (components) defined in a certain
relation diagram; each of these sets is a subset of the domain of the corresponding
attribute.

A C-n-tuple is a set of elementary n-tuples; this set can be enumerated by
calculating the Cartesian product of the C-n-tuple’s components. C-n-tuples are
denoted with square brackets. For example, R[XY Z] = [ABC] means that A ⊆ X,
B ⊆ Y , C ⊆ Z and R[XY Z] = A×B × C.

Definition 4. A C-system is a set of homotypic C-n-tuples that are denoted as
a matrix in square brackets. The C-n-tuples that such a matrix contains are rows
of this matrix.

A C-system is a set of elementary n-tuples. This set equals to the union of sets
of elementary n-tuples that the corresponding C-n-tuples contain. For example,

a C-system Q[XY Z] =

[
A1 B1 C1

A2 B2 C2

]
can be represented as a set of elementary

n-tuples calculated by formula Q[XY Z] = (A1 ×B1 × C1) ∪ (A2 ×B2 × C2).
In order to combine relations defined on different projections within a single

algebraic system isomorphic to algebra of sets, NTA introduces dummy attributes
formed by using dummy components. There are two types of these components.
One of them called a complete component is used in C-n-tuples and is denoted
by “*”. A dummy component “*” added in the ith place in a C-n-tuple or in
a C-system equals to the set corresponding to the whole range of values of the
attribute Xi. In other words, the domain of this attribute is the value of the dummy
component. For example, if the domain of attribute X is given (here it equals to
the set {a, b, c, d}), the C-n-tuple Q[Y Z] = [{f, g} {a, c}] can be expressed in the
relation diagram [XY Z] as a C-n-tuple [∗{f, g} {a, c}]. Since the dummy component
of Q corresponds to an attribute with the domain X, the equality [∗{f, g} {a, c}] =
[{a, b, c, d} {f, g} {a, c}] is true. Another dummy component (Ø) called an empty
set is used in D-n-tuples.

A C-n-tuple that has at least one empty component is empty. In NTA, if we deal
with models of propositional or predicate calculuses, this statement is accepted as
an axiom which has an interpretation based on the properties of Cartesian products.

Below, we will show that usage of dummy components and attributes in NTA
allows to transform relations with different relation diagrams into ones of the same
type, and then to apply operations of theory of sets to these transformed relations.

Algebraic Approach to Logical Inference Implementation 1301

The proposed technique of defining dummy attributes differs from the known tech-
niques essentially due to the fact that new data are inputted into multiplace relations
as sets rather than elementwise, which significantly reduces both computational la-
boriousness and memory capacity for representation of the structures.

Operations (intersection, union, complement) and checks of relations of inclusion
or equality for these NTA objects are based on Theorems 1–6. Here they are given
without proof because their formulating in terms of NTA corresponds to the known
properties of Cartesian products. Let two homotypic C-n-tuples P = [P1P2 . . . Pn]
and Q = [Q1Q2 . . . Qn] be given.

Theorem 1. P ∩Q = [P1 ∩Q1 P2 ∩Q2 . . . Pn ∩Qn].

Example 1. [{b, d} {f, h} {a, b}] ∩ [∗{f, g}{a, c}] = [{b, d} {f} {a}];
[{b, d} {f, h}{a, b}] ∩ [∗{g} {a, c}] = [{b, d}Ø {a}] = Ø.

Theorem 2. P ⊆ Q, if and only if Pi ⊆ Qi for all i = 1, 2, . . . , n.

Theorem 3. P ∪Q ⊆ [P1 ∪Q1 P2 ∪Q2 . . . Pn ∪Qn], equality being possible only in
two cases:

1. P ⊆ Q or Q ⊆ P ;

2. Pi = Qi for all corresponding pairs of components except one pair.

Note that in NTA, according to Definition 4, equality P∪Q =

[
P1 P2 . . . Pn

Q1 Q2 . . . Qn

]
is true for all cases.

Theorem 4. Intersection of two homotypic C-systems equals to a C-system that
contains all non-empty intersections of each C-n-tuple of the first C-system with
each C-n-tuple of the second C-system.

Example 2. Let the following two C-systems be given in space S:

R1[XY Z] =

[
{a, b, d} {f, h} {b}
{b, c} ∗ {a, c}

]
,

R2[XY Z] =

 {a, d} ∗ {b, c}
{b, d} {f, h} {a, c}
{b, c} {g} {b}

 .
We need to calculate their intersection. First we calculate intersection of all the

pairs of C-n-tuples that the two different C-systems contain:

[{a, b, d} {f, h} {b}] ∩ [{a, d} ∗ {b, c}] = [{a, d} {f, h} {b}];
[{a, b, d} {f, h} {b}] ∩ [{b, d} {f, h} {a, c}] = Ø;

[{a, b, d} {f, h} {b}] ∩ [{b, c} {g} {b}] = Ø;

[{b, c} ∗ {a, c}] ∩ [{a, d} ∗ {b, c}] = Ø;

1302 B. Kulik, A. Fridman, A. Zuenko

[{b, c} ∗ {a, c}] ∩ [{b, d} {f, h} {a, c}] = [{b} {f, h} {a, c}];
[{b, c} ∗ {a, c}] ∩ [{b, c} {g} {b}] = Ø.

Then we form a C-system from non-empty C-n-tuples:

R1 ∩R2 =

[
{a, d} {f, h} {b}
{b} {f, h} {a, c}

]
.

Theorem 5. Union of two homotypic C-systems equals to a C-system that contains
all C-n-tuples of the operands.

After calculating the union of the C-systems, the total number of n-tuples in
the derived C-system can be reduced in some cases by using conditions 1. or 2. of
Theorem 3.

In order to introduce the algorithms for calculating complements of NTA objects,
we need one more definition.

Definition 5. A complement (Pj) of any component Pj of an NTA object is defined
as a complement to the domain of the attribute corresponding to this component.

For example, if a C-n-tuple R[XY Z] = [ABC] is given, then A = X \ A,
B = Y \B and C = Z \ C.

Theorem 6. For an arbitrary C-n-tuple P = [P1P2 . . . Pn]

P =

P1 ∗ . . . ∗
∗ P2 . . . ∗
.
∗ ∗ . . . PN

In the above C-system P whose dimension is n × n, all the components except
the diagonal ones are dummy components. We shall call such C-systems diagonal
C-systems.

Here is an example. Let a C-n-tuple T = [{b, d} {f, h} {a, b}] be given in the
space S = X × Y × Z where X = {a, b, c, d}, Y = {f, g, h}, Z = {a, b, c}. Then

T =

 X \ {b, d} ∗ ∗
∗ Y \ {f, h} ∗
∗ ∗ Z \ {a, b}

 =

 {a, c} ∗ ∗
∗ {g} ∗
∗ ∗ {c}

We can denote diagonal C-systems as one n-tuple of sets, using reversed square

brackets for expressing this. Then we get the following equality: T =]{a, c} {g} {c}[.
Such a “reduced” expression for a diagonal C-system makes up a new NTA

structure called a D-n-tuple.

Algebraic Approach to Logical Inference Implementation 1303

Definition 6. A D-n-tuple is an n-tuple of components enclosed in reversed square
brackets which equals a diagonal C-system whose diagonal components equal the
corresponding components of the D-n-tuple.

The complement of a C-n-tuple can be directly recorded as a D-n-tuple. For
example, if T1 = [{b, d}∗{a, b}], then T1 =]{a, c}Ø {c}[. In D-n-tuples the constant
“Ø” is a dummy component.

This structure not only allows to compactly denote diagonal C-systems, but can
be also used in some operations and retrieval queries. The terms C-n-tuple and
D-n-tuple were chosen due to the following reason: if we represent the components
of these n-tuples as predicates, C-n-tuple corresponds to conjunction of these predi-
cates, and D-n-tuple corresponds to disjunction of these predicates. D-n-tuples are
used to form one more NTA structure, namely a D-system.

Definition 7. A D-system is a structure that consists of a set of homotypic
D-n-tuples and equals the intersection of sets of elementary n-tuples that these
D-n-tuples contain.

Expression for a D-system is analogous to that of a C-system except that in this
case reversed square brackets are used instead of the regular ones.

Theorem 7. The complement of a C-system is a D-system of the same dimension,
in which each component is equal to the complement of the corresponding component
in the initial C-system.

Proof. Let a C-system P that contains a set {P1, P2, . . . , Pn} of C-n-tuples be given.
This means that P = P1∪P2∪ . . .∪Pn. Calculating its complement according to de
Morgan’s law, we get the following result: P = P1 ∩P2 ∩ . . .∩Pn. Then the validity
of this theorem follows from the Theorem 6 and Definitions 6 and 7. 2

For example, the complement of a C-system

F [XY Z] =

[
{a, b, d} {f, h} {b}
{b, c} ∗ {a, c}

]

given in a space S can be calculated as a D-system

F =

]
X \ {a, b, d} Y \ {f, h} Z \ {b}
X \ {b, c} Y \ ∗ Z \ {a, c}

[
=

]
{c} {g} {a, c}
{a, d} Ø {b}

[
.

It is easy to see that relations between C-objects (C-n-tuples and C-systems)
and D-objects (D-n-tuples and D-systems) are in accordance with de Morgan’s laws
of duality. Due to this fact, they are called alternative classes. Calculation of the
complement for an NTA object always has polynomial computational complexity.
Operations of union and intersection have polynomial complexity for NTA objects
belonging to the same class, but a transformation into an alternative class is also
necessary for objects of different classes.

1304 B. Kulik, A. Fridman, A. Zuenko

For implementing intelligence systems, it is often necessary to transform NTA
objects into an alternative class. Complexity of this transformation will be discussed
below in Section 5. Let us now introduce theorems regulating this transformation.

Theorem 8. Every C-n-tuple (D-n-tuple) P can be transformed into an equiva-
lent D-system (C-system) in which every non-dummy component pi corresponding
to an attribute Xi of the initial n-tuple is expressed by a D-n-tuple (C-n-tuple)
having the component pi in the attribute Xi and dummy components in all the rest
attributes.

Proof. The statement regarding transformation a D-n-tuple into a C-system im-
mediately follows from the definition of a D-n-tuple as a compact expression for
the corresponding C-system. The algorithm of transformation of a C-n-tuple into
an equivalent D-system results from the duality property of alternative classes. 2

For example, a D-n-tuple]AØBC[where A, B, C are not dummy can be

recorded as a C-system

 A ∗ ∗ ∗
∗ ∗ B ∗
∗ ∗ ∗ C

, and a C-n-tuple [AB ∗ C] – as a D-

system

 A Ø Ø Ø
Ø B Ø Ø
Ø Ø Ø C

.

Evidently, algorithms for transformation of C-n-tuples and D-n-tuples into
structures of an alternative class are not exponentially complex. Laboriousness of
the algorithms increases significantly for C-systems and D-systems. Two following
assertions are given here without any proof due to their obviousness.

Theorem 9. A D-system P containing m D-n-tuples is equivalent to a C-system
equal to the intersection of mC-systems obtained by transformation every D-n-tuple
belonging to P into a C-system.

Theorem 10. A C-system P containing m C-n-tuples is equivalent to a D-system
equal to the union of m D-systems obtained by transforming every C-n-tuple be-
longing to P into a D-system.

Transformations of NTA objects into objects of alternative classes allow to realize
all operations of theory of sets on NTA objects, as well as all checks of relations
among such objects without having to represent the objects as sets of elementary n-
tuples. In some cases, inclusion checks can be done directly for structures belonging
to different alternative classes. The following theorems describe these cases.

Theorem 11. P ⊆ Q is true for a C-n-tuple P = [p1p2 . . . pn] and a D-n-tuple
Q =]q1q2 . . . qn[if and only if pi ⊆ qi is true for at least one value of i.

Proof. A D-n-tuple is equivalent to a C-system containing n C-n-tuples all of
whose components are complete dummy components except qi. So, the necessity
of the theorem statement follows from the fact that a C-system is a union of the

Algebraic Approach to Logical Inference Implementation 1305

C-n-tuples. Indeed, if one of the C-n-tuples Qi belonging to the C-system obtained
after transforming the initial D-n-tuple Q equals to [∗ ∗ . . . qi . . . ∗] and pi ⊆ qi, then
P ⊆ Qi and hence P ⊆ Q. Let us prove the sufficiency. Suppose pi ⊆ qi is false
for every i. We need to prove that P ⊆ Q is impossible then. This supposition lets
us conclude that for every i, there is a ri = pi \ qi 6= Ø. Consequently, ri ⊆ pi and
ri ⊆ qi for every i. Then, a non-empty C-n-tuple R = [r1r2 . . . rn] exists for which
R ⊆ P and R ⊆ Q that proves impossibility of P ⊆ Q is. 2

Theorem 12. P ⊆ Q is true for a C-n-tuple P and a D-system Q if and only if
P ⊆ Qj is true for every D-n-tuple Qj belonging to Q.

Proof. A D-system is an intersection of sets comprising all elementary n-tuples from
D-n-tuples contained in the D-system, then, if P is included in every D-n-tuple, it
is included in their intersection i.e. in the D-system. 2

We have already mentioned that NTA allows performing operations of algebra
of sets on homotypic (having the same relation diagram) NTA objects only. In order
to perform these on multiplace relations defined on different diagrams, we need to
transform them into ones of the same diagram. For this, NTA has 5 more operations
on attributes, namely:

1. renaming of attributes;

2. transposition of attributes and corresponding columns in NTA objects;

3. inversion of NTA objects (for binary relations);

4. addition of a dummy attribute (+Attr);

5. elimination of an attribute (-Attr).

Below we introduce these operations and some derivative ones used in logical infer-
ence.

3.2 Operations with Attributes, Join and Composition Operations,
Generalized Operations

Renaming of attributes is only possible for attributes of the same sort. This
operation is used when it is necessary to substitute variables, particularly, in
algorithms for calculating transitive closure of a graph.

Transposition of attributes is an operation that swaps columns in an NTA ob-
ject’s matrix and respectively changes the order of attributes in the relation
diagram.

This operation does not change the content of the relation. The operation is
used for transforming NTA objects whose attributes are the same, but come in
different order to a form that allows performing algebra of sets’ operations on
them.

1306 B. Kulik, A. Fridman, A. Zuenko

For example, a C-system P [XY Z] =

[
{a, b, d} {f, h} {b}
{b, c} ∗ {a, c}

]
transforms

into a C-system P [Y XZ] =

[
{f, h} {a, b, d} {b}
∗ {b, c} {a, c}

]
due to transposition of

attributes.

Inversion of NTA objects. In case of binary relations, swapping columns with-
out swapping attributes allows to get the relation inverse to the initial one. For

example, swapping columns of relation G[XY] =

[
{a} {a, b}
{b, c} {a, c}

]
turns it into

the inverse relation G−1[XY] =

[
{a, b} {a}
{a, c} {b, c}

]
. In this case, inversion of an

NTA object turns all the elementary n-tuples (s, t) of the initial relation into
the inverse ones (t, s). If an elementary n-tuple contains identical elements (e.g.
(b, b)), it does not change during the inversion.

Addition of a dummy attribute (+Attr) is done when the added attribute is
missing in the relation diagram of an NTA object (NTA objects with duplicate
attributes are also possible, but are not considered here). This operation simul-
taneously adds the name of a new attribute into the relation diagram and adds
a new column with dummy components into the corresponding place; dummy
components “*” are added into C-n-tuples and C-systems, and dummy compo-
nents “Ø” are added into D-n-tuples and D-systems.

Elimination of an attribute (-Attr) is done in the following way: a column is
removed from an NTA object, and the corresponding attribute is removed from
the relation diagram.

Semantics of the +Attr and -Attr operations will be explained below in Sec-
tion 4. These operations are used, in particular, for calculating join or composition
of two different-type relations defined by NTA objects. In general case, join and
composition operations of relations can be performed for any pairs of NTA objects.
Let two structures R1[V] and R2[W] be given, where V and W are sets of at-
tributes and V 6= W . These sets can be separated into nonintersecting subsets
with the following transformations:

X = W \V ; Y = W ∩V ; Z = V \W .

Then we get V = Y ∪Z and W = X ∪Y . Taking this into account, the given
relations can be expressed as follows: R1[YZ] and R2[XY].

Join operation R1[YZ] ⊕ R2[XY] for relations is usually done by pairwise
comparison of all elementary n-tuples from different relations. If comparing these
n-tuples shows that they coincide in the projection [Y], an n-tuple with relation
diagram [XYZ] is formed from the two n-tuples, the new n-tuple becoming one of
the elements of the relational join. For example, there are two elementary n-tuples

Algebraic Approach to Logical Inference Implementation 1307

T1 ∈ R1 and T2 ∈ R2, where

T1[YZ] = (c, d, e, f, g); T2[XY] = (a, b, c, d, e),

and
T2[X] = (a, b); T1[Z] = (f, g); T1[Y] = T2[Y] = (c, d, e).

Then the result of join of these n-tuples is the elementary n-tuple T3[XYZ] =
(a, b, c, d, e, f, g).

In NTA relational join operation is substantially simplified and can be calculated
without pairwise comparison of all elementary n-tuples using the following formula:

R1[YZ]⊕R2[XY] = +X (R1) ∩+Z (R2). (1)

Operation of composition R1[YZ] ◦ R2[XY] of relations is performed after
calculating their join. For this, we need to eliminate the projection [Y] from all
elementary n-tuples belonging to the join. For example, an elementary n-tuple
T4[XZ] = (a, b, f, g) is the composition of the two n-tuples T1 and T2 considered
above.

In NTA, the composition of relations is calculated according to the formula:

R1[YZ] ◦R2[XY] = −Y (+X (R1) ∩+Z (R2)) = −Y (R1 ⊕R2), (2)

if (R1 ⊕R2) is a C-n-tuple or a C-system.
Here is an example. Let the following NTA objects be given in space S :

R1[Y Z] =

[
{f} {a, b}
{g, h} {a, c}

]
; R2[XY] =

[
{a} {g, h}
{b, c} {f}

]

Let us calculate join of these relations by formula (1):

R1⊕R2 =

[
∗ {f} {a, b}
∗ {g, h} {a, c}

]
∩
[
{a} {g, h} ∗
{b, c} {f} ∗

]
=

[
{b, c} {f} {a, b}
{a} {g, h} {a, c}

]

Then we calculate their composition in the relation diagram [XZ] by formula (2):

R1 ◦R2 =

[
{b, c} {a, b}
{a} {a, c}

]

Let us call relations and operations of algebra of sets with preliminary addition
of missing attributes to NTA objects generalized operations and relations and denote
them as follows: ∩G, ∪G, \G, ⊆G, =G, etc. The first two operations completely corre-
spond to logical operations ∧ and ∨. NTA relation ⊆G corresponds to deducibility re-
lation in predicate calculus. Relation =G means that two structures are equal if they
have been transformed to the same relation diagram by adding certain attributes.
This technique offers a fundamentally new approach to constructing logical inference
and deducibility checks introduced below; but first let us describe some examples of
expressing conventional mathematical structures by means of NTA objects.

1308 B. Kulik, A. Fridman, A. Zuenko

4 DATA AND KNOWLEDGE REPRESENTATION IN NTA

4.1 Graphs and Semantic Networks

In computers, graphs and networks are usually represented as list structures. In
artificial intelligence systems, logical inference in graphs and semantic networks is
implemented through algorithms of search for accessible vertices or through con-
struction of the transitive closure of a graph. However, such algorithms are not
efficient enough and hard to parallelize. Let us now consider the way graphs are
expressed in NTA. We will use the graph presented in Figure 1 as an example.

	

	

	

	

	

	

c	

e	 d	

b	 a	

Fig. 1. Example of a graph

This graph can be expressed as a C-system G[XY] =

 {a} {b, c, d, e}
{b} {d}
{c} {a, b, d, e}

 iso-

morphic to the adjacency matrix of this graph.
Composition of graphs G◦G, e.g. composition of a graph with itself, is used quite

often. This operation is shortly denoted as G2. Greater “degrees” of composition
can also be used, e.g. G3 = G ◦G ◦G and so on.

It is often necessary to determine the set of all the accessible vertices for each
vertex of a graph G. This information is contained in the transitive closure of the
graph, which is defined as follows.

Transitive closure of a graph G that contains n vertices, is the graph G+ each
of whose vertices is connected with all its accessible vertices with an arc.

Transitive closure can be constructed with the following sequence of operations:

G+ = G ∪G2 ∪G3 ∪ . . . ∪Gk,

where k ≤ n. Practically in all cases, the operation of transformation of a finite
graph G into graph G+ ends before the last “degree” Gk is found. The reason for
ending this operation early is the fact that at some step the next “degree” of the
graph does not have any arcs that have not been in the graph before.

Let us consider the way inference in semantic networks is implemented in
NTA [15]. Any semantic network can be represented as a totality of binary re-
lations. In semantic networks, inference rules are expressed as productions whose
left part contains joins or compositions of some of these relations, and the right part
is a relation that is substituted for the left part in the semantic network or is added
to the semantic network as a new relation. Suppose that in an initial semantic
network, existing relations R1 and R2 (see Figure 2) infers an additional link R3

Algebraic Approach to Logical Inference Implementation 1309

between the domain of the relation R1 (vertex K) and the co-domain (target) of the
relation R2 (vertex N). The respective rule is shown in Figure 3 where A, B, C are
variables whose values can be the vertices of the described semantic networks.

R3 R1 L

К

R2

N T R2

S

	

Fig. 2. Initial semantic network

R1 B

A

R2

C
R3

R1 B

A

R2

C
	

Fig. 3. Example of a transformation rule for a network

In NTA language, this network can be recorded as a totality of C-systems,
namely R1[XY] = [{K}{L}], R2[YW] = [{L, T}{N}], R3[XW] = [{S}{N}].

To express a production rule by means of NTA in general case, we need to
perform the following sequence of steps:

1. calculate the join of relations contained in the left part of the rule;

2. filter the resulting relation P using some the given restrictions, for instance,
a totality of facts;

3. if the rule requires substituting its left part for the right one, delete all links
contained in P from the initial knowledge base;

4. calculate the join T of relations contained in the right part of the rule;

5. filter T if necessary;

6. add all links contained in T into the knowledge base.

Classifying the rules in advance simplifies the calculations significantly. As the
rule shown in Figure 3 only requires adding a new link without deleting any other
links, we only need to calculate R1[XY] ◦ R2[YW] = [{K}{L}] ◦ [{L, T}{N}] =
[{K}{N}] and then add the derived n-tuple into the C-system matched to the
relation R3 : R3[XW] = R3[XW]∪ (R1[XY] ◦R2[YW]) = [{S}{N}]∪ [{K}{N}] =
[{S,K}{N}]. After all the necessary transformations, the semantic network will look
as follows: R1[XY] = [{K}{L}], R2[YW] = [{L, T}{N}], R3[XW] = [{S,K}{N}].

1310 B. Kulik, A. Fridman, A. Zuenko

4.2 Correspondence between N-tuple Algebra and Predicate Calculus

In trivial case (when individual attributes do not correspond to multiplace rela-
tions), an n-tuple corresponds to conjunction of one-place predicates with different
variables. For example, a C-n-tuple P [XY Z] = [P1P2P3] where P1 ⊆ X; P2 ⊆ Y ;
P3 ⊆ Z corresponds to a logical formula H = P1(x) ∧ P2(y) ∧ P3(z).

A D-n-tuple P =
]
P1 P2 P3

[
corresponds to the negation of the formula H

(disjunction of one-place predicates) ¬H = ¬P1(x) ∨ ¬P2(y) ∨ ¬P3(z).
An elementary n-tuple that is a part of a non-empty NTA object corresponds

to a satisfying substitution in a logical formula.
An empty NTA object corresponds to an identically false formula.
An NTA object that equals any particular universe corresponds to a valid for-

mula, or a tautology.
A non-empty NTA object corresponds to a satisfiable formula.
In NTA, attribute domains can be any arbitrary sets that are not necessarily

equal to each other. This means that NTA structures correspond to formulas of
many-sorted predicate calculus.

Now let us consider quantifiers in NTA.
If a dummy attribute is added to a C-n-tuple or a C-system, the procedure

corresponds to the derivation rule of predicate calculus called generalization rule. For

example, if an NTA object G[XZ] =

[
{a, c} ∗
{a, c, d} {b, c}

]
corresponds to a formula

F (x, z) of predicate calculus, by adding a dummy attribute Y into this NTA object

we get an NTA object G1[XY Z] = +Y (G[XZ]) =

[
{a, c} ∗ ∗
{a, c, d} ∗ {b, c}

]
which

corresponds to the formula ∀yF (x, z) derived from the formula F (x, z) according
to generalization rule. This relation is obvious for C-n-tuples and C-systems, but
needs to be proved for D-n-tuples and D-systems.

Theorem 13. Adding a new dummy attribute to a D-n-tuple or a D-system cor-
responds to the formula ∀y(P).

Proof. Let a D-n-tuple P [X1X2 . . . Xn] =]P1P2 . . . Pn[be given. If we add a dummy
attribute Y to it, we get Q[Y X1X2 . . . Xn] =]ØP1P2 . . . Pn[. Transforming this NTA
objects into C-systems, we have

P =

P1 ∗ . . . ∗
∗ P2 . . . ∗
.
∗ ∗ . . . Pn

 ; Q =

∗ P1 ∗ . . . ∗
∗ ∗ P2 . . . ∗
.
∗ ∗ ∗ . . . Pn

Hence, Q = +Y (P) = ∀y(P). 2

Suppose that a D-system R[X1X2 . . . Xn] is given. Let R1 = +Y (R) = R1[Y X1

X2 . . . Xn]. In the D-system R1, “Ø” are components of the attribute Y in all D-n-
tuples. After transforming this D-system into a C-system according to Theorem 9,

Algebraic Approach to Logical Inference Implementation 1311

the results in projection [X1X2 . . . Xn] are the same as in transformation of the D-
system R into a C-system, and dummy components “*” are now components of the
attribute Y in the C-system R1. Therefore, R1 = +Y (R) = ∀y(R).

The two theorems that follow define the semantics of the operation -Attr.

Theorem 14. Let R[. . . X . . .] be a C-system that has no C-n-tuples with empty
components in the X attribute. Then for the predicate P (. . . , x, . . .) that corre-
sponds to this C-system, the formula −X(R) corresponds to the formula ∃x(P).

Proof. Let R be a C-n-tuple. Then under the conditions of the theorem corre-
spondence −X(R) ⇔ ∃x(P) is evident. Let R be a C-system that contains C-
n-tuples R1, R2, . . . , Rn. This means that R = R1 ∪ R2 ∪ . . . ∪ Rn. Formula
P = P1 ∨ P2 ∨ . . . ∨ Pn, where Pi are formulae that correspond to C-n-tuples Ri

corresponds to this formula in predicate calculus. Applying −X operation to R, we
get −X(R) = −X(R1) ∪ −X(R2) ∪ . . .−X(Rn).

A formula of predicate calculus ∃x(P1)∨∃x(P2)∨ . . .∨∃x(Pn) corresponds to the
right part of the above equality. According to the rules of equivalent transformations
in mathematical logic, the formula equals to a formula ∃x(P1∨P2∨ . . .∨Pn), which
is ∃x(P) after substitution. 2

Theorem 15. Let R[. . . X . . .] be a D-system that has no D-n-tuples with compo-
nents “*” in the X attribute. Then for a predicate P (. . . , x, . . .) corresponding to
this D-system, formula −X(R) corresponds to the formula ∀x(P).

Proof. The formula ∀x(P) is known to be equal to ¬(∃x(¬P)). A C-system R that
equals to the complement of the D-system R corresponds to the expression ¬P .
Q = −X(R) corresponds to the formula ∃x(¬P) since satisfies the conditions of
Theorem 14. Then ¬(∃x(¬P)) is an NTA object that equals a D-system all of whose
components equal the complements of corresponding components of Q. Therefore,
Q = −X(R) as the attribute X has been eliminated from the C-system R. 2

Hence, if an attribute (e.g. X) is eliminated from a C-system, it means that
the quantifier ∃x is applied to this object, and if this attribute is eliminated from
a D-system, it means that the quantifier ∀x is applied to this object. For example,
let a C-system and its complement expressed as a D-system be given:

Q[XY Z] =

[
{a, b, d} {f, h} {b}
{b, c} ∗ {a, c}

]

and

Q[XY Z] =

]
{c} {g} {a, c}
{a, d} Ø {b}

[
.

Then

∃x(Q[XY Z]) =

[
{f, h} {b}
∗ {a, c}

]

1312 B. Kulik, A. Fridman, A. Zuenko

and

∀x(Q[XY Z]) =

]
{g} {a, c}
Ø {b}

[
.

The next section is concerned with logical inference techniques in NTA. These
techniques are applicable to the knowledge and data structures introduced earlier,
as well as to certain different ones (e.g. relational tables in deductive DBs).

4.3 Systems with Measurable Attributes

Many attributes, e.g. duration, length, etc., can be given as systems of open, closed
and semi-open intervals. Modern measure theory is based on this type of data being
described by semi-ring algebra [8], while in NTA algebra of components corresponds
to the laws of algebra of sets. As we found, this incompliance can be eliminated
with the following method that we called interval quantization method (IQM).

Let a closed interval Ω on a numeric axis be the definitional domain of a certain
attribute, and a finite set E = {Ei} of closed intervals be given for which Ei ⊆ Ω. On
the numeric axis, the margins of the intervals are represented by sets of coordinates
of their initial and end points. By arranging these coordinates in ascending order,
we can split the system of intervals into quanta, i.e. into points and open intervals.
It is clear that in this case the interval Ω is split into a certain composite set that
contains m open intervals and m+ 1 isolated points, two of which are endpoints of
the interval Ω. Methodological difficulties caused by the fact that the set consists
of heterogeneous objects (points and intervals) can be solved if we define a point as
a degenerate interval of zero measure.

An example of quantization process for four intervals E1, E2, E3, E4 is shown in
Figure 4. Intervals Ei are moved above the numeric axis for visualization purposes.

E1 ⇒
E2 ⇒
E3 ⇒
E4 ⇒
Ω ⇒
 P a b c d e f g h Q

	 Fig. 4. Quantization of an interval system

Here, the interval Ω whose endpoints are P and Q, contains inner points a, b,
. . . , h. Accordingly, each interval Ei can be represented as a set of quanta; for
example, the closed interval E3 is a set that contains points and open intervals:
E3 = {c, d, e, f, (c, d), (d, e), (e, f)}. If we are concerned only with the metric prop-
erties of the objects that we are describing, we can represent the interval E3 as
a set {(c, d), (d, e), (e, f)} of open non-intersecting intervals. By similar quantiza-
tion for each measurable attribute, we can represent the metric space as an NTA

Algebraic Approach to Logical Inference Implementation 1313

object whose components are ordinary sets, the introduced notations for points and
intervals being their elements. Methods of immersion NTA structures into a metric
space are now used for logic-probabilistic analysis of systems [14].

When an interval system (Ω, E) for a certain attribute is transformed into an ele-
mentary interval system (Ω, F), where E = {Ei} is a set of the initial intervals, and
F = {Fr} is a set of quanta, the following relation is true for any Ei:

Ei =
⋃
k

Fk,

where Fk are certain quanta of F . In this case, the measure µ for the initial inter-
val Ei is calculated by the formula below:

µ(Ei) =
∑
k

µ(Fk).

We have proved that in NTA, if each component of a C-n-tuple has a finite measure,
the measure of this C-n-tuple is the product of its components’ measures. For
example, for a C-n-tuple C1 = [{(a, c), (e, g)} {(i, k), (n, p)}],

µ(C1) = (µ((a, c)) + µ((e, g)))× (µ((i, k)) + µ((n, p))).

When calculating the measure of a C-system it is important to remember that the
intersection of its C-n-tuples can be nonempty, and to make applicable corrections
using the relation µ(A ∪ B) = µ(A) + µ(B)− µ(A ∩ B) for arbitrary C-n-tuples A
and B.

Now let us consider an example of IQM implementation. Let the following
logical formula whose satisfiability needs to be checked, be given:

(x > 3) ∧ (x < 4) ∧ (y > 2) ∧ (y < 7) ∧ (z > 5) ∧ (z < 6) ∧ (x > y) ∧ (y > z). (3)

Considering the applicable generalized operations (see Section 3.2) the NTA expres-
sion below corresponds to the analyzed formula:

P [XY Z] ∩G MORE [Y Z] ∩G MORE [XY],

where the C-n-tuple P [XY Z] = [{(3, 4)}, {(2, 7)}, {(5, 6)}] corresponds to the ex-
pression (x > 3) ∧ (x < 4) ∧ (y > 2) ∧ (y < 7) ∧ (z > 5) ∧ (z < 6). Re-
lations MORE [Y Z] and MORE [XY] correspond to the predicates (x > y) and
(y > z), their generalized intersection corresponding to the relational join operation.
Thus, the satisfiability problem comes down to finding the measure of a C-system
P [XY Z] ∩G (MORE [Y Z]⊕MORE [XY]). If this measure is not equal to zero, the
formula (3) is satisfiable, a domain of nonzero volume corresponding to this formula
in property space X × Y × Z. If the opposite is true, the formula is not satisfiable.

Since only the metric aspects are of interest to us, let us express the components
of the C-n-tuple P [XY Z] trough quanta (2, 3), (3, 4), (4, 5), (5, 6), (6, 7):

P [XY Z] = [{(3, 4)}, {(2, 3)}, {(3, 4)}, {(4, 5)}, {(5, 6)}, {(6, 7)}, {(5, 6)}] .

1314 B. Kulik, A. Fridman, A. Zuenko

Having substituted the values of attributes from the P [XY Z] into predicates
(x > y) and (y > z), we get sets of points that comprise C-systems MORE [XY]
and MORE [Y Z] (these points are shown in dark grey in Figure 5):

 x > y y > z

X Z

2
=
2

4
3

4 2
=

Y 7

7

5 2
=

Y 7

7
	 7	

6
5

	 7	

2

3
	 7	

6
	

Fig. 5. Cartesian products of intervals

Obviously, these two areas have no common elements (quanta) in the attribu-
te Y . Therefore, MORE [Y Z]⊕MORE [XY] = Ø, and µ(MORE [Y Z]⊕MORE [XY])
= 0.

Thus, the IQM allows to determine unsatisfiability of logical formulae which
contain measurable attributes as well as implement logical inference based on struc-
ture analysis of logical formulae, including formulas that contain elementary unitary
and binary predicates with no quantifiers [21].

4.4 Relational Database Management Systems

Relations using the primary key concept are a particular case of NTA objects, since
any NTA object can be split into a set of elementary n-tuples. However, elementary
n-tuples do not use specific properties of NTA structures, thus it is rational to use
NTA only for relations whose n-tuple components are sets, not elements. Such rela-
tions can be used for representing graphs and networks, as well as some projections
of regular DB tables. If required, associative search can be an efficient alternative
to primary key search method in such structures.

Let us consider the way DBMS queries are expressed in NTA. Let a BD use
a relation expressed as an NTA object P [XY Z]. In the relation P , we need to
find all possible values for attributes X and Y , attribute Z being within the given
range D. In SQL, this query looks as follows:

SELECT X, Y FROM P WHERE Z ⊆ D.

In NTA, this query is expressed through an NTA object called a selector, in this
case, a C-n-tuple Q1[Z] = [D]. We can get the answer to the query by calculating
P [XY Z] ∩G Q1[Z].

Algebraic Approach to Logical Inference Implementation 1315

Let us consider an example in which a relation join is required. Suppose that, be-
side the relation P [XY Z], our DB contains a relation R[Y VW], and we need to find
the values X and V , if Z = a. In SQL, this is written as SELECT X, V FROM P,R
WHERE Z = a AND P.Y = R.Y .

Obviously, in NTA the relation diagram of the query corresponds to the relation
diagram of the NTA object derived by joining P and R. Then the query can be
written as a C-n-tuple Q2[Z] = [{a}], and the answer to the query are attributes X
and V , as calculated by this formula:

(P [XY Z]⊕R[Y VW]) ∩G Q2[Z].

NTA allows implementing queries that are impossible in DBMS, such as queries
addressed to relation complements. This can be implemented not only through
C-n-tuples and C-systems, but also through more complex NTA objects.

In NTA structures, recursive queries can be implemented through calculating
transitive closures of the corresponding relations, followed by selecting and elimi-
nating attributes. This subject is discussed in detail in the section below.

4.5 Deductive Databases

Deductive DBMS widely use functional systems theory and proof-theoretic ap-
proach. In such DBMS, query execution involves proving a certain theorem through
special deductive axioms and inference rules. Here, the basic axioms correspond-
ing to domain elements and n-tuples of basic relations constitute the extensional
database (EDB) of the DBMS, and the auxiliary axioms and consistency constraints
comprise its intensional database (IDB). A language of any calculus used in formu-
lating query and in logical inference for answering it, is commonly called a Datalog,
and a description in this language is called a Datalog program. The term “Datalog
rules” refers to the part of the Datalog program that contains no facts. One of the
features of deductive DBMS is recursive query support. Let us consider an example
of a Datalog program in which the facts are arranged in the Points table (see Tab-
le 1), and the rules allow finding all pairs of values of A (departure point) and B
(destination point), where A and B are, respectively, the beginning and the end of
a valid route from A to B.

Departure point Destination point

Washington Los Angeles

Los Angeles New York

New York Washington

New York Chicago

Table 1. Points

1316 B. Kulik, A. Fridman, A. Zuenko

Datalog rules:

points(departure point ; destination point)

⊃ route(departure point , destination point),

route(departure point , intermediate point)

∧ route(intermediate point , destination point)

∧ departure point 6= destination point ⊃ route(departure point , destination point).

In NTA language, the predicate (relation) Points can be represented as follows:

T =

 {Washington} {LosAngeles}
{LosAngeles} {NewYork}
{NewYork} {Washington,Chicago}

 .
The given Datalog program is implemented in NTA through a transitive closure

T+ = T ∪ T 2 ∪ T 3 ∪ . . . ∪ T k, where k ≤ n. This can be obtained in several steps.

Step 1.

T 2 = T ◦ T =

 {Washington} {NewYork}
{LosAngeles} {Washington,Chicago}
{NewYork} {LosAngeles}

 ,

T ∪ T 2 =

 {Washington} {LosAngeles,NewYork}
{LosAngeles} {NewYork,Washington,Chicago}
{NewYork} {Washington,Chicago,LosAngeles}

 .
Evidently, at the first step, the C-system derived from union of T and T 2 contains
new elementary n-tuples, as compared to the C-system T . Now let us go on to
the second step.

Step 2.

T 3 =

 {Washington} {Washington,Chicago}
{LosAngeles} {LosAngeles}
{NewYork} {NewYork}

 ,
Since the departure point is not equal to the destination point, the final line is
T 3 =

[
{Washington} {Chicago}

]
.

T ∪ T 2 ∪ T 3 =

 {Washington} {LosAngeles,NewYork,Chicago}
{LosAngeles} {NewYork,Washington,Chicago}
{NewYork} {Chicago,Washington,LosAngeles}

 ,
Executing the rest of the steps yields no changes in the final table; therefore, we

have obtained the transitive closure T+ of the relation T . The relation T+ can be
matched to the Route predicate in the Datalog rules.

Algebraic Approach to Logical Inference Implementation 1317

5 LOGICAL INFERENCE IN NTA

5.1 Computational Complexity of Algebraic Operations
in Logical Inference

The most popular systems of logical inference in mathematical logic are as follows:

1. Hilbert-style calculi proposed in [7];

2. natural deduction calculus developed by logician G.Gentzen [6];

3. logical inference based on Resolution Principle that became widely known after
the article [2] was published.

Logical inference systems often use two theorems introduced and proved in [1] (they
have numbers 2.1 and 2.2 there). They are reproduced below since they allow to
derive logical corollaries by algebraic methods as well as by inference rules.

Theorem 16. Let formulas F1, . . . , Fn and G be given. Then G is a logical corollary
to F1, . . . , Fn if and only if the formula ((F1 ∧ . . . ∧ Fn) ⊃ G) is a valid one.

Theorem 17. Let formulas F1, . . . , Fn and G be given. Then G is a logical corollary
to F1, . . . , Fn if and only if the formula (F1 ∧ . . . ∧ Fn ∧ ¬G) is inconsistent.

Logical inference in NTA is based on the Theorems 16 and 17 which can be
expressed in NTA terms as follows, since NTA is isomorphic to algebra of sets.

Method 1. Let NTA objects F1, . . . , Fn and G be given. Then G is a logical corol-
lary to F1, . . . , Fn if and only if (F1 ∩G . . .∩G Fn) 6= Ø and (F1 ∩G . . .∩G Fn) ⊆G G.

Method 2. Let NTA objects F1, . . . , Fn and G be given. Then G is a logical corol-
lary to F1, . . . , Fn if and only if (F1∩G . . .∩GFn) 6= Ø and F1∩G . . .∩GFn∩GG = Ø.

NTA structures can be polynomially reduced to logical ones; hence computa-
tional complexity of algorithms on NTA structures fully corresponds to computa-
tional complexity of algorithms solving problems on logical structures. A significant
number of such problems arising during logical analysis by means of deduction proce-
dures, for instance, the satisfiability problem for a conjunctive normal form (CNF),
are NP-complete problems with regard to their computational complexity (i.e. they
require algorithms of exponential complexity). However, there are many special
cases that are solvable in polynomial time only. As far as the problem of CNF sa-
tisfiability is concerned, they are CNFs with at most two literals in every clause or
CNFs with Horn clauses only. Identifying cases where we can recognize satisfiability
in polynomial time is of great importance for applied research since it reduces the
time required for implementation of algorithms.

The special cases mentioned above can be expressed in NTA structures as well;
however, NTA has its own means for reducing laboriousness and sometimes com-
putational complexity of algorithms. These will be briefly introduced in the next
section.

1318 B. Kulik, A. Fridman, A. Zuenko

In NTA, deducibility checks are not based on inference rules; rather, they check
enclosure of certain NTA objects into each other or emptiness of intersection of
certain relations including NTA objects related to alternative classes. Consequently,
in order to implement logical inference in NTA, we need to solve two key problems,
namely enclosure check for two NTA objects and transformation of an NTA object
into one of alternative classes. In general case, complexity of these problems is
greater than polynomial, coinciding with complexity of similar problems expressed
in terms of mathematical logic.

Enclosure check for two NTA objects (A ⊆G B) corresponds to validity check
for implication A ⊃ B in logic. Transformation of an NTA object into object of
an alternative class is equivalent to transformation a CNF into a DNF or vice versa.

Table 2 contains different combinations of NTA objects; those marked with
a symbol “+” are the ones for which the algorithms for applicable operations are
polynomial, given that all attribute domains are sets rather than multiplace rela-
tions.

Operation C-n-tuple C-system D-n-tuple D-system

Member check for an elementary
n-tuple

+ + + +

Check of enclosure
of a C-n-tuple into

+ + +

Check of enclosure
of a C-system into

+ + +

Check of enclosure
of a D-n-tuple into

+ + +

Check of enclosure
of a D-system into

Table 2. Complexity of NTA operations

Table 2 shows that computational complexity of operations depends on the
structure class of the NTA objects used in the operations. For instance, enclosure
check of a C-n-tuple into a C-system has exponential computational complexity
while enclosure check of a C-n-tuple or even a C-system into a D-system is polyno-
mial.

Transformation of an NTA object into one of an alternative class when the initial
object is a D-system or a C-system is computationally harder than an NP-complete
problem; it belongs to the class of #P-complete problems, i.e. enumeration ones.

Maximum complexity estimate for transformation of an NTA object into one of
an alternative class is easy to calculate. Suppose we have a D-system of dimension
M × N , where M is the number of rows and N is the number of columns of this
structure. Then every D-n-tuple can be transformed into a C-system with no more
than N rows, and solving this problem will take M − 1 sequential calculations
of intersections. If we consider the complexity of intersection for two C-n-tuples
a constant B, then the maximum computational complexity of this operation is

Algebraic Approach to Logical Inference Implementation 1319

B · NM−1 given that every intersection is nonempty. This estimate is evidently
greater than the one for a problem of CNF satisfiability.

Transformation of D-systems into C-systems is of most interest for implemen-
tation of logical inference, since in NTA a D-system is isomorphic to a CNF and
a C-system can be considered a set of satisfying substitutions for this CNF. Hence
for this transformation we need to solve a problem of CNF satisfiability, one of the
most popular problems in applications of logical inference theory and computational
complexity theory. This solution is clearly redundant as it gives all elementary n-
tuples or C-tuples contained in the D-system, while it would be enough to find only
one of them to declare the D-system is not empty; but the solution is acceptable
when some analysis of satisfying substitutions is needed beside determining of the
CNF satisfiability.

In practice, a CNF satisfiability (D-system emptiness) check is the initial stage
of any algorithm for transformation of a D-system into a C-system since the trans-
formation makes sense only if the initial D-system is not empty. This stage can be
the only one if no analysis of satisfying substitutions is required. A CNF satisfiabi-
lity check is also performed during enclosure checks for NTA objects; moreover, it
is the main source of complexity in this case.

The material stated above lets us conclude that in NTA, as well as in many
other logical systems, a laboriousness decrease for the problem of CNF satisfiability
allows to shorten not only certain steps of logical inference algorithms, but also the
whole inference procedure, if it can be reduced to the said problem.

In NTA, a decrease in laboriousness and sometimes in computational complexity
as well, is mostly realized by using matrix properties of NTA objects; we are now
going to describe these properties below.

5.2 Matrix Properties of NTA Objects (Case Study: CNF Satisfiability)

In artificial intelligence systems, CNF satisfiability is an important problem for the
following reasons:

1. In complexity theory, CNF satisfiability is the basic NP-complete problem. It
has been proven that, using rational coding, any NP-class problem can be rep-
resented as a CNF, and that converting any NP-class problem to CNF takes
polynomial time.

2. Based on Theorem 17, the resolution principle was stated for both propositional
and predicate calculus; this principle is now widely used in machine implemen-
tations of artificial intelligence systems. According to this principle, the formula
F1 ∧ . . .∧ Fn ∧¬G is converted to CNF, and logical inference is narrowed down
to solving a CNF satisfiability problem.

Thus, it is important to find new CNF classes with a polynomially recognizable
satisfiability property.

1320 B. Kulik, A. Fridman, A. Zuenko

NTA structures (n-tuples and systems of n-tuples) look like matrices. Although
operations on NTA objects are substantially different from matrix-algebra opera-
tions, the former have many properties of matrix structures, which can be used to
reduce laboriousness in many NTA operations, e.g. in solving the problem of CNF
satisfiability/emptiness of a D-system.

Let an arbitrary D-n-tuple =]s1s2 . . . sn[be given. If the set of its compo-
nents can be divided into R nonempty nonintersecting subsets that make up D-n-
tuples Dj, then

D =
R⋃

j=1

Dj.

For example, if aD-n-tuple]s1s2s3s4s5s6s7[is split into threeD-n-tuples]s2s4s6[,
]s1s3s5[and]s7[, reducing these to the same relation diagram transforms them into
D-n-tuples]Øs2Øs4Øs6Ø[,]s1Øs3Øs5ØØ[and]ØØØØØØs7[. Union of these rela-
tions equals the initial D-n-tuple.

Similarly, under the same splitting conditions, for C-n-tuples C, Ci it is true
that

C =
R⋂

j=1

Cj.

Let T be a D-system represented as a matrix of components whose dimensions
are M ×N (M rows and N columns). Let us divide this D-system into R vertical
blocks R (j = 1, 2, . . . , R) by vertical lines. Let Di (i = 1, 2, . . . ,M) be a D-n-tuple
that is represented by the ith row of the matrix T , then T =

⋂M
i=1Di. Let Dij

denote the D-n-tuple represented by a subrow of the ith row from the jth block in
the matrix T . Then, Di =

⋃R
j=1Dij, and T =

⋂M
i=1

(⋃R
j=1Dij

)
. By removing the

brackets in the last equation, we get the relation stated in the following theorem.

Theorem 18. If a D-system matrix T with dimensions M × N is divided into R
vertical blocks (R < N), the following is true:

T =
S⋃

j=1

(
M⋂
i=1

Dij

)
,

where S = RM .

One of the corollaries to the Theorem 18 is that a D-system is nonempty if at
least one D-system

⋂M
i=1Dij is nonempty, whatever the division into vertical blocks

is. For example, D-system

]
t11 t12 t13 t14
t21 t22 t23 t24

[
is divided into two vertical blocks.

In accordance with the theorem, it can be represented as a union of four D-systems(]
t11 Ø Ø Ø

[
∪
]

Ø t12 t13 t14
[)

∩
(]

t21 Ø Ø Ø
[
∪
]

Ø t22 t23 t24
[)

Algebraic Approach to Logical Inference Implementation 1321

=

]
t11 Ø Ø Ø
t21 Ø Ø Ø

[
∪
]
t11 Ø Ø Ø
Ø t22 t23 t24

[

∪
]

Ø t12 t13 t14
t21 Ø Ø Ø

[
∪
]

Ø t12 t13 t14
Ø t22 t23 t24

[
.

If at least one of the final D-systems is nonempty, then the initial D-system is
nonempty as well.

While being inapplicable to solving practical problems, this theorem provides
the grounds for some corollaries of practical importance. Let us introduce some new
terms that we use for considering these corollaries below.

A conflicting pair of a D-system is a nonintersecting pair of nonempty compo-
nents in the same attribute.

A conflict attribute of a D-system is an attribute in which the intersection of
all nonempty components is empty; if this intersection is nonempty, this attribute
is a non-conflict attribute.

A non-conflict block (BlNC) of a D-system is its vertical block that contains
only non-conflict attributes. Respectively, a vertical block that contains conflict
attributes is a conflict block (BlC). From the definitions, it is clear that a non-
conflict block can contain empty components, while the intersection of all nonempty
components in each attribute of this block is nonempty.

A monotonous attribute of a D-system is a non-conflict attribute that contains
no empty components.

A monotonous block (BlM) of a D-system is a non-conflict block that contains
no D-n-tuples all of whose components are empty.

For a D-system Q[X] containing a monotonous block BlM(Q), let us construct
a C-n-tuple Cint[X], each of whose components that corresponds to an attribute from
the relation diagram of the monotonous block equals the intersection of all nonempty
components of the block belonging to this attribute, the rest of the components of
this C-n-tuple being dummy ones, i.e. equal to “*”.

Theorem 19. If a D-system Q contains a monotonous block, it is nonempty, and
Cint ⊆ Q.

Proof. It is clear that under the hypothesis of the theorem Cint 6= Ø, and that
for each D-n-tuple Qi in the system Q Cint ⊆ Qi is true, since each monotonous
block always has a nonempty component which includes the corresponding Cint

component. This implies that Cint ⊆ Q. 2

Let us consider the following D-system as an example:

T =

 {A,B} {f, g} {a, c, d}
Ø {e} {b, c}
{A} {g, h} Ø

It is easy to see that the first and the third attribute in the T are non-conflict

and that they make up a monotonous block. Respectively, Cint = [{A} ∗ {c}].

1322 B. Kulik, A. Fridman, A. Zuenko

According to Theorem 19, T is nonempty and Cint ⊆ T , which is also verified
through Theorems 11 and 12.

Let us now consider D-systems with non-conflict blocks that contain D-n-tuples
all of whose components are empty. Let a D-system Q contain a non-conflict block
T1 = BlNC(Q). Then after the applicable swaps of rows and columns, the D-

system Q can be represented as a block matrix T =

∥∥∥∥∥ T11 T12
T21 T22

∥∥∥∥∥, where T11 is

a submatrix of the matrix Q whose D-n-tuples have no empty components and T12
is a submatrix of the matrix Q whose D-n-tuples contain only empty components.

Theorem 20. If a D-system Q has a non-conflict block, then Q is nonempty, if
and only if after dividing Q into a block matrix T the D-system represented by the
block T22 is non-empty.

Proof. Necessity. From Theorem 18, it is clear that one of the D-systems that
is the result of intersection of the blocks on the main diagonal can be represented

as a block matrix

∥∥∥∥∥ T11 Ø
Ø T22

∥∥∥∥∥. Since the D-system T11 is monotonous, there is

a nonempty C-n-tuple C11, where C11 ⊆ T11. If T22 is nonempty, in the projection
corresponding to T22 there exists such a C-n-tuple C22 that C22 ⊆ T22. Intersection
of C11 and C22 forms a non-empty C-n-tuple C0, since all non-dummy components of
the n-tuple C11 correspond to the dummy components of the C-n-tuple C22 and vice
versa. From Theorems 11 and 12, C0 ⊆ T . Sufficiency. Suppose that T22 is empty,
and Q is nonempty. Then T22 is equivalent to a D-system of the same dimension,
all of whose components are empty sets. If we substitute this D-system for T22, the
lower part of the block matrix will contain D-n-tuples all of whose components are
empty; therefore, the corresponding D-system is also empty. 2

Let us analyze the following D-system as an example:

Q =

{A,B} {e, f} {a, b} Ø

Ø {g, h} Ø {e}
{A} {e} {b} {f, g}
Ø {e, h} Ø {g, h}

 .

Its first and third columns are non-conflict. Therefore, after the applicable swap
of rows and columns, it can be converted to an equivalent block matrix

Q1 =

{A,B} {a, b} {e, f} Ø
{A} {b} {e} {f, g}
Ø Ø {g, h} {e}
Ø Ø {e, h} {g, h}

 .

To check nonemptiness of this D-system it is sufficient to check nonemptiness

of the D-system T22 =

]
{g, h} {e}
{e, h} {g, h}

[
. The first column of this D-system is

Algebraic Approach to Logical Inference Implementation 1323

monotonous, therefore, it is nonempty and contains the C-n-tuple C22 = [{h}∗].
The monotonous block T11 contains a C-n-tuple [{A}{b}]. After reducing these
C-n-tuples to the same relation diagram, their intersection equals the C-n-tuple
C0 = [{A}{b}{h}∗]. After swapping the attributes in accordance with the relation
diagram of the initial D-system Q, this C-n-tuple is transformed into the C-n-tuple
[{A}{h}{b}∗], which is the substitution for the D-system Q. With Theorems 11
and 12, we can verify that this substitution is correct.

This example shows that, in the same D-system, relations stated in Theorems 19
and 20 can be used more than once, and that in some cases solving a problem in
polynomial time is possible. Obviously, for an arbitrary D-system, the algorithm
for finding non-conflict and monotonous blocks is polynomially dependent on the
dimensions of this system. Furthermore, if a D-system has any monotonous blocks,
its nonemptiness is checked through an algorithm that is polynomially dependent
on the matrix dimensions of this D-system; and if a D-system has any non-conflict
blocks, another D-system of smaller dimensions can be used to check nonemptiness
of the initial D-system.

In algorithms for solving CNF satisfiability problems and enclosure checks for
NTA objects, such as for C-n-tuples in C-systems, matrix properties of NTA objects
are widely used. At present, satisfiability recognition algorithms are developed to
the greatest extent in propositional calculus. It has been proven [10] that, if a CNF
is represented as a D-system that contains only three equally distributed (with the
probability of 1/3) symbols: 1, 0 and Ø, this CNF is solvable, on the average, in
polynomial time, this time being less than or equal to a third degree polynomial to
the number of conjuncts.

5.3 New Features of Logical Inference In NTA

Previous sections were concerned with using NTA structures for implementing
known methods of logical inference. New implementations of logical procedures
based on the suggested algebraic approach are presented below.

Suppose that we have a system of axioms A1, . . . , An represented as NTA objects.
Let us describe methods for solving the following two problems through NTA.

1. Problem of correctness check for a consequence. If we have an alleged conse-
quence B, the proof procedure is a correctness check for the following generalized
inclusion:

(A1 ∩G . . . ∩G An) ⊆G B. (4)

This relation allows correctness checks not only for the inference rules of classical
logic, but also for rules specific to a certain knowledge system.

2. Problem of derivation of arbitrary consequences. In order to solve this problem,
we first calculate an NTA object A = A1 ∩G . . . ∩G An, after which we choose
the Bi for which A ⊆G Bi is true. The authors have developed algorithms
that allow to calculate possible corollaries for a known A using the relation (4).

1324 B. Kulik, A. Fridman, A. Zuenko

Below we will consider A as a C-system. If it is not true for a given A, it can
be transformed into a system using algorithms for transforming D-n-tuples or
D-systems into C-systems.

The following premises are commonly used for searching for possible conse-
quences:

1. consequence Bi should preferably use only a small number of variables from the
axioms A1, . . . , An;

2. the variables used are often determined based on semantic analysis of the given
reasoning system.

Let us consider formal methods (i.e. without taking semantic restrictions into
account) for solving Problem 2.

Decreasing the number of variables in Bi is possible through eliminating some
attributes from A. Obviously, after this the transformation relation A ⊆G Bi is
true. Eliminating attributes from a C-system yields a projection whose properties
determine the subsequent operations for consequence derivation. Such projection
can be complete, i.e. can contain all elementary n-tuples for their relation diagram,
or incomplete, if the opposite is true. If a projection is complete, it means that the
consequence is a tautology and thus holds no interest for us; this is why we will
consider incomplete projections only.

Let us form a group of incomplete projections for the A. In this case, all the
variety of ways to form possible consequences Bi can be expressed by the following
three rules:

1. keep one of the incomplete projections as a Bi;

2. choose any projection as a Bi, provided that it includes at least one incomplete
projection;

3. for the NTA object chosen according to the rules above, construct, by adding
elementary n-tuples or C-n-tuples, an incomplete NTA object that covers it.

As an example, let us prove correctness of one of the inference rules in natural
calculus called the dilemma rule:

A→ C,B → C,A ∨B
C

.

It is implied that the formulas below the solidus are derived from the ones
above it. The upper formulas can be considered axioms, and the lower ones can
be considered corollaries to these axioms. By transforming the conjunction of the
formulas above the solidus into a D-system within the [ABC] relation diagram, we

get Up[ABC] =

 {0} Ø {1}
Ø {0} {1}
{1} {1} Ø

. The lower part of the rule can be expressed

as a C-n-tuple Dn[C] = [{1}]. In order to prove by NTA methods that the given

Algebraic Approach to Logical Inference Implementation 1325

rule is true, we need to verify the relation Up[ABC] ⊆G Dn[C]. In this case, when
the Up is a D-system and the inclusion check does not come down to algorithms
of polynomial difficulty (see Table 2), it is rational to calculate Up[ABC]∩GDn[C]
and to check if the derived system is empty by using methods from the Section 5.2
and from [9].

Transforming Up[ABC] into a C-system (this operation is often more laborious;

then emptiness check for a D-system) yields Up[ABC] =

[
{1} {0} {1}
∗ {1} {1}

]
. In

this case, the inclusion check Up[ABC] ⊆G Dn[C] is feasible by an algorithm of
polynomial hardness.

This problem is a good example for implementing search for arbitrary conse-
quences. Let us find incomplete projections in the C-system Up[ABC]. These
projections are [C], [AB], [AC] and [BC]. For the first projection, we get Up[C] =[
{1}
{1}

]
= [{1}], which corresponds to the logical formula of the C. The projections

[AC] and [BC] ultimately yield the same result. The projection [AB] corresponds
to the formula A ∨B.

The suggested approach allows to use algebraic methods for solving problems
of logical inference. Moreover, it allows to see the essence of logical inference in
classical logic in a new light. We know that if A ⊆ B is true, it means that B
is a necessary condition or a property of A. The relation (4) shows that a logical
consequence is correct not only because it has been obtained using inference rules
whose meaning may not always be clear, but also because it is a necessary condition
for existence of the antecedent.

Above, we have already considered some examples of using algebraic approach
for processing basic structures of data and knowledge. Let us now analyze in detail
some ways of using NTA in certain existing program systems.

6 CONCLUSION

This article suggests using algebraic approach based on general theory of multiplace
relations for solving logical analysis problems, the mathematical base for this ap-
proach being NTA, which is considered a Boolean structure in abstract algebra. The
suggested generalized operations and relations significantly broadens the analytical
scope and application field of NTA objects as compared to those of mathematical
structures currently used for modeling and analyzing relations, e.g. in theory of
binary relations or in relational algebra.

The research data given above shows that NTA allows to unify processing various
data and knowledge structures in artificial intelligence systems. Todays knowledge
representation languages are declarative, which makes it difficult to find efficient
algorithms for information systems that use heterogeneous structures, as well as
for assessing operation speed of an algorithm. Conversely, in n-tuple algebra, many
declarative commands can be represented as relatively simple procedures. As for im-

1326 B. Kulik, A. Fridman, A. Zuenko

plementing logical inference procedures in n-tuple algebra, these can include, beside
the known logical calculus methods, new algebraic methods for checking correctness
of a consequence or for finding corollaries to a given axiom system.

In some cases, NTA provides a faster solution to standard logical analysis tasks
as it considers not only feasibility of certain substitutions, but also the inner struc-
ture of knowledge to be processed. NTA allows to efficiently parallelize logical
inference algorithms, i.e. to process knowledge in a way similar to that of tabular
data processing in relational DBMS. Matrix properties of NTA objects allow to fur-
ther decrease laboriousness of intellectual procedures. We found new structural and
statistical classes of CNF with polynomially identifiable satisfiability properties in
NTA. Consequently, many algorithms whose complexity evaluation is theoretically
high, e.g. exponential, can in practice be solved in polynomial time, on the aver-
age. This substantiates that using algebraic approach is practical not only for data
management, but also for knowledge processing.

We are planning to conduct future research in the following directions:

• context-oriented database (knowledge base) management systems [3, 20];

• research on additional means of immersing NTA structures into measure spa-
ces [14];

• modelling intelligent dynamic systems [12, 18] within situational approach [4, 5].

Acknowledgment

The authors would like to thank the Russian Foundation for Basic Research (grants
12-07-00302, 11-08-00641, 12-07-00550, 12-07-00689), the Department for Nanotech-
nologies and Information Technologies of RAS (project 2.11 of the current Pro-
gramme of Basic Scientific Researches), and the Chair of RAS (project 4.3 of the
Program #16) for their help in partial funding of this research.

REFERENCES

[1] Chang, C.-L.—Lee, R.C.-T.: Symbolic Logic and Mechanical Theorem Proving,
Academic Press 1973.

[2] Davis, M.—Putnam, H.: A Computing Procedure for Quantification Theory. J.
Assoc. Comput. Mach., Vol. 3, 1960, pp. 201–215.

[3] Ezhkova, I.: Is Universal Expert System Possible? Software & Systems. Vol. 1, 1991,
No. 2, pp. 19–29.

[4] Fridman, A.Ya.: Situative Approach to Modelling and Structure Control of Nature-
Technical Complexes. In: Proceedings 4th International Conference “System Identi-
fication and Control Problems” (SICPRO ’05), Moscow, Russia (Institute of Control
Science, Moscow Russia), 2005, pp. 1075–1108 (in Russian).

[5] Fridman, A.Ya.—Fridman, O.V.: Situative Approach to Modelling of Perfor-
mance and Safety in Nature-Technical Complexes. In: Juha Lindfors (Ed.): Applied

Algebraic Approach to Logical Inference Implementation 1327

Information Technology Research – Articles by Cooperative Science Network, Uni-
versity of Lapland, Finland, 2007, pp. 44–59.

[6] Gentzen, G.: Untersuchungen ber das Logische Schließen. Math. Z., Vol. 39, 1934,
pp. 176–210, pp. 405–431.

[7] Hilbert, D.—Ackermann, W.: Grundzüge der Theoretischen Logik. Berlin 1928.

[8] Kolmogorov, A.N.—Fovin, S.V.: Elements of the Theory of Functions and
Functional Analysis, 1: Metric and Normed Spaces. Graylock, Rochester, N. Y. 1957.

[9] Kulik, B.A.: A Logic Programming System Based on Cortege Algebra. Journal of
Computer and Systems Sciences International, Vol. 33, 1995, No. 2, pp. 159–170.

[10] Kulik, B.A.: New Classes of Conjunctive Normal Forms with a Polynomially Re-
cognizable Property of Satisfiability. Automation and Remote Control, Vol. 56, 1995,
No. 2, pp. 245–255.

[11] Kulik, B.A.: Representation of Logical Systems in a Probabilistic Space in Terms of
Cortege Algebra, 1 – Elements of Cortege algebra. Automation and Remote Control,
Vol. 58, 1997, No. 1, pp. 102–114.

[12] Kulik, B.A.: Reliability Analysis of the Systems with Many States on the Basis
of the Algebra of Tuples. Automation and Remote Control, Vol. 64, 2003, No. 7,
pp. 1029–1034.

[13] Kulik, B.A.: A Generalized Approach to Modelling and Analysis of Intelligent Sys-
tems on the Cortege Algebra Basis. In: Proceedings Sixth International Conference
on System Identification and Control Problems (SICPRO ’07), Moscow, Russia 2007,
pp. 679–715 (in Russian).

[14] Kulik, B.A.: N -Tuple Algebra-Based Probabilistic Logic. Systems Analysis and
Operations Research, Vol. 46, 2007, No. 1, pp. 111–120.

[15] Kulik, B.A.—Fridman, A.—Zuenko,A.: Logical Analysis of Intelligence Sys-
tems by Algebraic Method. In: Cybernetics and Systems 2010: Proceedings of Twen-
tieth European Meeting on Cybernetics and Systems Research (EMCSR 2010), 2010,
Vienna, Austria, pp. 198–203 (ISBN 3-85206-178-8).

[16] Mendelson, E.:. Introduction to Mathematical Logic. 4th ed., Chapman & Hall 1997.

[17] Russel, S.—Norvig, P.: Artificial Intelligence: A Modern Approach. Second Edi-
tion, Prentice Hall 2003.

[18] Sokolov, B.V.—Fridman, A.Ya.: Integrated Situational Modelling of Industry-
Business Processes for Every Stage of Their Life Cycle. In: Proceedings 4th Interna-
tional IEEE Conference “Intelligent Systems” (IS 2008), Varna, Bulgaria 2008, Vol. 1,
pp. 8-35–8-40.

[19] Zuenko, A.A.—Fridman, A.Ya.: Logical Inference in Semantic Analysis of Ad-
hoc Path Queries. In: Proceedings 11th National Conference in Artificial Intelligence
with Foreign Collaboration (CAI-2008), Dubna, Russia 2008, Vol. 1, pp. 298–304 (in
Russian).

[20] Zuenko, A.A.—Fridman, A.Ya.: Context Approach in Support Systems for Open
Subject Domains. Artificial Intelligence and Decision Making 3, 2008, pp. 41–51 (in
Russian).

1328 B. Kulik, A. Fridman, A. Zuenko

[21] Zuenko, A.A.—Fridman, A.Ya.: Development of N -Tuple Algebra for Logical
Analysis of Databases with the Use of Two-Place Predicates. Journal of Computer
and Systems Sciences International, Vol. 48, 2009, No. 2, pp. 254–261.

Boris Kulik graduated from Leningrad Mining Institute and
worked for the USSR Ministry of Geology from 1971 to 1989
in automation of drilling control. Then he took up research
on logic, mathematics and artificial intelligence and received his
Ph. D. in 1996. Since 1997 he has worked in St. Petersburg Insti-
tute of Problems in Machine Science of the Russian Academy of
Sciences. He received his Doctor of Science (Physics and Mathe-
matics) degree in 2008. At present, he teaches mathematics at
the St. Petersburg University of Culture and Art. He has pub-
lished 70 scientific papers including 4 monographs.

Alexander Fridman graduated from Leningrad Electro-Tech-
nical Institute in 1975 and worked in Baku (Azerbaijan) for Rus-
sian Shipbuilding Ministry until 1989, when he moved to Apa-
tity (Murmansk region, Russia) and began working for Russian
Academy of Sciences (RAS). He received his Ph. D. in 1976, Doc-
tor of Science degree in 2001 and Professor degree in 2008. At
present he is the head of Laboratory on Information Technologies
for Control of Industry-Natural Complexes in the Institute for
Informatics and Mathematical Modelling of Technological Pro-
cesses of RAS and Professor of Applied Mathematics Chair in

Kola Branch of Petrozavodsk State University. He has 185 scientific publications including
1 monograph, 21 tutorials and 16 certificates for inventions.

Alexander Zuenko a researcher of the Institute for Informatics
and Mathematical Modelling of Technological Processes (RAS),
graduated from the Petrozavodsk State University in 2005 and
received his Ph. D. in 2009. His scientific activities relate to de-
veloping software for modelling open subject domains, as well as
to knowledge representation and processing. He has 25 scientific
publications.

