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Abstract. Most learning algorithms are designed to work on a single dataset.
However, with the growth of networks, data is increasingly distributed over many
databases in many different geographical sites. These databases cannot be moved to
other network sites due to security, size, privacy, or data ownership consideration.
In this paper, we propose two decomposable versions of Naive Bayes Classifier for
horizontally and vertically partitioned data. The goal of our algorithms is to achieve
the learning objectives for any data distribution encountered across the network by
exchanging minimum local summaries among the participating sites.
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1 INTRODUCTION

Classification is a predictive modeling task with the specific aim of predicting the
value of a single nominal variable based on the known values of other variables.
There are many practical situations in which classification is of immense use. Exam-
ples include: providing a diagnosis for a medical patient based on a set of test
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results, estimating the probability of purchase of a given item given the other items
purchased, and others.

Though there are some organizations which single-handedly collect a lot of data
on their own, often large correlated data is collected over many sites. It is possible
that several organizations collect similar data about different people (horizontal par-
titioning of data). Examples include: banks collecting credit card information for
their customers or supermarkets collecting transaction information for their clients.
On the other hand, different organizations may collect different information about
the same set of people (vertical partitioning of data). Examples of this include:
hospitals and insurance companies collecting information or producer/consumer in-
dustrial concerns collecting data which can be jointly linked.

The Naive Bayes classifier (NB-classifier) is a simple but efficient baseline clas-
sifier. NB-classifier is based on a Bayesian formulation of the classification problem
which uses the simplifying assumption of attribute independence. It is simple to
implement and use while giving surprisingly good results. Thus, preliminary evalu-
ation is carried out using the NB-classifier to serve both as a baseline and to decide
whether more sophisticated solutions are required.

The problem of secure distributed classification is an important one. The goal
is to have a simple, efficient and privacy-preserving classifier. The sites have agreed
to work together so that a user at any site can access data anywhere in the network
exactly as if the data were all stored at the user’s own site; and all the data can be
simultaneously accessed. The site that initiated request is called the Learner site
(the site to which a user is directly connected), and any other site is called remote site
(any site accessed by that user). While a distributed environment enables increased
access to a large amount of data across a network, it must also hide the location of
the data and the complexity of accessing it across the network. The main limitations
in these situations are that databases cannot move to a common site due to size,
security and privacy consideration; cannot update local databases; and cannot send
actual data tuples [1, 2, 3, 4, 5, 6, 7, 8].

In a distributed learning scenario, the data set is assumed to be physically dis-
tributed across multiple autonomous sites and the learner’s task is to acquire useful
knowledge from this data. Learning can be accomplished by an agent that visits the
different sites to gather the information necessary for generating knowledge (e.g., in
the form of pattern classification rules) by processing the data where it is stored.
Alternatively, the different sites can transmit the information necessary to the learn-
ing agent situated at the Learner site. In either case, we prohibit transport of raw
data among different sites. Consequently, the learner has to rely on information
(e.g., number of instances that match some criteria of interest) extracted from the
sites.

We present a methodology for constructing a NB-classifier across multiple dis-
tributed databases. This methodology consists of a general model for decomposable
NB-classification and a set of algorithms for realizing this model. Our approach to
learn from distributed data sets involves identifying the information requirements of
existing learning algorithms, and designing efficient means of providing the neces-
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sary information to the learner, while avoiding the need to transmit large quantities
of data. This decomposition of the learning task into information extraction and
hypothesis generation components offers a general approach to adapting the existing
learning algorithms to work in the distributed setting. In this model of distributed
learning, only the information extraction component has to effectively cope with the
distributed nature of the data.

The rest of the paper is organized as follows: Section 2 describes the related work
in this area. Section 3 briefly describes integration of distributed data. Section 4
presents the NB-classifier from horizontally and vertically distributed data. Section 5
presents the simulation results. In Section 6, we discuss the advantages and security
considerations of our algorithms. Finally, Section 7 concludes the paper.

2 RELATED RESEARCH

Many practical knowledge discovery tasks present several new challenges in machine
learning. The data repositories in such applications tend to be very large, physi-
cally distributed, and autonomously managed. Learning from databases is a great
practical value in a variety of application domains and NB-classifier is an old and
well-known type of classifiers. Most of the learning algorithms in the literature
assume that all the relevant data is available in a single computer site [9].

In the context of database research, some work has been done towards learning
from distributed databases for example [10, 11, 12, 13, 14, 15]. Most of the existent
algorithms work for horizontal data distributions, with a few exceptions. [15] pro-
posed methods for distributing a large centralized data set to multiple processors to
exploit parallel processing to speed up learning. [12, 14] surveyed several methods
that exploit parallel processing for scaling up data mining algorithms to work with
large data sets. In contrast, the focus of our work is on learning classifiers from a set
of autonomous distributed data sources.

Several distributed learning algorithms have their roots in ensemble methods,
[10, 11, 13] proposed an ensemble of classifiers approach to learn from horizontally
fragmented distributed data which essentially involves learning separate classifiers
from each data set and combining them typically using a weighted voting scheme.
This requires gathering a subset of data from each of the data sources at a Learner
site to determine the weights to be assigned to the individual hypotheses (or ship-
ping the ensemble of classifiers and associated weights to the individual data sources
where they can be executed on local data to set the weights). In contrast, our ap-
proach is applicable even in scenarios which preclude transmission of data or execu-
tion of user-supplied code at the individual data sources but allow transmission of
minimal sufficient statistics needed by the learning algorithm. The second potential
drawback of the ensemble of classifiers approach to learn from distributed data is
that the resulting ensemble of classifiers is typically much harder to comprehend
than a single classifier. The third important limitation of the ensemble classifier
approach to learn from distributed data is the lack of strong guarantees concerning
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accuracy of the resulting hypothesis relative to that obtained in the centralized set-
ting. In contrast, we prove that our resulting hypothesis is similar to the hypothesis
obtained in the centralized setting.

The task of learning from relational data has received significant attention in
the literature in the last few years. One of the first approaches to relational learning
was based on Inductive Logic Programming (ILP) [16]. ILP is a broad field which
evolved from the development of algorithms for the synthesis of logic programs
from examples and background knowledge to the development of algorithms for
classification, regression, clustering, and association analysis [17].

In [18], the authors gave a good explanation why a NB-classifier works sur-
prisingly well despite its strong independence assumption. However, since those
assumptions rarely ever hold in real applications, it is interesting to explore net-
works beyond a NB-classifier. Although the reasons explaining the competitive-
ness of NB-classifier remain unclear, several studies have revealed useful infor-
mation; examples include studies about the conditions for its optimality [18]; its
geometric properties [19]; and how the product distribution implied by the indepen-
dence assumption compares to most other joint distributions with the same set of
marginals [20].

The work in [21] provided privacy-preserving solutions for mining a NB-classifier
across a database horizontally partitioned into a small number of partitions. The
author used secure summation and logarithm techniques to create a privacy pre-
serving NB-classifier for horizontally partitioned data. Our approach is based on
a general strategy for transforming traditional machine learning algorithms into dis-
tributed learning algorithms based on the decomposition of the learning task into
hypothesis generation and information extraction components; formally defines the
information required for generating the hypothesis (sufficient statistics); and shows
how to gather the sufficient statistics from distributed data sources. We decompose
the counting process in such a way that various local count requests can be sent to
sites of individual Dks and the responses can then be composed to reconstruct the
total count for the examples in implicit training set.

The work in [22] provided privacy-preserving solutions for mining a NB-classifier
across a database vertically distributed data mining scenario when different sites
contain different attributes for a common set of entities (special case of distributed
data). Security requirements to be met in this algorithm demand that a site can
know only its own attribute-value pairs when they become parts of the global one.
Our algorithm does not assume any conditions on the data partition at any one of
the participating sites.

Central to our approach is a clear separation of concerns between hypothesis
construction and extraction of sufficient statistics from data, making it possible to
explore the use of sophisticated techniques for query optimization that yield optimal
plans for gathering sufficient statistics from distributed data sources under a speci-
fied set of constraints describing the query capabilities and operations permitted by
the data sources.
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3 INTEGRATION OF DISTRIBUTED DATA

In a distributed setting, a dataset D implicitly defined in n explicit databases Di

located at n different sites. We model databases Di at the ith site, by a relation
containing a number of tuples. Each Di contains set of attributes represented by Xi.
For any two databases Di and Dj, the corresponding sets Xi and Xj may have a set
of shared attributes given by Sij. Since an arbitrary number of independent, already
existing, databases may be consulted for a computation, we cannot assume any data
normalization to have been performed for their schemas.

The implicit data set D with which the computation is to be performed is a sub-
set of the set of tuples generated by a Join operation performed on all Di. However,
the tuples of D cannot be made explicit at any one network site because entire
databases, Di’s, cannot be moved to other sites. The tuples of D, therefore, must
remain implicitly specified. This inability to make explicit the tuples of D is the
main problem addressed in the generalized decomposition of global algorithms. To
facilitate computations with implicitly specified D, we define a set S that is the
union of all the attribute intersection sets Sij, that is,

S =
⋃
i 6=j

Sij. (1)

The set S contains the names of all those attributes that occur in more than one Di.
We define a relation Shareds which contains all possible tuples that can be enumer-
ated for the attributes in the set S.

3.1 Nature of Data Distribution

The dataset D consists of a set of tuples where each tuple stores the values of relevant
attributes. The distributed nature of such a dataset can lead to two common types
of data partition: horizontal partition wherein subsets of data tuples are stored at
different sites; and vertical partition wherein subtuples of data tuples are stored at
different sites. Assume that a dataset D is distributed among n sites containing
databases D1, D2, . . . , Dn. The individual databases Di, together, constitute the
implicit global dataset D.

Horizontally Partitioned Datasets: In this scenario each component Di of D1,
D2, . . ., Dn contains the same attribute set Xi, but a different set of data tuples.
The set of Shared attributes S is the same as Xi, for each database. The union of
all databases Di constitutes the complete dataset D, i.e., D1∪D2∪ . . .∪Dn = D.

Vertically Partitioned Datasets: In this scenario, each component Di consists
of tuples formed with a different set of attributes but each with those of some
other databases, Dj, j 6= i. Each Di may also contain some attributes that are
unique to the local site and are not Shared with a database at any other site.
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In effect, each Di is a projection of an implicit global D. Vertically fragmented
datasets are of more interest because they provide an opportunity to share knowledge
across the participating sites.

As shown in Figure 1 each Di is represented by an agent Agenti that communi-
cates with similar agents at other sites to exchange simple computational summaries.
The algorithms discussed here can be seen to reside with these agents and any one
of these agents is capable of initiating and completing a computational task by
exchanging summaries with agents at other sites.

Agent
1

AgentnAgent2

D1 D2 Dn...................

 x1   x2   x3   x4             x3   x4    x5    x6                          x1      x5       x12         Attributes

Network

Databases

Interface Agents

Fig. 1. Distributed data/knowledge sources

3.2 Agent’s Decomposition Task

The objective of an agent is to perform the global computation by communicating
with other similar agents at other sites; and each agent performing some compu-
tation with its local database. Each agent should be able to decompose the global
computation into local computations – in the context of and as constrained by the
sharing of attributes across the participating agents – and perform its local part with
its own data. Each agent Agenti in Figure 1 represents a Di and communicates with
similar agents at other nodes to exchange the results of its local computations. The
decomposition methodologies discussed here can be seen to reside with each indivi-
dual agent; and each agent is also capable of initiating and completing an instance
of a global computation by either exchanging local results with other agents, sta-
tionary at their respective sites, or by launching a mobile agent that visits other
network sites. In the case of a mobile agent the decomposition tools and knowledge
reside with the mobile agent.

Let us say a result R is to be obtained by applying a function F to the implicit
dataset D. That is:

R = F(D). (2)

When the global computation is to find a count in distributed data components, the
value of R is the count across the global data; D is the database containing the data;
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and F corresponds to the implementation of an algorithm for inducing R, from D.
Distributed databases used by the agents cannot make explicit the tuples of D,
which remain implicit in terms of the explicitly known components D1, D2, . . . , Dn.
The set S of Shared attributes determines what explicit D would be generated by
the individual data components. An implementation of F in Equation (2) above,
for some S, can be engineered by a functionally equivalent formulation given as:

R(S) = H[h1(D1, S), h2(D2, S), . . . , hn(Dn, S)]. (3)

That is, a local computation hi(Di, S) is performed by agent Agenti using the
database Di and the knowledge about the attributes Shared among all the data
sites (S). The results of these local computations are aggregated by an agent using
the operation H. However, it may not be possible to decompose a complex com-
putation algorithm into local computations and an aggregator. In this case, we can
decompose smaller computational primitive steps of such a complete algorithm and
the agent keeps track of the control aspects of sequencing various steps of such an
algorithm.

The number and nature and hi operators and the nature of H would vary with
the participating Dis and the set of attributes S among them. Hence, a different
set of h-operators would need to be generated by the agent for each new instance
of Di’s and S.

Figure 2 shows the process by which the agent would compute R from the Dis.
The component operators of a decomposition (H and his), therefore, need to be
dynamically determined by the agent for each instance of F(D) depending on the
participating nodes, the attributes contained in their native databases, and the
sharing pattern of attributes.

3.3 Software Agents

In our work, we consider Agent as “a piece of software which performs a given task
using information gleaned from its environment to act in a suitable manner so as
to complete the task successfully”. An agent should be able to adapt itself based
on changes occurring in its environment, so that a change in circumstances will still
yield the intended result. Agents are used to represent actors in a cooperative effort,
and give the users of the agent system support for doing efficient negotiation, and
exchange of information.

Agents may be classified by their mobility, i.e. by their ability to move around
some network. This yields the classes of stationary agents that stay at their respec-
tive data sites; or mobile agents that move from one site to the other.

Stationary Agent executes only on the site where it begins execution. If it needs
information that is not on that site, or needs to interact with other similar
agents at other sites for exchanging (sending/receiving) simple computational
summaries to perform the global computations, it uses message passing as a com-
munication mechanism.
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Local Computations

H- Decompostion

Fig. 2. Computations in explicit vs. implicit data spaces

Mobile Agent is not bound to the system where it begins execution. The mobile
agent is free to migrate during execution from one site to another where it can
resume its execution in order for perform local computations at each site that
it visits, and at the end compose the gathered results for performing the global
computations.

3.4 Cost Models for Algorithmic Complexity

Traditionally, the complexity of algorithms has been measured in terms of the CPU
time and the required memory. This cost model is well-suited for computations
on a single computer and the closely-coupled processors model. When a number
of loosely networked nodes are involved in a cooperative computation the commu-
nication cost becomes the overwhelmingly dominant component of the total cost.
Complexity for distributed query processing in databases has been discussed in [26].
In our experience with the design and analysis of decomposable network algorithms,
we have found that each step of the algorithm must exchange a number of mes-
sages for evaluating the various quantitative values. Here and in other similar
work [1, 2, 3, 4, 5, 6, 7], we have used cost models involving the number of messages
exchanged and reflecting the efficiency of decomposition carried out by the network
algorithm.
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4 LEARNING NB-CLASSIFIER FROM DISTRIBUTED DATA

Traditionally, the NB-classifier applies to learning tasks where each instance x is
described by a conjunction of attribute values and where the target function f(x)
can take on any value from some finite set V [23, 24, 25]. A set of training examples
of the target function is provided, and a new instance is presented, described by the
tuple of attribute values 〈a1, a2, . . . , am〉. The learner is asked to predict the target
value, or classification, for this new instance. The Bayesian approach to classify the
new instance is to assign the most probable target value, vMAP , given the attribute
values 〈a1, a2, . . . , am〉 that describe the instance.

vMAP = argmaxvj∈V (P (vj|a1, a2, . . . , am)). (4)

Using Bayes theorem,

vMAP = argmaxvj∈V (P (a1, a2, . . . , am)P (vj)). (5)

The NB-classifier makes the further simplifying assumption that the attribute values
are conditionally independent given the target value. Therefore,

vNB = argmaxvj∈V P (vj)
m∏
i=1

P (ai|vj), (6)

where vNB denotes the target value output by the NB-classifier. The conditional
probabilities P (ai|vj) need to be estimated from the training set. The prior proba-
bilities P (vj) also need to be fixed in some fashion (typically by simply counting the
frequencies from the training set). The probabilities for differing hypotheses (classes)
can also be computed by normalizing the values received for each hypothesis (class).
Probabilities are computed differently for nominal and numeric attributes.

4.1 Sufficient Statistics for NB-Classifiers

In NB-classifier, a hypothesis is built during the learning phase, and is used during
the classification phase to classify new instances. The set of probabilities P (vj)
and P (ai|vj), representing the hypothesis, can be computed based on the following
counts:

• Nt is the total number of training examples.

• Nvj is the number of training examples in class vj.

• Nij is the number of training examples in class vj and has the attribute value ai.

These counts represent the sufficient statistics for the hypothesis build during
the learning phase of NB-classifier. In our distribution version of NB-classifier,
we will show how the minimal sufficient statistics can be computed, when data is
horizontally and vertically distributed.
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4.2 Decomposable NB-Classifier for Horizontally Partitioned Data

In the horizontally distributed setting, we compute the minimal sufficient statistics
by computing the following counts at every participating site k and then ship the
results to the Learner:

• The total number of training examples (Nk
t ).

• The number of training examples in class vj, (Nk
vj

) .

• The number of training examples in class vj that have the attribute value ai,(
Nk

ij

)
.

Since in horizontally D = D1
⋃
D2

⋃
. . .
⋃
Dn, hence |D| = |D1|+|D2|+. . .+|Dn|.

Therefore, the global counts are obtained at the Learner site by adding up local
counts. The pseudocode for horizontally distributed data is shown below:

Learning Phase: Given a new instance x =< a1, a2, . . . , am > to be classified.

Local Computation: the following code will be executed at every participat-
ing site Dk

1. Compute the count of training examples Nk
t

2. for every class label vj do

(a) Compute the count of training examples in class vj, N
k
vj

(b) for every attribute value ai do

i Compute the count of training examples in class vj and has the
attribute value ai, N

k
ij

(c) Ship back all computed counts to the Learner site

Global Computation: At the Learner site and from the shipped data, com-
pute the following:

Nt =
∑n

k=1N
k, Nvj =

∑n
k=1 N

k
j , and Nij =

∑n
k=1N

k
ij P (vj) =

Nvj

Nt
, and

P (ai|vj) = Nij

Nvj
.

Classification Phase: For the instance x =< a1, a2, . . . , am > compute

vNB = argmaxvj∈V P (vj)
m∏
i=1

P (ai|vj). (7)

4.2.1 Complexity and Analysis

Stationary Agent Case
Let us say, there are n relations, D1, D2, . . . , Dn residing at n different network
sites.
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Cost Model 1: In this cost model, the number of required exchanged messages
will be 3 ∗ n, where the number of messages required to compute Nt is n,
the number of messages required to compute Nvj is n, and the number of
messages required to compute Nij is n. The result shows that the number of
messages that need to be exchanged among the sites is not dependent on the
size of the database at each site. This is significant because it shows that as
the sizes of the individual databases grow, the communication complexity of
our algorithm would remain unaffected.

Cost Model 2: In this cost model, all the summaries are sent in one message.
Each count would require to exchange only one message. Thus, the total
number of messages will be 3 exchanged messages.

The trade-off between the two approaches is that the first one may be considered
more secure for transmission over a network because each message contains only
little information about the participating databases. The second alternative
requires very few messages but each message contains more information about
each database.

Mobile Agent Case
The mobile agent has the relation Shareds stored in it. During a visit to a data
site, it computes all local computations for that site. The local results for all
counts can be gathered during a single visit to a site. Thus, the mobile agent
can compute all probabilities for each new instance x by visiting each site only
once (n hops) and then aggregate the local results.

Assertion 1. The algorithm for learning NB-classifiers from horizontally distri-
buted data returns the same results with respect to the algorithm for learning NB-
classifier from centralized data.

Proof. In horizontally distributed data, the training examples can be reconstructed
from D1, D2, . . . , Dn by taking the union of these subsets, i.e., D = D1

⋃
D2

⋃
. . .
⋃

Dn, hence |D| = |D1|+ |D2|+ . . .+ |Dn|. Therefore, the global counts are obtained
at the Learner site by adding up the local counts, i.e., we obtain the same numbers
as if we brought all the data together and compute the counts globally. 2

4.3 Decomposable NB-Classifier for Vertically Partitioned Data

Here, we assume that the training examples are in the vertically distributed form.
The algorithm for learning NB-classifier from vertically distributed data is shown in
the following:

Learning Phase Given a new instance x to be classified, the following steps will
be executed at the Learner site:

1. Call Count-Computing( ) to compute the total number of training exam-
ples Nt.
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2. Call Count-ComputingNvj( ) to compute the count of training examples,
Nvj , in class vj.

3. Call Count-ComputingNij( ) to compute the count of the training examples,
Nij, in class vj that have attribute value ai.

4. Compute P (vj) =
Nvj

Nt
, and P (ai|vj) = Nij

Nvj
.

Classification Phase: For the instance x = 〈a1, a2, . . . , am〉 return

vNB = argmaxvj∈V P (vj)
m∏
i=1

P (ai|vj). (8)

In the following, we introduce the Count-Computing procedures for computing
minimal sufficient statistics from vertically distributed databases.

4.3.1 Count-Computing Procedure

When the training examples of a complete training set D are explicitly available in
a relation then the count of all its tuples can be obtained easily. For the case of
implicitly defined D, we can decompose the counting process in such a way that
various local count requests can be sent to sites of individual Dks and the responses
can then be composed to reconstruct the total count for the examples in implicit
training set. The decomposition for obtaining the count Nt is as follows:

Nt =
∑
l

(
n∏

k=1

N(Dk)condl

)
, (9)

where the subscript cond l specifies a condition composed from the attribute value
pairs of the lth tuple of the relation Shareds, n is the number of participating
databases (Dks), and (N(Dk)cond l

) is the count in relation Dk of those training
examples that satisfy the condition cond l. Each term in the product is the count of
tuples which satisfy condition cond l in a Dk. The resulting product gives the number
of distinct tuples that would be contributed to the implicit join of all the Dks for the
condition specified by cond l. The summations in the above expression amount to se-
lecting each tuple of Shareds as cond l and then summing the product terms obtained
for each tuple. This expression, therefore, simulates the effect of a join operation per-
formed on all the n databases without explicitly enumerating the tuples. A desirable
aspect of the above decomposition of Nt is that each local computation N(Dk)cond l

can be translated into an SQL query: Select count (*) where cond l and sent to the
site containing database Dk. The pseudocode for computing Nt is shown below:

Local Computation: The following code will be executed at every local data
site Dk

1. for every Shared tuple l do

(a) Compute N(Dk)cond l
, and ship the results back to the Learner site

2. end for
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Global Computation: The following code will be executed at the Learner site

1. for every Shared tuple l, compute the total number of training examples that
satisfy cond l from the following relation:

Nl =
n∏

k=1

N(Dk)cond l
. (10)

2. Compute the total number of examples from the following relation:

Nt =
∑
l

Nl =
∑
l

(
n∏

k=1

N(Dk)cond l

)
. (11)

4.3.2 Count-Computing Nvj Procedure

We can easily extend the above decomposition for count to the counts of only those
tuples that satisfy certain condition (class = vj) by simply changing cond l in Equa-
tion (9) to cond l.and .class = vj; then Equation (9) will be

Nvj =
∑
l

(
n∏

k=1

N(Dk)cond l.and .class=cj

)
. (12)

4.3.3 Count-ComputingNij Procedure

We can easily determine the number of training examples in class vj and have
attribute value ai by simply changing cond l in Equation (9) to (condl .and .class =
vj.and .attr = ai); so the formula to compute Nij will be

Nij =
∑
l

(
n∏

k=1

N(Dk)cond l.and .class=vj .and .attr=ai

)
. (13)

4.3.4 Complexity and Analysis

Stationary Agent Case
We give below an expression for the number of messages that need to be ex-
changed for dealing with the implicit number of tuples. Let us say there are:

• n relations, D1, D2, . . . , Dn residing at n different network sites,

• r tuples in the relation Shareds.

Cost Model 1: The number of messages needed will be the sum of the number
of messages required to compute Nt, the number of messages required to
compute Nvj , and the number of messages required to compute Nij, each of
which will take n∗r messages. Thus, the total number of messages exchanged
will be:

Total Exchanged Messages = 3n ∗ r. (14)
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Cost Model 2: In this cost model, values corresponding to all tuples cond j of
S will be sent in one request and then receive the summaries in one message.
This reduces the number of messages exchanged to n, the same as the number
of participating sites. Thus, the total number of messages exchanged will be:

Total Exchanged Messages = 3 ∗ n. (15)

Mobile Agent Case
This agent has the relation Shareds stored in it. During a visit to a data site, it
computes all local computations for that site. The local results for computing
all the counts can be gathered during a single visit to a site. Thus, the mobile
agent can compute all probabilities for each new instance x by visiting each site
only once (n hops) and then aggregating the local results.

Assertion 2. The algorithm for learning NB-classifiers from vertically distributed
data return the same results with respect to the algorithm for learning NB-classifiers
from centralized data.

Proof. It is obvious that the counts Nt, Nvj , Nij computed in the distributed
case are the same as the counts computed in the centralized case. Then the set of
probabilities P (vj), P (ai \ vj) are identical. i.e., we obtain the same results as if we
brought all the data together and compute these probabilities globally. 2

5 SIMULATION RESULTS

We have performed a number of tests to demonstrate that the NB-classifier can
be run in a distributed knowledge environment without moving all the databases
to a single site. These tests have been carried out on a network of workstations
connected by a LAN and tested against different sizes of databases, different number
of shared tuples, and different number of local sites. We have implemented the
algorithm using Java, RMI (Remote Method Invocation), and JDBC (Java Database
Connectivity) to interface with the databases.

In the first test, we demonstrate how the elapsed time and the number of ex-
changed messages varies with the number of local sites. The number of the local
sites varies between 2 and 6 with increment of 1. Figure 3 shows how the elapsed
time to compute NB-classifier in an implicit database D changes with the number of
local sites. It can be seen easily that the elapsed time increases with the number of
local sites. Also, Figure 4 shows that the number of exchanged messages increases
with the number of local sites.

In the second test, we demonstrate how the elapsed time and the number of
exchanged messages varies with the average number of shared tuples between local
databases. The number of shared values varies between 5 and 25 with increment of 5.
Figure 5 shows the elapsed time to compute NB-classifier in an implicit database D.
The figure shows that the elapsed time increases as the number of shared values
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Fig. 3. Elapsed time to run NB-classifier on vertically partitioned data (different local
sites)

Fig. 4. Number of messages exchanged to run NB-classifier on vertically partitioned data
(different local sites)
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increases. Also, Figure 6 shows that the number of exchanged messages increases
as the number of shared values increases.

Fig. 5. Elapsed time to run NB-classifier on vertically partitioned data (different number
of Shared tuples)

In the last test, we demonstrate how the elapsed time and the number of
exchanged messages vary with the number of tuples in the database. Figure 7
shows the change between elapsed time to compute NB-classifier in an implicit
database D and the number of tuples in the database. It shows that the time
taken to compute NB-classifier in an implicit database D changes with the size
of the individual databases. As we can see, when we exchange one summary per
message, the time taken to run the NB-classifier varies as the size of the database
increases. However, when we use the optimized method the time taken to run
the NB-classifier reduces considerably and depends on the number of participating
nodes.

Figure 8 shows the change between the number of exchanged messages and the
number of tuples in the database. It shows how the number of messages exchanged
between the Learner site and the remote sites varies with the number of tuples in
the database. It can be seen easily that the number of messages exchanged increases
with the size of the database when we send one summary per message. However,
in the optimized version when we receive all the summaries in a single message, the
number of messages exchanged was a constant depending upon the total number
of participating nodes. The result validates the expression for the total number of
messages exchanged as given above.
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Fig. 6. Number of messages exchanged to run NB-classifier on vertically partitioned data
(different number of Shared tuples)

Fig. 7. Time taken to run NB-classifier on vertically partitioned data (different number of
tuples in database)



1528 A. M. Khedr

Fig. 8. Number of messages exchanged to run NB-classifier on vertically partitioned data
(different number of tuples in database)

6 ADVANTAGES AND SECURITY CONSIDERATIONS

The above analysis of complexity shows that the number of messages that need to be
exchanged among the sites is not dependent on the size of the database at each site.
The communication complexity, in the case of vertically or horizontally partitioned
data, is dependent primarily on the number and manner in which the attributes
are shared among the participating sites. This is significant because it shows that
as the sizes of the individual databases grow, the communication complexity of
the algorithm would remain unaffected. Computational cost of local computations
would grow with the database size at each individual site but our decomposable
versions has an advantage in this regard also over the transport, join, and then run
NB-classifier alternative.

If each local database Di has p tuples, then in the worst case the join of n local
databases would produce a relation containing order of pn tuples. There is additional
cost of order of (n ∗ p) comparisons for creating the Join. When the NB-classifier
algorithm is run with this explicitly created D, we would need to compute 3 counts.
In our decomposable version, each of the n sites would be computing only 3 counts.
Thus, there is tremendous saving in the computational cost when the decomposable
version is executed instead of moving the data, creating a Join and then running
the NB-classifier algorithm. Also, for the communication cost, the number of partial
results that need to be transmitted is much lower than that of the messages that
may have to be transmitted if entire databases are collected at some central site.
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Another important gain of decomposable version is that it preserves the privacy
of the data by not requiring any data tuples to be placed on a communication
network. It also preserves the integrity of individual databases because no site
needs to update or write into any of the participating databases. All the queries are
strictly reading queries.

We have demonstrated above that NB-classifier algorithm can return same re-
sults for distributed databases without having to move the databases to a centralized
site. From the point of view of data security and privacy, no data tuple is exchanged
between the sites. If the information security and privacy is defined by not having to
release any data tuple out of a database for transmission over the network and the
reconstruction of any data tuple being impossible by the released data summaries
then the above algorithm preserves the privacy of the data in each participating
database. No data tuple is ever transmitted and the summaries are not sufficient to
reconstruct any individual data tuple.

7 CONCLUSION

In this paper, we have presented a decomposable version of NB-classifier algo-
rithm for vertically and horizontally partitioned datasets that are geographically
distributed. We have defined the problem of learning from distributed data, pre-
sented a general strategy for transforming algorithms for learning from centralized
data into algorithms for learning from distributed data. This strategy is based
on the decomposition of an algorithm into information extraction and hypothesis
generation components. The information extraction from distributed data entails
decomposing each statistical query posed by the information extraction component
of the learner into local computations that can be performed by the individual data
sources, and a procedure for combining the results of local computations into an ans-
wer for the original query. We have applied this strategy to design algorithms for
learning the NB-classifier from horizontally and vertically partitioned data.
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