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1 INTRODUCTION

Incompletely defined Boolean functions are widely used in logic design because such
forms are flexible and convenient in many practical applications. From incompletely,
especially from weakly defined functions, different Boolean forms can be constructed,
like Reed-Muller, affine, threshold, bent and so on.

In practical applications, linear operations can be realized with the aid of the
EXclusive OR (EXOR) gates. Nowadays we can observe that the role of the EXOR
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gates in the design process is very important and most desirable. It is because such
an approach offers an interesting compromise between testability, number of terms,
area and speed [13, 17, 23]. Additionally, AND/EXOR logic often leads to a more
compact realization of switching functions than AND/OR. It is especially suitable
for arithmetic circuits: adders and parity checkers, multipliers and telecommuni-
cation circuits. A Boolean function can be represented by its so-called minterms
expression – the Sum of Products (SOP) [8]. It has been shown that the Exclusive
Sum of Products (ESOP) forms generally require fewer logic gates than traditional
SOP. Hence it can be seen that the new EXOR gates technologies are more practi-
cal: the circuits can easily be mapped to modern Field Programmable Gate Arrays
(FPGAs) [21, 8].

On the one hand, the linearity (nonlinearity) of functions is applied in crypto-
graphy, data encryption, cipher, error control codes, the Reed-Muller forms, etc. [2,
6, 11, 14, 17, 18, 19, 22, 24] Such investigations are continuously developed and
mostly concentrate on the construction of fully defined functions. On the other
hand, in modern digital circuits analysis and synthesis, very often incompletely
defined Boolean functions are used [15]. For this reason, it is very important how
to minimize and build appropriate forms of function.

For a given partially defined Boolean function it is hard to estimate whether the
function can be realized as affine, especially for large functions. These troubles can
be overcome by many techniques, especially by spectral techniques.

Techniques based on the Walsh transform allow to investigate Boolean func-
tions in many areas such as classification, disjoint decomposition, multiplexer and
threshold logic synthesis, state assignment, testing and evaluation of logic complex-
ity [4, 10, 16, 18]. Search of linearity is also profitable for some Boolean functions
implementations. The affine Boolean functions are also intensively investigated in
cryptography and data encryption areas.

The described method allows to check whether a partially defined Boolean func-
tion can be realized in an affine form.

2 BASIC DEFINITIONS

Let B be a set of elements that forms a Boolean algebra. The simplest one is
B = {0, 1}. A Boolean function f is a mapping f : Bn → B. This domain is the set
of 2n binary vectors (0, 0, . . . , 0), (0, 0, . . . , 1), . . . , (1, 1, . . . , 1). Thus, the Boolean
function is a set of ordered pairs in which the first element is a binary input vector
and the second element is the constant 0 or 1. If domain D of Boolean function f
is Bn then f is a completely specified function. If D ⊂ Bn then f is incompletely
defined. If some values of the function f belong to set Bn\D then f is incompletely
defined. The points where the value for f is not assigned are called don’t cares. The
binary vectors for which function is undefined will be called DC cubes. The power of
the set DC will be denoted as card(DC) = d. The undefined values of the Boolean
function will be denoted by the symbol ′−′. Hence, an n -variable incompletely
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specified switching function is a mapping f : Bn → B∪{−}. The Boolean function f
can be specified by enumerating its values at all the decimal indices, which can be
conveniently represented by truth-vector Yf = [y0, y1, . . . , y2n−1] of f .

Definition 1. The true (false) set of the Boolean function, denoted by Tf (Ff) is
a collection of all true (false) vectors of f , i.e. Tf = {x ∈ {0, 1}n : f(x) = 1} – it is
the so called set of ON cubes, and Ff = {x ∈ {0, 1}n : f(x) = 0}, it is the so called
set of OFF cubes.

Definition 2. The Boolean function fk(x1, x2, . . . , xn) of n – variables is called
affine if it can be represented as fk(x) = a1x1⊕a2x2 . . .⊕anxn⊕c, where aj, c ∈ {0, 1}
and k = c +

∑n
i=1 ai2

i. In particular, if c = 0 then fk is called a linear function.

Definition 3. The scalar product of the two vectors X = [x0, x1, . . . , xm] and Y =
[y0, y1, . . . , ym] is a number and is calculated as < X,Y >= x0y0+x1y1+ . . .+xmym.

The Boolean function f(x1, x2, . . . , xn) given by the binary truth-vector Yf =
[y0, y1, . . . , y2n−1]

T can be transformed from a Boolean domain {0, 1} into the spec-
tral domain by the linear transformationH ·Yf = S, where H is a 2n×2n transform
matrix, and S = [s0, s1, . . . , s2n−1]

T is the vector of spectral coefficients called spec-
trum of f [9, 10, 8]. It is the Fourier transform of the Boolean function. Usually
such a transform is also called Walsh-Hadamard Transform and the decomposition
of the Hadamard matrix H can be written as

HN =

n
∏

i=1

(I2n−i ⊗P2i) (1)

H2 =

[

1 1
1 −1

]

, P2 = H2,PN =

[

IN/2 IN/2

IN/2 −IN/2

]

where ⊗ denotes the Kronecker product, N = 2n, IN is the identity matrix of size N
and:

For instance, if n = 2, then from Equation (1) the Hadamard matrix has the
form

H4 =









1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1









Each row of the matrix HN includes a discrete Walsh sequence wal(w, t). In this
notation, w = 1, . . . , 2n identifies the index of the Walsh function, and t = 1, . . . , 2n

stands for a discrete point of the function determination interval.
It follows from Definition 1 that a number of undefined points of f can be

calculated from the formula d = 2n − [card(Tf) + card(Ff)]. If d = 0 then the
Boolean function f is fully defined.

The coefficient s0 is directly related to the number of minterms for which the
Boolean function f has the value 1. If the number of true minterms will be denoted
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by a, then s0 = 2n − 2a. Additionally, for a partially defined Boolean function we
have s0 = 2n − 2a− d [4].

3 SPECTRAL IDENTIFICATION

OF AN AFFINE BOOLEAN FUNCTION

In many practical problems Boolean functions are specified in an incomplete form.
In such cases truth vector Yf of f has the values {0, 1,−}, where the symbol “−”
denotes don’t care minterms. In order to obtain spectral coefficients s ∈ S, elements
of Yf are re-coded, according to the formula {0, 1,−} → {1,−1, 0}.

Theorem 1. [3, 18] The affine Boolean function f is characterized by the unique
Walsh-Hadamard spectrum distribution

sx =







+2n for x = k/2 ⇔ c = 0
−2n for x = (k − 1)/2 ⇔ c = 1
0 otherwise

(2)

where k = c+
∑n

i=1 ai2
i, aj , c ∈ GF (2) has the same meaning as in Definition 2 and

x = 0, 1, . . . , 2n − 1.

Proof. It is known directly from the definition of the Walsh functions that they form
a complete orthogonal system [1]. The mutual orthogonality rows of the Hadamard
matrix satisfy the condition

2n−1
∑

t=0

wal(i, t) · wal(j, t) =

{

2n for i = j
0 for i 6= j

(3)

2n−1
∑

t=0

wal(i, t) =

{

2n for i = 0
0 for i 6= 0.

(4)

Rows of the matrix HN include the truth vectors of all n variable Boolean
functions [18]. It follows from Definition 2 that if function f is linear, then its
complement has the form 1 ⊕ f and it is an affine Boolean function. In the Walsh-
Hadamard Transform, elements of the truth vector of the Boolean function are coded
according to the formula {0, 1} → {1,−1}. In this case, if the truth vector of the
Boolean function is denoted by Yf , then its complementary version has the form
(−1)Yf . If this vector represents the linear Boolean function, then its coordinates
are the same as (or complement to) one of the rows of matrix HN . Hence, using (3),
(4), we obtain (2). �

Theorem 2. A given Boolean function f , with n variables, undefined at one point
only, can be affine if f is characterized by the Walsh-Hadamard spectrum distribu-
tion
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sx =























+1 for x = 0 → all undefined points have value 1
−1 for x = 0 → all undefined points have value 0
+(2n − 1) for x = k/2 → c = 0
−(2n − 1) for x = (k − 1)/2 → c = 1
±1 otherwise

(5)
where k and c have the same meaning as in Definitions 2 and x = 0, 1, . . . , 2n − 1.

Proof. It is well known that an affine Boolean function is balanced. Because coor-
dinates of its truth vector are coded as {0, 1} → {1,−1}, vector Yf of function f
includes 2n−1 elements of +1, and 2n−1 elements of (−1). Additionally, from the
properties of the matrix HN follows that the first row of such a matrix consists
of 1’s only. In consequence, s0 =< 1,Yf >. Assume that in vector Yf one co-
ordinate (say −1) will be replaced by ′ − ′, then this point is coded by the value
of 0. Hence, s0 =< 1,Yf > =2n−1 × 1 + (2n−1 − 1) × (−1) + 0 × (−1) = 1.
Similarly, if one coordinate with the value of 1 will be replaced by ′ − ′, then
s0 =< 1,Yf > =2n−1 × (−1) + (2n−1 − 1)× 1 + 0× 1 = −1.

If the incompletely defined Boolean function f can be extended to a linear
(affine) form, coordinates of some kth row of HN and coordinates of Yf are the
same (or complement), except for the coordinate ′ − ′ in Yf . For this reason, 2

n − 1
appropriate coordinates of HN and Yf are the same ( c = 0) or complement (c = 1).
Because the first row of HN consists of elements ±1, then si = (2n− 1)× 1 = 2n− 1
or si = (2n − 1)× (−1) = −(2n − 1). �

Proposition 1. Let f be a partial Boolean function which is undefined at d points.
Function f can be extended up to an affine form and f is given by the vector
[y0, y1, . . . , y2n−1], where yi ∈ {+1,−1, 0}. Then:

a) If all ′ − ′ points are located in set Tf , then s0 = +d.

b) If all ′ − ′ points are located in set Ff , then s0 = −d.

c) If all ′ − ′ points are located in both sets Tf and Ff , then s0 6= d and for some
i = 1, . . . , 2n − 1, si = ±(2n − d).

Proof. The proof follows from Theorem 2. The affine Boolean function f is balanced
and is represented by the vector Yf = [y0, y1, . . . , y2n−1]. This vector consists of
2n−1 elements of +1, and 2n−1 elements of (−1). Let us assume that Yf includes d
elements, coded by the value 0 (d undefined points). If these points are located in
set Tf , then s0 =< 1,Yf > = (2n−1 × 1) + (2n−1 − d)× (−1) = +d. If these points
are located in set Ff , then s0 =< 1,Yf > = (2n−1 − d)× 1 + 2n−1 × (−1) = −d.

If function f can be extended to an affine form, then for some k [y0, y1, . . . , y2n−1]
= wal(k, t), for t = 0, . . . , 2n − 1. According to Theorem 1, if f is fully defined
(d = 0), then sk = ±2n. If Yf has freely placed d = p0 + p1 undefined points,
there are (2n−1 − p0) elements of 1 and (2n−1 − p1) elements of (−1) in both Yf
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and wal(k, t) vectors. These elements are located in the same positions in both
mentioned vectors or elements of Yf are complement to wal(k, t). Hence, sk =<
wal(k, t),Yf > = (2n−1 − p0)× 1− (2n−1 − p1)× (−1) = 2n − (p0 + p1) = 2n − d or
sk= (2n−1 − p0)× (−1)− (2n−1 − p1)× (1) = −2n + d. �

The incompletely defined Boolean functions were considered among other things
in [4], where some spectral properties of such functions were performed but spectrum
distribution of affine functions was not presented.

Example 1. Table 1 includes the description of some Boolean functions. Func-
tion f1(x) is fully defined. This function is linear. The remaining functions are
incompletely defined and each of them has a different number of undefined points d.

x1x2x3
f1(x)
(d = 0)

sx
f2(x)
(d = 1)

sx
f3(x)
(d = 2)

sx

000 0 0 0 −1 0 −2

001 1 0 1 −1 1 0

010 0 0 − 1 − 0

011 1 0 1 1 1 2

100 1 0 1 −1 1 0

101 0 8 0 7 − 6

110 1 0 1 1 1 2

111 0 0 0 1 0 0

f4(x)
(d = 2)

sx
f5(x)
(d = 2)

sx
f6(x)
(d = 3)

sx
f7(x) = 1⊕ f6(x)

(d = 3)
sx

0 2 0 0 0 −1 1 1

− −2 − −2 − −1 − 1

0 0 − 2 − 1 − −1

− 0 1 0 1 1 0 −1

1 2 1 0 1 1 0 −1

0 6 0 6 − 5 − −5

1 0 1 2 1 3 0 −3

0 0 0 0 0 −1 1 1

Table 1. The Boolean functions and their spectra

It follows from Theorem 2 that functions fi(x), i = 2, . . . , 7 can be extended up
to an affine function f1(x).

4 OTHER METHODS OF SPECTRA CALCULATION

Spectral methods have been widely used in many domains for a long time. The Dis-
crete Fourier Transform (DFT) is a specific kind of Fourier transform, used in Fourier
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analysis. DFT can be computed efficiently in practice using a Fast Fourier Trans-
form (FFT) algorithm. The use of spectral methods dates back to the early 1960s.
Nowadays, in modern digital analysis and synthesis spectral techniques are often
used, and are comparatively simple and very well known. Additionally, many me-
thods and algorithms can be demonstrated where spectral coefficients are effectively
calculated. The classical approach to computing the Walsh-Hadamard spectrum is
based on the truth table of a Boolean function. The most effective truth table-
based algorithm is the Fast Walsh-Hadamard Transform [1, 9, 10]. Unfortunately,
the main disadvantage of such a method is that it cannot be used for logic functions
with large numbers of variables, because the main limiting factor of spectral methods
in processing of switching functions is their calculation complexity [6]. For example,
the time and space complexities of the FFT-like algorithms are O(n2n) and O(2n),
respectively, for Boolean functions of n variables. One way to overcome the above
difficulties is to use the Spectral Decision Diagrams (SDDs) to compute the Walsh
spectral coefficients [6, 26, 27, 29, 25]. These diagrams are very convenient data
structures for the majority of discrete functions [28]. As said before, computations
even with the fast transforms can be difficult, because the truth-table of Boolean
functions grows expotentially with n. For this reason, methods based on SDDs are
preferred.

The mentioned methods for a completely as well as incompletely defined Boolean
function can be used. It can be observed that besides of SDDs technique, fast trans-
forms based on butterfly charts are still applied. It is because Decision Diagrams
structures, although often used, are difficult to hardware realization unlike spectral
algorithms which are very efficient realized as circuit applications. Additionally, if
a function is fully defined, FFT algorithms have the same computational complexity
as the SDD techniques [6, 26]. The advantage of SDD techniques can be observed
for incompletely defined Boolean functions, but in such cases all undefined points
of a function are automatically replaced by 0(1) value. Because the butterfly and
SDDs-based algorithms are well known today, they will not be presented here.

Recently, a method to compute the Walsh-Hadamard spectrum directly from
Sum of Products (SOP) representation has been proposed. However, many practical
logic functions cannot be represented in an SOP form, because the numbers of such
products can be too large [6].

Obviously, after the minimizing procedures the function has another Boolean
and spectral representation. Such a form is of course very compact but at this
juncture the information whether a function could be affine is lost.

Example 2. Let a Boolean function be described as f v = x1 ⊕ x2 ⊕ x3 The truth
vector of such a function has the form Yfv = [0, 1, 1, 0, 1, 0, 0, 1]. On the basis of
vector Yfv , by means of ESPRESSO algorithm [12] SOP form is generated f v

1 =
x1x2x3+x1x2x3+x1x2x3+x1x2x3. Modern and very efficient algorithm EXORCISM4
[13], which generates the Reed-Muller forms, gives ESOP form f v

2 = x1 ⊕ x2 ⊕ x3.
It follows from this example that f v representation is the best and can be realized
by means of one EXOR gate.
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The Spectral Decision Diagram representations permit to calculate spectral co-
efficients via graph-based algorithms. It is a very fast calculation method. Clas-
sical SDD and reduced SDD (RSDD) of function f v are shown in Figures 1 a)
and 1 b). The function from Example 2 has the followingWalsh-Hadamard spectrum
Sfv = [0, 0, 0, 0, 0, 0, 0, 8]. Hence, according to Theorem 1 the analyzed function is
linear.
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Fig. 1. Spectrum of a fully defined Boolean function: a) Spectral Decision Diagram b) re-
duced SDD

If vector Yfv will be modified as follows Yf∗ = [0,−, 1, 0, 1,−, 0, 1], then EX-
PRESSO gives an SOP form f ∗

1 = x1x2 + x1x2x3 + x1x3 and EXORCISM4 gives an
ESOP form f ∗

2 = x1 ⊕ x1x2x3 ⊕ x2x3. Now, the spectrum of the new function f ∗

depends on the extension method. For this reason we obtain the different spectra:
Sf∗

1
= [0, 0, 0, 0, 4,−4, 4, 4] and Sf∗

2
= [2,−2, 2,−2, 2,−2, 2, 6], respectively. It can

be observed that all don’t care points were replaced differently. In EXPERESSO
algorithm these points were replaced by elements of {0, 1}; while in EXORCISM4
algorithm, such points are replaced by the value 0. Additionally, it can be easily
checked that f ∗

1
6= f ∗

2

and both functions are not linear now.
The final form of SDD’s for the non-linear function f ∗

2 has been depicted in
Figures 2 a) and 2 b). Thus, instead of a simple linear function f v, the another
function f ∗

2 was generated.
Taking into account the mentioned considerations, for the Boolean functions

which have n ≤ 20 variables both FFT-like and SDDs methods can be applied. For
a large Boolean function (n > 20) the Spectral Decision Diagrams are preferred.
It can be observed that for the fully defined Boolean functions is also possible to
obtain so-called pruned Walsh coefficients [7]. In such methods based on Decision
Diagrams, only selected spectral coefficients can be generated without calculating
the complete spectra.

In this work, for spectral coefficients calculation the method described in [4] has
been used. In this approach a complete set of spectral coefficients is generated. The
method is especially preferred in cases when a Boolean function has a lot of DC-
cubes. By means of this method the same spectrum as in FFT algorithm is obtained
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Fig. 2. a) The SDD of the Boolean function f∗

2 from Example 2, b) its reduced SDD form

because optimizing procedures, like in EXPRESSO and EXORCISM4 algorithms,
are not used. Spectrum is performed on the basis of arrays of disjoint ON- and
DC-cubes. The information about OFF-cubes is not necessary, therefore such a
representation is very compact. Disjoint cubes can be directly obtained, for example,
from a well known ESPRESSO algorithm (with switch -Ddisjoint).

Example 3. A given Boolean function f can be represented by means of ON and
DC cubes as follows:

x1, x2, x3 type of cube sj,0 sj,1 sj,2 sj,3 sj,4 sj,5 sj,6 sj,7 no. of cube

0 - 1 ON 4 −4 0 0 4 4 0 0 j = 1

1 - 0 ON 4 4 0 0 −4 4 0 0 .

1 0 1 DC 3 1 −1 1 1 −1 1 −1 .

0 1 0 DC 3 −1 1 1 −1 −1 1 1 j = w + k

Total spectrum
stoti=0,...,2n−1 = −2 0 0 2 0 6 2 0

Table 2. The cubes representation of a given Boolean function and its spectrum

The spectral coefficients are calculated in the table rows, separately for ON and
DC cubes. The spectral coefficients for ON cubes are calculated from the formulas
sON
1,0 = 2n−2·2p, sON

j,i = ±2·2p, j = 1, . . . , k, i = 1, . . . , 2n−1.The spectral coefficients
for DC cubes are calculated from the formulas sDC

j,0 = 2n−1−2p, j = k+1, . . . , w+k,
i = 1, . . . , 2n − 1, sDC

j,i = ±2p, where p is the number of symbols ′ − ′ in the given
cube, and the remaining variables have the same meaning as previously.

The final coefficient stot0 is calculated from the formula stot0 = (
∑w+k

j=1 sj,0)− (k−

1)×2n−w×2n−1, where k is the number of the disjoint ON cubes, w is the number
of the disjoint DC cubes, and n is the number of variables of the Boolean function.
The remaining coefficients are calculated from the general formula stoti = (

∑w+k
j=1 sj,i).

More details about spectra calculations can be found in [4, 5]. The representation
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of the cubes presented in Table 1 is equivalent to vector Yf = [0, 1,−, 1, 1,−, 1, 0]
of the function f . The same spectral coefficients will be obtained in case when the
classical Walsh-Hadamard transform will be applied (Equation (1)).

The methods of spectra calculation are not presented here exhaustively – such
methods are described in many works mentioned in this paper. Spectral coefficients
analysis is more interesting because from coefficient values and their distribution
some important properties of the Boolean function can be recognized.

5 ALGORITHM TO SEARCH THE AFFINE EXTENSION

OF AN INCOMPLETELY DEFINED BOOLEAN FUNCTION

Taking into account Theorems 1 and 2 recurrence method of searching of an affine
function can be presented. This method based on truth vector Yf (or cubes repre-
sentation) of an incompletely defined Boolean function. If an affine representation
exists, an appropriate form will always be found. The fundamental part of the algo-
rithm is rejecting such incompletely defined functions, for which it is not possible to
construct affine functions. Because for any n-variable Boolean function we obtain
2(2

n) different Boolean functions and only 2n+1 of them are affine, fast estimation
of an incomplete function seems to be important. For small functions, recognition
of linearity of a Boolean function is not difficult. Some troubles are performed for
large and weakly defined functions, because simple extension to the full form can
not always be recognized.

The main steps of the proposed algorithm are presented below. Every step is
described in detail.

Input data of the algorithm The incompletely defined Boolean function f(x1,
x2, . . . , xn) represented by vector Yf (or cubes) and number of its undefined
points d

Output data of the algorithm The set of all affine functions which can be ge-
nerated on the basis of Yf

Step 1 Compute the spectral coefficients si ∈ S of function f , i = 1, . . . , 2n − 1.

Step 2 If s0 = ±d, then f can be directly extended to an affine form, go to Step 5.
Otherwise,

Step 3 if the condition max{|s1|, |s2|, . . . , |s2n−1|} = ±(2n − d) is fulfilled, then
f can be realized in an affine form, go to Step 4, otherwise go to Step 5.

Step 4 Call the procedure of function f completion on the basis of don’t care places
(subroutine EXTENSION).

Step 5 End of algorithm.

In the above mentioned algorithm, the subroutine EXTENSION is used, and it
is an integral part of the presented algorithm. This part of the algorithm is used
in the cases when simple extension of f is not possible because s0 6= d but the
condition si = ±(2n − d) is fulfilled. If f can be extended up to the affine form,
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then truth-vector of f can be written as Yf = [ab], where a = b or a = b or a = b
or a = band a, b are subvectors of length 2n−1.

The subroutine EXTENSION is built as a recurrence function. The main parts
of the pseudo code can be described as follows:

EXTENSION(Yf )
If Number of bits(Yf) > 1

Divide Yf into two substr: Left substr,Right substr
case Number of DC bits(Left substr) = 0

EXTENSION(Right substr)
For all auxiliary vectors (WP) to do:
{

Number:=Compare(WP(i), Left substr)
Expand(WP(i), Number)

}
case Number of DC bits(Right substr) = 0

EXTENSION(Left substr)
For all auxiliary vectors (WP) to do:
{

Number:=Compare(WP(i), Right substr)
Expand(WP(i), Number)

}
case Number of DC bits(Right substr) >= Number of bits(Left substr)

EXTENSION(Left substr)
For all auxiliary vectors (WP) to do:
{

Number:=Compare(WP(i), Right substr)
Expand(WP(i), Number)

}
case Number of DC bits(Left substr) > Number of bits(Right substr)

EXTENSION(Right substr)
For all auxiliary vectors (WP) to do:
{

Number:=Compare(WP(i), Left substr)
Expand(WP(i), Number)

}
endcase

else
WP(0):=[0]
WP(1):=[1]

end
The auxiliary vector WP (i) and Left substr or Right substr of the vector Yf as

parameters of the function Compare are used. The either Left substr or Right substr
are the sub-vectors which include don’t care states. Completion of the sub vectors
is conducted by means of the appropriate bits comparison between WP (i) and one
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from sub vectors Left substr (Right substr). The function Compare returns values
which are presented in Table 3.

−1
Left substr or Right subst can not be completed by
the auxiliary vector WP (i).

1
Left substr or Right subst can be completed
by the auxiliary vector WP (i).

2
Left substr or Right subst can be completed by
negation of vector WP (i).

3
Left substr or Right subst can be completed by
negation of the vector WP (i) or else by WP (i).

Table 3. Values returned by the function Compare

The auxiliary vector WP (i) and the value Number are used as parameters of
the function Expand. The value of the parameter Number is known because that
value is returned by the function Compare. Depending on value of the parameter
Number, appropriate operations are executed (cf. Table 4).

Number Description of operations

−1 Delete the vector WP (i) from the list of auxiliary vectors.

1 Execute concatenation WP (i) := WP (i) ⋊⋉ WP (i) + 1.

2
Depending on which part of the vector Yf will be analyzed, execute
WP (i) := WP (i) ⋊⋉ neg[WP (i)] or
WP (i) := neg[WP (i)] ⋊⋉ WP (i).

3

Vector WP (i) is stored by substitution WT := WP (i).
WP (i) := WP (i) ⋊⋉ WP (i) and depend on which part of
vector Yf will be analyzed, execute
WP (i+ 1) := WT ⋊⋉ neg[WT ] or
WP (i+ 1) := neg[WT ] ⋊⋉ WT . Include the vector WP (i)
to the list of auxiliary vectors.

where A = [a1, a2, . . . , ak], B = [b1, b2, . . . , bk] – the binary vectors, A ⋊⋉ B –
concatenation of the vectors A and B, neg(A) – bits negation of vector A.

Table 4. Operations of the Expand function depend on the Number value

The spectral test allows us to check whether from an incompletely defined
Boolean function affine functions can be generated. In this way searching of affine
functions will be significantly improved. That feature is very important because
instead of all Boolean functions (for a given n) we have only a few affine functions.
Brute force searching in these cases is not efficient.

For instance if truth vector of a given Boolean function can be written as
Yf = [1– – – – – – – – – – – – – – – 1– – – – – – – – 0– – – – – – ], (n = 5) then on the ba-
sis of algorithm, the 8 affine functions will be generated. For vector Yf = [01–00110
–001100110–1100101–00110] we obtain only one linear function (sx=27 = +32) which
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can be represented by means of the binary vector [01100110100110011001100101100
110].

Complexity time of the classical Fast Walsh Transform (FWT) is equal to
O(2n log 2n) [1]. Unfortunately such a method can be used for small Boolean func-
tions (say n < 20). For large functions, the Walsh matrices of dimension 2n × 2n

are very inconvenient. In the method [5], time complexity decreases according to
the number of literals (l) as well as to the number of cubes (c) in function f . The
authors state that upper bound time for spectral coefficient calculation is estimated
by the function t(l, c) = 2l−12 × c, where c is a constant depending on a computer.
It is complexity for determination of 2n spectral coefficients. In our case, this
complexity can be strongly decreased because in many cases an incomplete Boolean
function can be directly extended if the coefficient s0 has appropriate value – in this
case additional spectra calculation can be passed over.

It was explained above that SDD approach for an incompletely defined Boolean
function is inconvenient, because before computations, all don’t care places are ar-
bitrarily replaced by the value 0 or 1. For the fully defined Boolean functions time
complexity of SDDs method is also equal to O(2n log 2n) [26]. The variable n has
the same meaning as in Definition 2

In the next investigation, the time of extension to all affine forms has been deter-
mined. It was done by means of the long-time experiments where 10 000 randomly
selected Boolean functions were used, with different literals (l = 1 . . .40) and cubes
(c = 1 . . .40) were applied. During tests, time of the Boolean function extension
was measured for a different number of literals and cubes. For appropriate n, time
values were averaged. Figure 3 presents an average time of affine function searching
for two cases.

Computation time was registered for cases when it was greater than 1ms. In
the first case spectrum of a Boolean function was calculated by means of the Fast
Walsh-Hadamard Transform (FWHT). In the second case the spectrum is based
on algorithm [5]. The first method of calculations was applied for the number
of function arguments n ≤ 20. For larger functions, matrices (1) are too large
for computer programmes. The second method of spectrum calculation is very
convenient even for large Boolean functions, especially when a function has a small
number of disjoint cubes. The method of a Boolean function searching was tested
by means of a PC, where the Windows operating system was installed with Celeron
2.4GHz and 256MB DDR RAM. All times are given in CPU milliseconds.

6 CONCLUSIONS

The proposed spectral method allows to obtain fast information about linearity of
the analyzed function. The method of the spectral coefficients analysis can be used
for any incompletely specified Boolean functions.

In the paper, the relationship between the Walsh-Hadamard spectrum and the
incompletely defined Boolean functions has been discussed.
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Fig. 3. Complexity time of the extension of a weakly defined Boolean function to its full
affine form

The presented theorems and propositions show a new way to find affine Boolean
functions, from their incomplete description. Spectral coefficients can be calculated
with the aid of different methods. Fortunately, such methods are nowadays well
described and known. A short review of spectra calculation methods has also been
stated. If an incompletely defined Boolean function can be extended to an affine
form, then by means of a simple algorithm their full defined form can be generated.
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