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Abstract. Multidimensional Scaling (MDS) is an important class of techniques for
embedding sets of patterns in Euclidean space. Most often it is used to visualize
in R3 multidimensional data sets or data sets given by dissimilarity measures that
are not distance metrics. Unfortunately, embedding n patterns with MDS involves
processing O(n2) pairwise pattern dissimilarities, making MDS computationally de-
manding for large data sets. Especially in Least Squares MDS (LS-MDS) methods,
that proceed by finding a minimum of a multimodal stress function, computational
cost is a limiting factor. Several works therefore explored approximate MDS tech-
niques that are less computationally expensive. These approximate methods were
evaluated in terms of correlation between Euclidean distances in the embedding
and the pattern dissimilarities or value of the stress function. We employ Pro-
crustes Analysis to directly quantify differences between embeddings constructed
with an approximate LS-MDS method and embeddings constructed with exact
LS-MDS. We then compare our findings to the results of classical analysis, i.e.
that based on stress value and correlation between Euclidean distances and pat-
tern dissimilarities. Our results demonstrate that small changes in stress value or
correlation coefficient can translate to large differences between embeddings. The
differences can be attributed not only to the inevitable variability resulting from the
multimodality of the stress function but also to the approximation errors. These re-
sults show that approximation may have larger impact on MDS than what was thus
far revealed by analyzes of stress value and correlation between Euclidean distances
and pattern dissimilarities.
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1 INTRODUCTION

Multidimensional scaling is a class of techniques for embedding sets of patterns in
Euclidean space. These methods seek to replicate pairwise pattern distances or
dissimilarities by the distances between the points in the embedding. Typically
MDS is used for visualization purposes and therefore patterns are usually embedded
in R3 or R2.

Let dij be the input pairwise pattern dissimilarities and ‖ri − rj‖, ri, rj ∈ Y be
the distances between points in the Euclidean embedding Y . In Classical MDS (see
e.g. [7, Chapter 2.2]) patterns are assumed to be points in high-dimensional Eu-
clidean space and a low dimensional representation is constructed by performing
an eigendecomposition of a Gram matrix B constructed from the distance ma-
trix [dij]n×n. This technique has also been applied to the cases where [dij]n×n is
not an Euclidean distance matrix, and therefore B is not a proper Gram matrix.
Then, either the eigenvectors of B that correspond to negative eigenvalues are dis-
carded or some constant is added to the dissimilarities dij so that B becomes positive
semidefinite [7, Chapter 2.2.3]. Another approach to embedding non-Euclidean pat-
terns, Least Squares Multidimensional Scaling (see e.g. [7, Chapter 2.4]), proceeds
by finding a minimum to a stress function that reflects discrepancy between dissimi-
larities dij and distances in the embedding, ‖ri − rj‖. Various stress functions can
be used with LS-MDS [7, Chapter 2.4]. One simple, but often used function of this
kind is the raw stress :

RawStress (R) =
∑

ri,rj∈Y
i<j

(‖ri − rj‖ − dij)2 . (1)

The strength of the LS-MDS is that it can be used as is for embedding sets of patterns
that are not only non-Euclidean but are in fact given by dissimilarity measure that
is not even a proper distance metric.

Embedding n-pattern data set with MDS requires processing n·(n−1)
2

pairwise
pattern dissimilarities, rendering MDS a computationally demanding process. This
is particularly significant limitation in LS-MDS. Stress functions employed in
LS-MDS are typically multimodal – see e.g. [20] for an investigation of local mi-
nima of a class of stress functions that include the raw stress. One usually needs to
employ stochastic optimization methods to find a deep local minimum of the stress
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function. Stochastic optimization methods over stress functions involving O(n2)
terms are, however, expensive for any but small data sets. These difficulties led to
research on approximate MDS methods that use only a subset of pattern dissimilari-
ties when embedding a data set in an Euclidean space [27, 6, 13, 19, 15, 3, 22, 2, 23].
The main observation here is that in MDS constraints on point positions may, in
many cases, be an overdetermined system. For example, in a perfect embedding
in R3 position of a point is determined by its distances from any four non-planar
points. Still, MDS will normally account for its distances from all other points
in the embedding. Approximate methods therefore seek to reduce the number
of pairwise pattern dissimilarities accounted for in MDS while keeping the dis-
tortion to the resultant embedding at an acceptable level. Two approaches were
typically used for measuring the distortion to the embedding resulting from not
accounting for certain dissimilarities. In the first approach all n·(n−1)

2
Euclidean

distances, ‖ri − rj‖, are calculated after performing approximate MDS and their
correlation to the input pattern dissimilarities dij is used to assess the quality of
the approximate embedding. The correlation coefficient for the embedding con-
structed with exact MDS is used as a reference. Second approach, used mainly
with LS-MDS, employs stress value (as in e.g. Equation (1)) instead of correlation
coefficients.

Even though stress value and correlation between distances and dissimilarities
are the two main quality measures in studies on approximate MDS, it is not clear
to what extent they reflect the level of geometrical distortion exhibited by an ap-
proximate embedding relative to the exact embedding. In particular, disregard-
ing certain dissimilarities may allow for locally optimal solutions that, while re-
flecting pairwise pattern dissimilarities, differ geometrically from solutions explored
by exact MDS. This may have significant implications when employing MDS in
its typical application, namely data exploration through embedding in R3 or R2.
In this work we therefore employ Procrustes Analysis (see e.g. [7, Chapter 5])
to directly compare three-dimensional embeddings constructed with an approxi-
mate LS-MDS method to the corresponding reference embeddings constructed with
exact LS-MDS. We chose Procrustes Analysis as it fits MDS configurations in
a way that minimize sum of squared distances between their points [7, Chapter
5.2]. Therefore, it is well suited for direct geometrical comparison. Although, when
one seeks to assess correlational rather than geometrical similarity between confi-
gurations, measures such as Congruence Coefficient [4, Chapter 19.7] can also be
used.

We relate results of comparison with Procrustes Analysis to the classical quality
assessment that relies on stress value and correlation between distances and dissimi-
larities. For the approximate method we employ LS-MDS with modified raw stress
functions that account for only a small subset of pattern dissimilarities – in the
following part of this work we refer to this technique as truncated LS-MDS. Three
large data sets are used in the experiments, including two that employ dissimilarity
measures that are not proper distance metrics.
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2 RELATED WORK

Initial research on approximate Multidimensional Scaling, presented in [27, 13, 15],
focused on Classical MDS. These works propose and explore a technique that reduces
the number of pairwise pattern comparisons in MDS by carefully selecting a subset of
patterns, called frame, and then factoring similarities between frame and non-frame
patterns. The approach was evaluated mainly in terms of correlation coefficients
between pattern similarities and recovered distances, and compared to Classical
MDS over both complete similarity matrices and matrices containing only a subset of
similarities. Obtained results showed that the frame-based approach is advantageous
over Classical MDS with incomplete similarity matrices.

A simplified, frame-based approach was also applied to LS-MDS [6]. Therein the
authors propose a heuristics for constructing approximate Sammon mapping [25],
which first maps a subset of patterns in R2 and then maps the remaining pat-
terns, taking into account only the distances to the patterns in the already mapped
subset. Two example maps are reported to demonstrate the performance of this ap-
proach. Further work along this line explored sequential mapping of patterns [19].
Algorithms proposed therein attempt to preserve a small subset of pairwise pat-
tern distances, namely distances in the Minimal Spanning Tree (MST) of patterns
or a combination of MST distances and distances to a chosen, reference, pattern.
Performance of this approach was demonstrated with three example embeddings.
An improvement over purely sequential mapping was proposed in [3]. This method
combines frame-based heuristic with sequential mapping of MST distances. Ini-
tially, a subset of patterns is embedded in R2 with Sammon mapping and then
serves as the frame for the remaining patterns. Non-frame patterns are embed-
ded employing a variant of the method proposed in [19], which considers only the
distances between frame and non-frame patterns. The approach was compared to
six related methods, over four different data sets. Comparison included several
performance indices, namely embedding runtime, residual errors, e.g. stress value
in the case of Sammon mapping, leave-one-out classification accuracy when using
embedded data set for pattern classification and percentage of MST edges pre-
served by the embedding. In addition, several embedding results were reported.
Another MST-based heuristic for approximate Sammon mapping was proposed
in [22]. This method divides MST of the data set into a number of subtrees,
which are then used in a hierarchical embedding procedure. The procedure fol-
lows the edges removed during subdivision of MST and for every such edge adds
up to four patterns to the constructed embedding. Patterns are added with a mo-
dified Sammon mapping, in which positions of previously embedded patterns are
fixed and a genetic algorithm is used to minimize the Sammon mapping crite-
rion. Experimental evaluation of this technique was carried out on one multidi-
mensional data set and employed two indices of embedding quality. One of the
indices was stress values for different dimensionality of embedding and number of
generations in the genetic algorithm. The other was a scatter-plot and correspond-
ing Spearman’s rank correlation coefficient between input pattern distances and
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distances in a six-dimensional embedding. Result of embedding in R2 was also
reported.

A different approach to finding minima of LS-MDS stress functions was pro-
posed in [9]. It employs particle dynamics with conservative forces derived from the
stress function, treated therein as a potential function for pairwise particle interac-
tions. In addition, friction forces are included in the particle dynamics and steadily
decrease kinetic energy of the system. This approach is well suited for approximate
MDS – particle dynamics can be performed with a small subset of n·(n−1)

2
conser-

vative interactions, in effect realizing LS-MDS over a small subset of input pattern
dissimilarities. Approximate LS-MDS techniques of this kind were recently studied
in [2, 23]. Performance of these methods was evaluated in terms of stress value.
Obtained results demonstrated that for large data sets, approximation as strong as
several-fold decrease in the number of considered input pattern dissimilarities often
corresponds to only a small increase in the stress value.

3 LEAST SQUARES MULTIDIMENSIONAL SCALING
WITH DISSIPATIVE PARTICLE DYNAMICS

Experiments reported in this work were carried out using explicit-temperature, par-
ticle dynamics-based LS-MDS algorithm we described in [2]. The algorithm extends
particle dynamics-based LS-MDS method introduced in [9] by employing Dissipa-
tive Particle Dynamics (DPD) [18, 10] instead of classical particle dynamics with
friction forces. This extension introduces an explicit temperature control to the par-
ticle dynamics-based stress minimization technique, in effect providing an explicit
control over the breadth of exploration of the stress function. A similar simulated
annealing-like, molecular dynamics-based LS-MDS technique was recently proposed
in [1]. In the context of Sammon Mapping, simulated annealing was also studied
in [8].

In DPD, particle dynamics is governed by three kinds of forces, namely conser-
vative forces FC , dissipative forces FD and random forces FR [10]. Therefore, total
force acting on the ith particle is:

Fi =
∑
j 6=i

FC (rij) +
∑
j 6=i

FD (rij,vij) +
∑
j 6=i

FR (rij) . (2)

In the above, rij is a vector pointing from the ith to the jth particle and vij is
a velocity of the ith particle relative to the jth particle. Dissipative and random
forces act between pairs of particles and, respectively, dissipate and add kinetic
energy to the system:

FD (rij,vij) = −γω (‖rij‖)2 [vij ◦ eij] eij,
FR (rij) = σω (‖rij‖) ξijeij.

(3)
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Here, eij is a unit vector pointing from the ith to the jth particle and ξij = ξji are
random variables drawn from normal distribution with zero mean and unit variance1.
The temperature of the system is maintained by coupling the coefficients σ and γ:

σ =
√

2γkBT , (4)

where kB is the Boltzmann constant2 and T is the desired temperature of the system.
The weighting function ω (·) is most often modelled to give soft repulsive potential:

ω (r) =

{
1− r

rc
r <= rc

0 r > rc
, (5)

where rc is a cut-off distance at which dissipative and random interactions vanish.
Particle dynamic can be harnessed to perform LS-MDS by assigning one particle

to each pattern, putting the MDS stress function as the potential for the conservative
interactions and performing the dynamics with kinetic energy dissipation [9]. In
this work we employ raw stress function (Equation (1)) as the potential for DPD’s
conservative interactions, which leads to a following conservative force acting on
particles:

FC
i =

∑
j 6=i

FC (rij) = −
∑
j 6=i

∇V (rij) = −2
∑
j 6=i

(‖rij‖ − dij) eij. (6)

Conclusions of this work do not depend on any particular choice of stress function,
and the raw stress was chosen mainly to simplify the experiments. Other stress
functions can also be used with particle dynamics-based LS-MDS, as long as their
gradient gives rise to pairwise particle interactions. Unlike in [9], energy dissipation
in this work is not a matter of simple friction forces but is controlled by the system’s
temperature T . We begin with a temperature T corresponding to particles travelling,
on average, a mean pairwise pattern dissimilarity in a unit time and then minimize
the stress by lowering the temperature until it approaches zero and particles stop,
giving the final MDS configuration.

Pseudo-code for this embedding technique is reported in Algorithm 3. The
pseudo-code applies to truncated LS-MDS, mentioned in Section 1, as well as to
exact LS-MDS when all n·(n−1)

2
terms from the stress function are included in the

calculated set (S).

4 PROCRUSTES ANALYSIS

Multidimensional Scaling techniques do not enforce one fixed orientation in the Eu-
clidean space for the constructed embeddings. In particular, any geometrical trans-

1 We employ a uniform distribution with zero mean and unit variance, which suffice for
explicit temperature control.

2 For simplicity, we set kB = 1 in this work.
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formation of the embedding that do not change Euclidean distances is admissible as
far as MDS is concerned. For the same reason, MDS may not enforce location of the
embedding’s center in the Euclidean space. When comparing an approximate MDS
embedding to its corresponding exact variant, one should also acknowledge that
certain differences may arise from small uniform dilation exhibited by the approxi-
mate result. Dilation of this kind does not change structure of the embedding and
in typical MDS applications does not change interpretation of the result. To avoid
overestimation of differences between approximate and exact embeddings, uniform
dilation should be neglected in the comparison. We employ Procrustes Analysis [7,
Chapter 5] for comparing embeddings that, in addition to differences due to appro-
ximation errors, are possibly rotated, translated and rescaled with respect to each
other.

In essence, Procrustes Analysis (PA) consists of several matrix operations that
move the compared embeddings to the origin of the coordinate system as well as
rotate and rescale one of them to match the orientation and diameter of the other. In
more precise terms, PA finds the optimal rotation, translation and scaling of ordered,
equinumerous sets of points (configurations) with respect to their root mean square
distance (RMSD). Note that the ordering of points is fixed in this fitting, i.e. first
point in one of the sets corresponds to the first point in the other set, second point
in one set corresponds to the second point in the other set, and so on with third and
subsequent points.

Implementation of PA employed in this work is based on [7, Chapter 5.2] and the
following summary of steps in fitting point configurations is based on the description
given therein. Let xi,yi ∈ R3, i = 1 . . . n, be the two compared MDS embeddings
and Xn×3 and Yn×3 be their corresponding coordinate matrices. In PA translation
is normalized by centering the configurations at the origin of the coordinate system,
i.e. setting x′i = xi − x and y′i = yi − y, where x and y are the mean rows of
X and Y, respectively. Let X′ and Y′ be the coordinate matrices of the centered
configurations. To fit the configurations with respect to rotation, PA rotates X′

with a rotation matrix R constructed through singular value decomposition of the
matrix Y′TX′. That is, given the singular value decomposition Y′TX′ = UΛVT,
the optimal rotation matrix is:

R = VUT. (7)

Finally, to fit the configurations with respect to scaling, PA dilates the rotated
matrix X′R by a factor σ of:

σ =
tr
(
RY′TX′

)
tr
(
X′X′T

) . (8)

The pseudo-code for this procedure is given in Algorithm 2.

In this work we measure the difference between the fitted configurations by
their RMSD divided by the root mean square distance of points from the configu-



1424 M. Kurdziel, K. Boryczko, W. Dzwinel

rations’ center, i.e. by:

N-RMSD =

√ ∑n
i=1 ‖σRTx′i − y′i‖2

1
2

∑n
i=1 (‖σRTx′i‖2 + ‖y′i‖2)

. (9)

In the next part of this work we refer to the measure given above as normalized
RMSD (N-RMSD). Note that it captures a relative rather than absolute difference
between the configurations and, therefore, can be used to interpret the result irre-
spective of the mean pairwise pattern dissimilarity.

5 TEST DATA SETS AND EXPERIMENTS

Experiments reported in this work were carried out on three large, dense test data
sets. One of these sets represents a classical case of feature vector data, i.e. it consists
of multidimensional vectors enclosed by the Euclidean distance. The other two data
sets are enclosed by dissimilarity measures that are not proper distance metrics, and
describe gene expression patterns and sequences of non-coding RNA molecules.

The multidimensional feature vector data set was published in [12] and provided
in the UCI Machine Learning Repository [11]. The data set consists of 20 000 sixteen-
dimensional vectors, describing capital letters in the English alphabet written in
20 different fonts. All vector attributes are integer numbers and, as stated above,
their dissimilarity is measured by the Euclidean distance. In the following sections,
we refer to this data set as Letter Data.

Second test set, further called Gene Data, is an example of data produced in
a modern functional genomics study. It was prepared from data published in [14,
Supplementary Table 17], namely gene expression levels measured by The National
Human Genome Research Institute Model Organism Encyclopedia of DNA Ele-
ments (modENCODE) Project [5] using high throughput RNA sequencing. More
precisely, we use abundances of modENCODE genes in the Drosophila melanogaster
transcriptome, measured in 30 samples and reported as FPKM values [26]. From
this data, abundances of 14 861 genes that have FPKM >= 1 in at least one sample
were included in the test data set. Similarities between gene expression profiles were
assessed by correlation coefficients between log-transformed FPKM values. That is,
dissimilarity between ith and jth gene was measured as:

dij = 1.0− σ2
ij, (10)

where σij is the Pearson correlation coefficient between log-transformed FPKM va-
lues3 for the ith and the jth gene. With this measure, genes with well correlated or
anti-correlated transcript abundances are considered to be similar patterns, while
genes with uncorrelated transcript abundances are distant patterns.

Third data set, further called ncRNA Data, exemplifies material gathered in
numerous studies focusing on sequencing bio-molecules. It consists of sequences

3 i.e. log (FPKM + 1.0)
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of 32 897 non-coding RNA (ncRNA) molecules exhibiting less than 90 % pairwise
sequence identity, published in the RNA Families database [16, 17] release 8.0. To
calculate dissimilarities in this test data set we performed pairwise sequence align-
ment [21], [24, pp. 76–81] for every pair of sequences. We then set the dissimilarities
to:

dij =

(
1.0− sij

sii

)
·
(

1.0− sij
sjj

)
, (11)

where skl is a pairwise sequence alignment score for the kth and the lth ncRNA
sequence. The above measure was designed to alleviate the impact of the sequence
length on the dissimilarity value. Even short but well aligned sequences will have
dissimilarities approaching zero, whereas dissimilarities of poorly aligned sequences,
including short ones, will approach 1.0. Note that this dissimilarity measure may
severely break triangle inequality – different parts of one sequence may align well
to two other sequences, leading to small dissimilarity values, even though the two
other sequences do not align to each other, and thus have high pairwise dissimila-
rity.

Using the algorithm described in Section 3, for each data set we constructed
six different, three-dimensional LS-MDS embeddings. Each embedding projected
all patterns from the embedded data set into R3. However, one embedding in each
data set accounted for all n·(n−1)

2
pairwise pattern dissimilarities, and served as

a reference embedding, while other five approximate embeddings accounted for only
a subset of dissimilarities. More precisely, these five embeddings were constructed
with the procedure described in Section 3 run over a truncated raw stress function
(see Algorithm 3), i.e. stress function constructed from Equation (1) by removing
most of the summation terms and preserving only a small subset. The five appro-
ximate embeddings were constructed with truncated stress functions accounting for
approximately 5 %, 7.5 %, 10.0 %, 12.5 % and 15.0 % of the n·(n−1)

2
input dissimilari-

ties, respectively.

The non-metric nature of the dissimilarity measures used in the test data sets
brings our results closer to contemporary applications of LS-MDS techniques. The
cost of this is, however, a limited choice for criteria in selecting terms for the trun-
cated stress function. Sophisticated geometrical considerations cannot be easily
applied to arbitrary non-metric dissimilarity measures. Consequently, terms for
the truncated stress function with non−metric dissimilarities are often selected em-
ploying graph constructs, e.g. k-nearest and k-farthest graphs or Minimal Spanning
Trees, or are selected at random [2, 23]. In our initial study on approximate MDS [2]
we investigated selection of terms for the truncated stress function based on k-nearest
and k-farthest neighbor graphs as well as random selection that sample distribution
of dissimilarities. Results obtained in this study demonstrated that in the context
of LS-MDS random selection performs much better. In particular, this selection
scheme led to significantly smaller increase in the stress value in approximate em-
beddings, relative to the reference embeddings. Given these results, we adopted
random selection of terms in this work and did not pursue experiments for the infe-
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rior alternative. Algorithm 1 contains pseudo-code describing the random selection
of terms.

6 RESULTS AND DISCUSSION

To assess the impact of MDS approximation on the resultant embeddings we em-
ployed Procrustes Analysis (Section 4) and fitted each approximate embedding to
its corresponding reference embedding. We then calculated N-RMSD values (Equa-
tion (9)) between the fitted embeddings (Figure 1). For each reference and approx-
imate embedding we also calculated the raw stress value according to Equation (1),

i.e. including all n·(n−1)
2

summation terms and thereby accounting for all input pat-
tern dissimilarities. These numbers were used to assess the increase in stress value
in approximate embeddings relative to their corresponding reference embeddings
(Figure 2). Finally, for each embedding we calculated Pearson correlation coeffi-
cient between input pattern dissimilarities and the corresponding distances between
points in the embedding (Table 1).

Subset of pattern dissimilarities in the
Data set truncated stress function

5.0 % 7.4 % 9.8 % 12.2 % 14.5 % N2

ncRNA Data 0.9479 0.9478 0.9480 0.9481 0.9481 0.9486
Gene Data 0.7469 0.7510 0.7527 0.7537 0.7546 0.7583
Letter Data 0.9073 0.9075 0.9078 0.9081 0.9084 0.9095

Table 1. Pearson correlation coefficients between distances of points in the LS-MDS em-
beddings and the corresponding pairwise pattern dissimilarities
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Fig. 1. Normalized Root Mean Square Distance between approximate embeddings and
their corresponding reference embeddings

In our experiments approximate embeddings employing less than 10 % of input
pattern dissimilarities have stress values that exceed the stress values of correspond-
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Fig. 2. Increase in stress value in approximate embeddings relative to their corresponding
reference embeddings

ing reference embeddings by only a few percent. The largest increase, about 3 %,
is for the Gene Data over approximately 5 % of input pattern dissimilarities. Note
that even with 5 % of input dissimilarities, each pattern, and thus also each point in
the embedding, is bounded by between approximately 700 (Gene Data) and 1 600
(ncRNA Data) randomly sampled dissimilarities. This may explain why stress va-
lues remain well minimized. Correlation coefficients obtained in the experiments
also do not reveal large differences between approximate and reference embeddings.
We observe that correlation depends mainly on the data set, with Gene Data ap-
pearing to be difficult to embed in R3, and the two other test data sets exhibiting
better embedding. However, correlation coefficients in approximate embeddings are
only slightly worse than in the corresponding reference embeddings.

Results of Procrustes Analysis reveal more substantial differences between ap-
proximate and reference embeddings. These differences are largest for the Gene
Data, where four out of the five approximate embeddings exhibit N-RMSD to the
reference embedding in excess of 20 % and the fifth one exhibits N-RMSD close
to 20 %. In other words, RMSD in these cases is close to, or exceeds, one fifth of the
root mean square distance of points from the embeddings’ center. The other data
set with large N-RMSD is the ncRNA Data. In this case N-RMSD remains slightly
above 15 %. In Letter Data agreement between approximate embeddings and the
reference embedding is better, with N-RMSD less than 10 %. For Gene Data and
Letter Data we also observe that N-RMSD clearly decreases with the increasing
number of pattern dissimilarities accounted for in the truncated stress function.
Similar trend, however substantially weaker, can be seen for ncRNA Data. Differ-
ences between approximate embeddings and the corresponding reference embeddings
can not, therefore, be explained away by fluctuations of MDS results around close
minima of the multimodal stress function, that would be natural in a stochastic
optimization process. The fact that N-RMSD decreases with increasing number of
pattern dissimilarities in the truncated stress function suggests that approximate
MDS explores configurations of points that are not explored when exact stress func-
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tion is minimized. It is also worth noting that impact of MDS approximation is
largest in the data set that, as revealed by the correlation coefficients, is signifi-
cantly more difficult to embed in R3 than the other two data sets, namely in Gene
Data. In more general terms, approximation in MDS has substantially larger im-
pact on the two data sets described by dissimilarity measures that are not distance
metrics, namely Gene Data and ncRNA Data, than on the Euclidean Letter Data.

a)

b)

Fig. 3. a) Reference ncRNA Data embedding. b) Approximate ncRNA Data embedding
constructed with 5 % of input pattern dissimilarities, fitted with Procrustes Analysis
to its corresponding reference embedding. In regions marked by rectangles, approxi-
mate embedding displays a different clustering structure than the reference embedding

How the differences revealed by Procrustes Analysis translate into the structure
visible on embeddings can be seen in Figures 3, 4 and 5. Therein we report appro-
ximate embeddings constructed with 5 % of input pattern dissimilarities, fitted to
their corresponding reference embeddings. The broad structures of the data sets are
similar in the approximate and the corresponding reference embeddings. However,
at least in Gene Data and ncRNA Data approximate embeddings reveal less fine de-
tails than their corresponding reference embeddings. For example, on the reference
Gene Data embedding (Figure 4 a)) we observe two distinct clusters on a spherically
distributed cloud of patterns. However, on the corresponding approximate embed-
ding (Figure 4 b)) only one of these clusters is apparent whereas the other one is
disrupted. Similarly, at the right end of the reference ncRNA Data embedding
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a)

b)

Fig. 4. a) Reference Gene Data embedding. b) Approximate Gene Data embedding con-
structed with 5 % of input pattern dissimilarities, fitted with Procrustes Analysis to
its corresponding reference embedding. Reference embedding displays two clusters,
one of which, marked by a rectangle, is disrupted in the approximate embedding
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a)

b)

Fig. 5. a) Reference Letter Data embedding. b) Approximate Letter Data embedding
constructed with 5 % of input pattern dissimilarities, fitted with Procrustes Analysis
to its corresponding reference embedding. Both embeddings display similar data set
structure
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(Figure 3 a)) we observe a dense tail made of two clusters. On the corresponding
approximate embedding (Figure 3 b)) this tail appears to form only one, more noisy
cluster. Also, at the left end of the reference embedding we observe a string of fine,
point-like clusters. On the approximate embedding these clusters are disrupted and
resemble sparsely distributed groups of patterns. In general, approximate embed-
dings on Figures 4 b) and 3 b) appear more noisy than their corresponding reference
embeddings. In Letter Data, approximate embedding (Figure 5 b)) appears more
faithful to the reference embedding (Figure 5 a)). Both embeddings display similar
structure, with patterns forming layered shells.

7 CONCLUSIONS

Thus far most studies of approximate MDS focused on two indices of approximate
embedding quality. First of these indices was correlation coefficient between pat-
tern dissimilarities and the corresponding distances in the embedding. Second of
the quality indices was increase in stress value in approximate embedding relative
to the reference embedding. However, results of direct comparison by Procrustes
Analysis between approximate and reference embeddings, that we presented in this
work, revealed a more complex picture than that arising from analysis of these two
indices. In particular, Procrustes Analysis revealed significant differences between
approximate and reference embeddings in cases where increases in stress value and
differences in correlation coefficients were small. Differences between approximate
and reference embeddings were prominent in data sets described by dissimilarity
measures that are not proper distance metric, and especially so in the data set that
was difficult to embed in R3. Our results indicate that studies of approximate MDS
algorithms should not be limited to assessment of correlation between distances and
dissimilarities or increase in stress value, but should also report other quality mea-
sures. This additional measures may include, e.g., indices such as the Congruence
Coefficient [4, Chapter 19.7] mentioned in Section 1, or may be derived following
the approach used in this work, i.e. by quantifying geometric differences after fitting
reference and approximate embeddings with Procrustes Analysis.
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A ALGORITHMS

Algorithm 1: Select terms (pattern pairs) for a truncated stress function

input : X – set of patterns
n – requested number of terms per pattern

output : S – set of terms for the truncated stress function
notation: permute(A) – random permutation of elements in A

for x ∈ X do
S[x] ← ∅
Y = permute(X \ {x})
for i← 1 to n do

y ← Y[i ]
if x /∈ S[y] then add y to S[x]

return S
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Algorithm 2: Fit set of points P to the set of points Q with Procrustes
Analysis

input : P – first set of points
Q – second set of points, equinumerous with P

output : O – set of points from P fitted with PA to the set of points Q
notation: transpose(X) – transposition of matrix X

mmul(X, Y) – matrix multiplication of matrix X and matrix Y
SVD(X) – singular value decomposition of matrix X

c ← [0,0,0]
n ← 0
for p ∈ P do

c ← c + p
n ← n + 1

for p ∈ P do p ← p− c/n
c ← [0,0,0]
for p ∈ Q do c ← c + p
for p ∈ Q do p ← p− c/n

Construct matrices X and Y from points in P and Q, respectively.
/* Each raw stores coordinates of one point */

M ← mmul(transpose(Y), X)
U, L, V ← SVD(M)

R ← mmul(transpose(V), transpose(U))
O ← mmul(X, R)

sigma ← 0
for i ← 0 to n do

sigma ← sigma +X[i, 1 ]∗X[i, 1 ]+X[i, 2 ]∗X[i, 2 ]+X[i, 3 ]∗X[i, 3 ]
M ← mmul(mmul(R, transpose(Y)), X)
sigma ← (M[1,1 ] + M[2,2 ] + M[3,3 ]) /sigma

for p ∈ O do p ← p ∗ sigma
return O
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Algorithm 3: DPD-based implementation of LS-MDS

input : X – set of patterns
D – set of dissimilarities between patterns from X
S – terms in the truncated stress function, selected with

Algorithm 1
g, rc – dissipative forces coef. and cut-off distance for DPD forces
dt – time step for DPD

output : P – set of points in R3 representing patterns in X
notation: sqrt(z) – square root of z

p[x] – point from P representing pattern x in R3

V[a], dV[a] – velocity and change in velocity of point a

set initial positions of points in P /* e.g. randomly */

T ← initial DPD temperature /* e.g. temperature that gives avg.

velocity equal to mean dissimilarity per time unit */

for x ∈ X do
a ← p[x]
V[a] ← 0, dV[a] ← 0

repeat
for x ∈ X do

a ← p[x]
V[a] ← V[a]+0.5∗dV[a]
p[x] ← p[x]+V[a]∗dt

fc ← CForces(X, D, S, P)
fd ← DForces(X, S, P, V, g, rc)
fr ← RForces(X, S, P, T, g, rc)
for x ∈ X do

a ← p[x]
dV[a] ← fc[a]∗dt +fd[a]∗dt +fr[a]∗sqrt(dt)
V[a] ← V[a]+0.5∗dV[a]

fd ← DForces(X, S, P, V, g, rc)
for x ∈ X do dV[a] ← fc[a]∗dt +fd[a]∗dt +fr[a]∗sqrt(dt)
decrease temperature T by a small fraction

until not (T ≈ 0 and particle velocities are negligible)
return P = {p[x] : x ∈ X}
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Function CForces(X, D, S, P) calculate conservative forces for Algorithm 3

input : X – set of patterns
D – set of dissimilarities between patterns from X
S – terms in the truncated stress function, selected with

Algorithm 1
P – set of points in R3 representing patterns in X

output : F– conservative forces acting on points from P
notation: len(q) – length of vector q

D[x, y] – dissimilarity between pattern x and pattern y
p[x] – point from P representing pattern x in R3

for x ∈ X do F[p[x]] ← 0
for x ∈ X do

a ← p[x]
for y ∈ S[x] do

b ← p[y]
r ← a− b
F[a] ← F[a]−2.0∗(len(r)-D[x, y])*r/len(r)
F[b] ← F[b]+2.0∗(len(r)-D[x, y])*r/len(r)

return F
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Function DForces(X, S, P, V, g, rc) calculate dissipative forces
for Algorithm 3

input : X – set of patterns
S – terms in the truncated stress function, selected with

Algorithm 1
P – set of points in R3 representing patterns in X
V – velocities of points from P
g, rc – dissipative forces coef. and cut-off distance for DPD forces

output : F– dissipative forces acting on points from P
notation: len(q) – length of vector q

dot(q, u) – dot product of vector q and vector u
p[x] – point from P representing pattern x in R3

for x ∈ X do F[p[x]] ← 0
for x ∈ X do

a ← p[x]
for y ∈ S[x] do

b ← p[y]
r ← a− b
if len(r) < rc then

force = g ∗ (1− len(r)/rc) ∗ (1− len(r)/rc)
force = force ∗dot(V[a]−V[b], r/len(r))∗r/len(r)
F[a] ← F[a]−force
F[b] ← F[b]+force

return F
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Function RForces(X, S, P, T, g, rc) calculate random forces for Algorithm 3

input : X – set of patterns
S – terms in the truncated stress function, selected with

Algorithm 1
P – set of points in R3 representing patterns in X
T – current DPD temperature
g, rc – dissipative forces coef. and cut-off distance for DPD forces

output : F– random forces acting on points from P
notation: sqrt(z) – square root of z

len(q) – length of vector q
nrand() – generate random number from N(0, 1) distribution
p[x] – point from P representing pattern x in R3

for x ∈ X do F[p[x]] ← 0
for x ∈ X do

a ← p[x]
for y ∈ S[x] do

b ← p[y]
r ← a− b
if len(r) < rc then

force = sqrt(2 ∗ g ∗ T)∗ (1− len(r)/rc)
force = force ∗nrand()∗r/len(r)
F[a] ← F[a]+force
F[b] ← F[b]−force

return F
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