
Computing and Informatics, Vol. 31, 2012, 1597–1615

A NOVEL APPROACH TO EXTRACT HIGH UTILITY
ITEMSETS FROM DISTRIBUTED DATABASES

Kannimuthu Subramanian

Department of IT
Sri Krishna College of Engineering and Technology
Coimbatore-641008, Tamil Nadu, India
e-mail: kannimuthu.me@gmail.com

Premalatha Kandhasamy

Department of CSE
Bannari Amman Institute of Technology
Sathyamangalam-638401, Tamil Nadu, India
e-mail: kpl barath@yahoo.co.in

Shankar Subramanian

Department of IT
Sri Krishna College of Engineering and Technology
Coimbatore-641008, Tamil Nadu, India
e-mail: shanx80@gmail.com

Communicated by Patrick Brézillon

Abstract. Traditional approaches in data mining focus on support and confidence
measures which are just statistics based. Support and confidence measures which
are based on the frequency count of the items enable us to derive the frequent
itemsets. The frequency of the items as a single factor does not represent the
interestingness of the items. To enhance the process of data mining tasks based on
the value of the product, several researches were conducted. It resulted in utility
mining which is an emerging field of research in data mining. In the recent years
various data mining approaches have been implemented in order to find the high

1598 K. Subramanian, P. Kandhasamy, S. Subramanian

utility itemsets. The main objective of utility mining is to identify the itemsets with
highest utilities, by considering the subjectively defined utility values, as set by the
user. Existing methods based on utility mining concept focus on centralized systems
where the data and associated processing is pertained to a particular location. As
a further step ahead we try to implement the utility mining concept in a distributed
environment. In this approach we use a sophisticated way of mining high utility
itemsets using a Fast Utility Mining (FUM) algorithm.

Keywords: ARM, data mining, distributed database, FUM, HUI, FUM-D, UMin-
ing, utility mining

Mathematics Subject Classification 2010: 68R05

1 INTRODUCTION

Data mining is a process of extracting information from data which are implicit,
previously unknown, and potentially useful. It is an analytical tool that allows
a user to analyze the data from different proportions, categorize it, and contract the
relationships identified. The major components that play an important role in data
mining are: clustering, classification and link analysis. Data mining tools predict
future trends and behaviors that allow businesses to make anxious and knowledge-
driven decisions. In the past years, most of the emerged approaches derive only the
frequent itemsets in the database, for example Association Rule Mining (ARM) that
describes the relationship between the disjoint sets and considerably manipulates
in finding co-occurrences, frequent pattern and statistical correlation. According
to users preference the ARM does not reflect the itemsets semantic significance.
Applications may have different objectives for data models; thus, there is no single
measure that is suitable for every application. To make it more efficient, many
algorithms were developed [3, 6, 7, 8, 13, 14, 15, 16, 19, 20, 21, 22, 23, 24] based on
the value of the product as prescribed by the users, which in turn resulted in utility
mining.

Utility mining is followed in order to find the high utility itemsets from the given
data sets. To overcome some of the limitations of traditional approaches, a new
algorithm termed as Fast Utility Mining [13] was developed to find the high utility
item sets. It is simpler and executes faster than UMining [21] algorithm. Existing
methods based on utility mining work on centralized systems. The proposed work
here is to implement the FUM algorithm in distributed environment to find the high
utility itemsets over various slave sites and providing the overall utility value at the
master site.

The data being stored at different locations are subjected to a two stage pro-
cess. In the first stage we determine the utility values for the itemsets at each
individual location in the distributed network. The utility values are calculated at

A Novel Approach to Extract High Utility Itemsets from Distributed Databases 1599

the slave sites in a parallel manner thereby improving the overall performance in
the distributed network. In the second stage we calculate the total utility for the
itemsets at the master site. This is done by augmenting the values from the indi-
vidual slave sites using a distributed utility mining algorithm. The result is filtered
by subjecting it to a comparison process with the utility threshold to result in high
utility itemsets. A distributed utility mining algorithm is used globally, in order to
combine, compare and generate the itemsets of high utility value from all slave sites
in the distributed network.

The practical usefulness of mining high utility itemsets from the distributed
databases is best clarified in the following examples.

Example 1 (Retail Marketing). The most established supermarkets have their
branches all over the world. A separate database is maintained in each branch
to keep track of the purchasing behavior of consumers. Data analyst needs to inte-
grate the databases spread over the world to mine high utility itemsets which takes
more time and requires more memory to compute high utility itemsets. In this si-
tuation the algorithm needs to be proposed to perform high utility itemset mining
from the distributed databases without database integration so that the execution
time and memory consumption is reduced.

Example 2 (Web Mining). High utility itemset mining approach is helpful for find-
ing significant itemsets in many applications. Consider a table viewed as represent-
ing a set of web pages for web mining, with each column representing a keyword,
each row representing a webpage, and the value in each cell indicating the num-
ber of occurrences of that keyword in the webpage. There is another table utilized
to represent user’s preference among these keywords. By using the utility mining
algorithm the web pages matching a user’s interest could be discovered. If these
databases are distributed over different places, the data integration has to be done
since existing utility mining algorithms only accepts centralized databases. In this
way, mining of high utility itemsets from distributed databases is the need of hour.

Example 3 (E-Commerce). Utility mining is a powerful tool to realize cross selling.
Cross selling is a marketing strategy to sell a new product or service to the customer
who already used the products of the same enterprise. An old customer is more likely
to accept if the enterprise is introducing a new product so that we can increase the
sales of the new product. Consider XYZ Company is well established in selling
refrigerators. When a client buys a XYZ refrigerator online, he/she would definitely
be in need of a stabilizer. The mostly preferred, best manufacturer of stabilizers is
ABC Company. Meanwhile, XYZ Company will also be manufacturing stabilizers
but it might not be in the frequently sold items list or might be newly introduced in
the market. In order to promote the non-frequent item “stabilizer” of XYZ company,
utility mining may be used to find the high utility itemsets in a database that is
located anywhere in the location. Consider one of the High Utility Itemsets (HUI)
to be a XYZ company refrigerator and ABC company stabilizer. For promoting the
stabilizer manufactured by XYZ, it can be sold at discounted price.

1600 K. Subramanian, P. Kandhasamy, S. Subramanian

The remaining parts of the paper are organized as follows. In Section 2, ba-
sic concepts of utility mining and algorithms are presented. Section 3 discusses
distributed data mining. In Section 4, the proposed approach to mine high utili-
ty itemsets from distributed databases is explained. In Section 5 all experimental
results are discussed. Section 6 concludes the paper.

2 RELATED WORK

In today’s world the most provoking task is mining of high utility itemsets precisely.
High utility itemsets being identified is manifested as utility mining. Utility mining
is a vast area which wraps all aspects of mercantile utility in data mining. The utility
value of an itemset can be computed in terms of cost, profit or other interpretation of
user preferences. An itemset x is said to be a high utility itemset if and only if u(x) ≥
minUtil, where minUtil is a user defined minimum utility threshold. This subsection
starts with the definition of a set of terms that leads to the formal definition of utility
mining problem which is given in [22].

2.1 Basic Concepts and Definitions

I = {i1, i2, . . . , im} is a set of items, D= {T1, T2, . . . , Tn} is a transaction database
where each transaction Ti ∈ D is a subset of I. o(ip, Tq) is local transaction utility
value, representing the quantity of item ip in transaction Tq, for example, o (A, T8) =
3, in Table 1. s(ip), external utility, is the value associated with item ip in the
utility table. This value reflects the importance of an item, which is indepen-
dent of transactions; for example, in Table 2, the external utility of item A, s(A)
is 3.

TID A B C D E

T1 0 0 18 0 1

T2 0 6 0 1 1

T3 2 0 1 0 1

T4 1 0 0 1 1

T5 0 0 4 0 2

T6 1 1 0 0 0

T7 10 0 0 1 1

T8 3 0 25 3 1

T9 1 1 0 0 0

T10 0 6 2 0 2

Table 1. Transaction table with 10 transactions and 5 distinct items

u(ip, Tq), utility, the quantitative measure of utility ip in transaction Tq, is de-
fined as o(ip, Tq) × s(ip); for example, u (A, T8) = 3 × 3 in Table 1. u(X,Tq),
utility of an itemset X in transactionTq , is defined as

∑
ip∈X

u(ip, Tq), where X =

A Novel Approach to Extract High Utility Itemsets from Distributed Databases 1601

Item A B C D E

Profit 3 10 1 6 5

Table 2. External utilities of items from table given in Table 1

{i1, i2, . . . , ik} is a k-itemset, X ⊆ Tq and 1 ≤ k ≤ m. u(X), utility of an itemset X,
is defined as ∑

Tq∈D∧X⊆Tq

u(X,Tq). (1)

We find all the high utility itemsets using Utility Mining. An itemset X is a high
utility itemset if u(X) ≥ minUtil, where X ⊆ I and minUtil is the minimum utility
threshold.

For example, in Table 1, u (A, T8) = 3 × 3 = 9, u ({A,D,E}, T 8) = u (A, T8) +
u (D,T8)+u (E, T8) = 3×3+3×6+1×5 = 32, and u ({A,D,E}) = u ({A,D,E} , T4)
+ u ({A,D,E} , T8) = 14 + 32 = 46. If minUtil = 120, then {A,D,E} is not a high
utility itemset.

2.2 UMining Algorithm

One of the well known algorithms used for mining all high utility itemsets is UMin-
ing [21]. Figure 1 briefly describes the UMining algorithm. More details of the
UMining algorithm and detailed description of the functions Scan, CalculateAnd-
Store, Discover, Generate, and Prune can be found in [21].

Input: database T
constraints minUtil

Output: all high utility itemsets H
[1] I = Scan(T);
[2] C1 = I;
[3] k = 1;
[4] Ck = CalculateAndStore(Ck, T, f);
[5] H = Discover(Ck,minUtil);
[6] while (|Ck > 0 and k <= K)
[7] {
[8] k = k + 1;
[9] Ck = Generate(Ck−1, I);

[10] Ck = Prune(Ck, Ck−1,minUtil);
[11] Ck = CalculateAndStore(Ck, T, f);
[12] H = H

⋃
Discover(Ck,minUtil);

[13] }
[14] return H;

Fig. 1. Pseudo code of the UMining algorithm

1602 K. Subramanian, P. Kandhasamy, S. Subramanian

The amount of memory storage required to accommodate all the distinct items
at any time when the UMining algorithm accomplishes is vast. UMining algorithm
does not provide a prominent foundation for dealing with duplicate itemsets which
could occur in any transactional database. UMining algorithm is proved to asset
approximately all high utility itemsets from a given database. Due to some instances
as specified earlier, the UMining algorithm may decline to find some of the high
utility item sets from the accessible transactions in the databases. It becomes clear
from the above examination that the existing UMining algorithm may not be a good
practice, when dealing with databases having millions of transactions with large
number of items. It costs more and does not adapt completely.

2.3 FUM Algorithm

FUM [13] is developed in order to overcome and avoid the errors and pitfalls that
occurred during mining. FUM is an efficient and accurate algorithm in finding every
possible high utility itemset from the transactions in the database. It is simple and
executes faster than UMining. FUM provides perfect reliability in finding high utility
itemsets. The amount of storage and hardware required are reduced drastically.
It removes the duplicate itemsets that occur during the transaction. The FUM
algorithm is presented in Figure 2.

Task: Discovery of High Utility Itemsets
Input: Database DB {Set of Transactions}

Transaction T ∈ DB
Minimum Utility value threshold minUtil

Output: High Utility Itemsets H
[1] Compute the utility value ∀ single itemset
[2] for each T ∈ DB
[3] begin
[4] if T /∈ S{where S ⊆ DB‖S = [0..T − 1]}
[5] begin
[6] Candidateset = CombinationGenerator(T)
[7] for each C ∈ CandidateSet
[8] begin
[9] if (C /∈ H) ∧ (U(C, T) ≥ minUtil)

[10] H.add(C);
[11] end
[12] end
[13] end
[14] return (H);

CombinationGenerator(T) – Generate all possible combinations of
itemset ∈ T

Fig. 2. Pseudo code of the FUM algorithm

A Novel Approach to Extract High Utility Itemsets from Distributed Databases 1603

The CombinationGenerator(T) is a method which is used to generate all the
combinations of the items. It takes Itemid and the level as input which is generally
denoted by the variable loop. The factorial computation method is defined in this,
to generate the factorial of a given number. The combination generation is based
on the concept proposed by Kenneth H. Rosen (1999). First the items for which the
combination is to be generated is put in the form of an array. Then the getNext()
method is called until there are no more combinations left. The getNext() method
returns an array of integers, which tells the order in which to arrange the original
array of letters.

Let us consider Table 1 and Table 2 as input to the proposed FUM algorithm.
We compute the utility values of all single itemsets, say A, B, C, D and E in step 1
(as explained in Section 2.1). In step 2, we begin a loop for processing each and
every transaction present in the DB one by one. In step 4, the algorithm generates
the itemsets in the current transaction. For example, in Table 1, the first transac-
tion is represented as CE according to FUM algorithm, since only those two items
were purchased in that transaction. FUM algorithm omits the remaining items A,
B and D. In a similar way, the remaining transactions are processed. The algorithm
also checks (step 4), whether a transaction defined by an itemset purchased in it
repeats its occurrence in a later transaction. If a later transaction also contains the
same itemset purchased in any of the previous transactions, then that transaction
is ignored from processing. In step 6, the candidate itemsets are generated using
the CombinationGenerator(T) function, which takes the itemset purchased in a par-
ticular transaction as input and generates the various possible combinations of the
itemset. In the consecutive steps, the algorithm analyzes each candidate belonging
to the candidate itemsets generated. In step 9, the algorithm computes the utility
value of each and every candidate, U(C,T) as described in Section 2. If the utility
value of a candidate is found to be more than the minimum utility threshold, which
is given as input by the user (say a sales manager), then that particular candidate
is added to the set of High Utility Itemsets H in step 10 of the algorithm. The
condition C /∈ H in step 9 simply ensures no duplicate high utility itemsets are
generated.

3 DISTRIBUTED DATA MINING

There are various approaches for distributed data mining such as association rules [1,
4, 12, 17, 18, 25, 26], and classification [9, 11]. Vo et. al [2] proposed an approach to
mine the HUIs from vertical databases using TWU (Transaction Weighted Utiliza-
tion) mining algorithm [5]. The need arises to propose an algorithm which works
well in vertical as well as horizontal databases.

3.1 Drawbacks in Mining HUI from Centralized Databases

Data integration when mining multiple data sources. In business enterprise
applications, data is distributed over many heterogeneous sources. Distributed

1604 K. Subramanian, P. Kandhasamy, S. Subramanian

data sources related to business enterprises are often complex such as data are of
high frequency or density and of multiple structures. If the data analyst wanted
to mine High Utility Itemsets in a centralized environment, he/she needs to
integrate databases in each site together and perform data mining in centralized
environment which is not feasible, since centralized system consumes enormous
amount of time and requires more memory.

Communication Cost. Let us suppose a data analyst wants to perform High Uti-
lity Itemset Mining over data that is distributed through networks, centralized
server needs to give request to send the data and each site sends the database
accordingly using the communication line; this incurs high communication cost.

Load of the server is high if we use centralized approach. The core step of
the utility mining algorithm is candidate generation which takes significant time
to compute. If the utility mining process is performed in centralized environ-
ment, the system needs to have a large amount of memory and the server load
increases significantly.

3.2 Benefits of HUI Mining from Distributed Databases

Data integration is not needed. The system proposed in this paper does not
require data integration since the core process of utility mining called candidate
generation’ is performed and utility values for all itemsets are calculated in all
sites and returned to the main site. Finally, the main site collects all local utility
itemsets and finds the global High Utility Itemsets (HUI) effectively.

Centralized algorithm is decomposed into parts and workloads are dis-
tributed. The centralized version of algorithm performs candidate generation
and utility value computation for all candidates. This utility value is checked
against minUtil threshold value. Since data size is very large, the system takes
enormous amount of time to mine High Utility Itemsets (HUI); but in the pro-
posed FUM-D approach, each slave site computes utility itemsets locally and
utility itemsets are sent to the master site. The master site in turn collects all
local utility itemsets and mines global high utility itemsets, hence workloads are
distributed effectively.

Subtasks are executed in parallel at various computing nodes; hence exe-
cution time is considerably reduced. Computation of utility value for all
the candidates is done at all sites in parallel manner. Finally the utility itemsets
are sent to the main site through distributed communication network. This will
greatly reduce the execution time.

Lower communication cost. In order to find HUI, the proposed algorithm re-
quires O(nm) messages for utility itemset exchange, where n is the number of
sites in the distributed network and m is the number of utility itemsets returned
by the slave sites.

A Novel Approach to Extract High Utility Itemsets from Distributed Databases 1605

4 AN APPROACH FOR MINING HUI FROM DISTRIBUTED
DATABASES

4.1 Methodology

Consider the database D is divided into m sites D = {D1, D2, . . . Dm}. The trans-
actions in Dj (1 ≤ j ≤ n) retail dataset have k distinct items I = {i1, i2, . . . ik}. The
transaction identifier, products purchased and quantity of the product bought is
updated in the corresponding site wherever the customer is doing a transaction.
Hence the system is not being centralized which makes the retail data store easy to
manage and does not overload the system.

	

Global
System

	

	

Generate

HUIs

Local
System

 System

	

	

Calculate Utility

value

Data
source 1

Local
System

 System

	

	

Calculate Utility

value

	

Data
source 2

	

Local
System

 System

	

	

Calculate Utility

value

	

Data
source n

	

Fig. 3. General framework for mining HUIs from distributed databases

However, the issue is how to mine HUIs from the databases which are all located
at different sites without integration. This issue is addressed in Figure 3. Consider
the databases are distributed over many sites. Initially the master site broadcasts
request for calculating the utility value of all candidates to all slave sites. When the
master site receives all utility itemsets, it will mine HUIs by calling the algorithm
which is given in Figure 4. The master site only triggers to compute utility itemsets

1606 K. Subramanian, P. Kandhasamy, S. Subramanian

and the slave sites respond accordingly. Hence the communication cost is greatly
reduced.

4.2 FUM-D Algorithm

The proposed algorithm is given in Figures 4 and 5. At the slave site, the process
starts to scan each and every transaction present in the DB one by one by using loop.
In step 4.4, the algorithm generates the itemsets in the current transaction. The
algorithm checks (step 4.4) whether a transaction defined by an itemset purchased
in it repeats its occurrence in a later transaction. If a later transaction also contains
same itemset purchased in any of the previous transactions, then that transaction
is ignored.

Input: Database DB {Set of Transactions}
Output: Local Utility Itemsets LUI

[4.1] index = 0;
[4.2] for each T ∈ DB
[4.3] begin
[4.4] if (T /∈ S) ∧ (T 6⊂ S){where S ⊆ DB‖S = [0..T − 1]}
[4.5] begin
[4.6] CS = generateCombination(T);
[4.7] for each C ∈ CS
[4.8] begin
[4.9] if C /∈ LUI

[4.10] begin
[4.11] LUI.add(index, C);
[4.12] LUI.get(index).utility = U(C, T);
[4.13] index++;
[4.14] end
[4.15] end
[4.16] end
[4.17] end
[4.18] return (LUI);

CS-Candidate Set
LUI- Local Utility Itemset
generateCombination(T) – Generate all possible combinations of
itemset ∈ T

Fig. 4. Pseudo code for calculating utility value at slave site

The condition also checks if the utility value for any of the subsets has been com-
puted already; then the subsets are not generated again. The candidate itemsets
are generated using the generateCombination(T) function in step 4.6, which takes
the itemset purchased in a particular transaction as input and generates the various

A Novel Approach to Extract High Utility Itemsets from Distributed Databases 1607

possible combinations of the itemset. Each candidate is checked for the existence of
the Local Utility Itemset (LUI). If the candidate is not available, utility value is cal-
culated for the corresponding candidate. This process is done for all the candidates
and LUI is returned to the master site.

Input: Utility Itemsets of all Sites
Minimum Utility threshold α (%)

Output: High Utility Itemsets HUI
[5.1] for each site k = 1 to n{n = Number of sites}
[5.2] begin
[5.3] for each I ∈ LUIk
[5.4] begin
[5.5] if I ∈ GUI
[5.6] sum the utility value of I;
[5.7] else
[5.8] GUI.add(I);
[5.9] end

[5.10] end
[5.11] minUtil = calculateMinUtil(GUI, α);
[5.12] for i = 1 to GUI.size()
[5.13] begin
[5.14] if GUI(i).utility ≥ minUtil
[5.15] HUI.add(I);
[5.16] end
[5.17] return (HUI);

LUI-Local Utility Itemset
GUI-Global Utility Itemset
HUI-High Utility Itemsets
calculateMinUtil(GUI, α) – It retrieves all single itemset from GUI
and calculates minUtil value using the formula given in [21]

Fig. 5. Pseudo code for generating High Utility Itemset (HUI) of n-sites at master site

The master site receives all utility itemsets along with utility values whenever
the slave site returns and checks the existence of the itemsets with Global Utility
Itemset (GUI) (step 5.5). If it is found, the utility value of the corresponding
itemset is summed with the utility value of the GUI; otherwise the utility itemset
is added with GUI. In step 5.11, minUtil threshold value is calculated by using
the calculateMinUtil(GUI, α) method. From steps 5.12–5.16, the utility value of
all GUIs is compared against minUtil threshold and HUIs are returned to the data
analyst.

1608 K. Subramanian, P. Kandhasamy, S. Subramanian

5 EXPERIMENTAL RESULTS

We evaluated the performance of FUM-D algorithm for mining high utility itemsets
from distributed databases and compared it with centralized FUM algorithm. Nodes
in the network have specification 2.00 GHz Intel (R) Core (TM) 2 CPU with 1 GB
RAM, and run on Windows XP. The algorithms were implemented in Java language.

5.1 IBM Synthetic Data

The data utilized in the experimental results is widely-accepted IBM synthetic data
called T10I4D100K which is obtained from IBM dataset [10]. This dataset contains
1 000 000 transactions and 1 000 distinct items. T10I4D100K denotes the average
size of the transactions (T), average size of the maximal potentially large itemsets (I)
and the number of transactions (D). One more column called “Quantity” (value in
range of 1 to 10) is added with synthetic data. The utility values for the items
were assigned randomly in the profit table. The experiments were conducted in
distributed environment which includes 10 slave sites and one master site. Each
slave site has 10 K transaction records.

Minimum
Utility FUM FUM-D

Threshold (%)

Execution Execution
#HUIs time #HUIs time

in minutes in minutes

0.25 3 310 1 072.12 3 310 134.18

0.5 1 298 1 069.15 1 298 136.95

0.75 748 1 075.43 748 133.66

1 306 1 074.02 306 134.83

5 2 1 071.67 2 135.07

Table 3. Comparison of execution time, High Utility Itemsets (HUI) and minimum utility
threshold in FUM and FUM-D algorithms

The experiments were conducted by varying the minimum utility threshold (refer
to Table 3) by keeping 1 000 distinct items as fixed. The test results are illustrated
in Figure 6. It can be observed that the execution time of FUM algorithm for mining
high utility itemsets from distributed databases proved to be significantly less than
existing FUM algorithm on centralized environment as observed in Figure 6.

The experiments were also conducted by varying the number of distinct items
from 50 to 1 000 that are totally available by keeping the Minimum Utility Threshold
at 0.25 % throughout the experiment and execution time was recorded for FUM and
FUM-D algorithms (cf. Table 4 and Figure 7).

A Novel Approach to Extract High Utility Itemsets from Distributed Databases 1609

0.25 0.5 0.75 1 5

0

200

400

600

800

1000

1200

1400

Minimum Utility Threshold(%)

E
xe

cu
tio

n
T

im
e

in
 m

in
ut

es
FUM
FUM−D

Fig. 6. Comparison of execution time and minimum utility threshold in FUM and FUM-D
algorithms

Execution
Number of Items time

in minutes

FUM FUM-D

50 483.12 67.20

100 738.31 93.54

200 894.76 113.10

500 992.45 124.73

1 000 1 072.12 134.18

Table 4. Comparison of FUM and FUM-D algorithms based on the number of items

5.2 Real-World Supermarket Data

The proposed FUM-D algorithm is also evaluated using a real world data from
a well known supermarket store in India and compared with centralized version of
FUM algorithm. It contains products from various categories, such as food, health
care, gifts, and others. There are 20 000 transactions and 7 007 distinct items in the
database. Each transaction consists of the products and the quantity of each pro-
duct purchased by a customer at a particular point of time. The average number of

1610 K. Subramanian, P. Kandhasamy, S. Subramanian

50 100 200 500 1000

0

200

400

600

800

1000

1200

1400

Number of Items

E
xe

cu
tio

n
T

im
e

in
 m

in
ut

es
FUM
FUM−D

Fig. 7. Comparison of FUM and FUM-D algorithms based on the number of items

items in a transaction is 6.3. The utility table describes the profit of each product.
20 000 transactions are equally distributed over 10 slave sites and execution times
are recorded using FUM-D algorithm. FUM-D algorithm is compared against cen-
tralized version of FUM algorithm by varying minUtil threshold value and keeping
7 007 distinct items fixed (Table 5). The results are illustrated in Figure 8.

Minimum
Utility FUM FUM-D

Threshold(%)

Execution Execution
#HUIs time #HUIs time

in minutes in minutes

0.25 10 769 440.51 10 769 50.30

0.5 7 232 424.76 7 232 52.08

0.75 3 510 418.29 3 510 51.48

1 1 243 399.23 1 243 46.77

5 743 394.50 743 49.91

Table 5. Comparison of execution time, High Utility Itemsets (HUI) and minimum utility
threshold in FUM and FUM-D algorithms on real-world supermarket data

A Novel Approach to Extract High Utility Itemsets from Distributed Databases 1611

0.25 0.5 0.75 1 5

0

200

400

600

800

Minimum Utility Threshold(%)

E
xe

cu
tio

n
T

im
e

in
 m

in
ut

es

FUM
FUM−D

Fig. 8. Comparison of execution time and minimum utility threshold in FUM and FUM-D
algorithms

The experiments were also conducted in real-world supermarket data by vary-
ing the number of distinct items from 50 to 1 000 that are totally available by
keeping the minimum utility threshold at 1 % throughout the experiment and exe-
cution time was recorded for FUM and FUM-D algorithms (cf. Table 6 and Fi-
gure 9).

Execution
Number of Items time

in minutes

FUM FUM-D

50 316.63 21.47

100 328.46 29.27

200 341.12 37.41

500 375.49 44.23

1 000 394.50 49.91

Table 6. Comparison of FUM and FUM-D algorithms based on the number of distinct
items in real-world supermarket data

1612 K. Subramanian, P. Kandhasamy, S. Subramanian

50 100 200 500 1000

0

200

400

600

Number of Items

E
xe

cu
tio

n
T

im
e

in
 m

in
ut

es
FUM
FUM−D

Fig. 9. Comparison of FUM and FUM-D algorithms based on the number of items

6 CONCLUSION

In this paper, a novel algorithm for mining high utility itemsets from distributed
databases is proposed. The crucial step in the utility mining algorithms for cen-
tralized environment is the candidate generation process which consumes significant
computation time and hardware resources. The novel algorithm proposed in this pa-
per utilizes the concept of parallel mining for distributed environment as it generates
the candidate itemsets and computes utility values at different slave sites simulta-
neously. Therefore the execution time required for the computation of utility values
is significantly reduced compared to the centralized version of utility mining algo-
rithms. This can be clearly observed through the experimental results from both
IBM synthetic data and real world supermarket data as discussed in Section 5 of
the paper.

REFERENCES

[1] Agrawal, R.—Shafer, J.: Parallel Mining of Association Rules. IEEE Trans.
Knowledge and Data Eng., Vol. 8, 1966, No. 6, pp. 962–969.

A Novel Approach to Extract High Utility Itemsets from Distributed Databases 1613

[2] Vo, B.—Nguyen, H.—Le, B.: Mining High Utility Itemsets from Vertical Dis-
tributed Databases. Proc. of International Conf. on Computing and Communication
Technologies 2009, pp. 1–4.

[3] Chan, R.—Yang, Q.—Shen, Y.D.: Mining High Utility Itemsets. Proceedings of
3rd IEEE Intl. Conf. on Data Mining, Melbourne, FL 2003, pp. 19–26.

[4] Cheung, D. et al.: A Fast Distributed Algorithm for Mining Association Rules. Proc.
4th Intl. Conf. Parallel and Distributed Information Systems 1996, IEEE Computer
Soc. Press, Los Alamitos, California, pp. 31–42, 1996.

[5] Erwin, A.—Gopalan, R. P.—Achuthan, N.R.: CTU-Mine: An Efficient High
Utility Itemset Mining Algorithm Using the Pattern Growth Approach. In: IEEE
7th International Conference on Computer and Information Technology, Aizu Waka-
matsu, Japan, pp. 71–76, 2007.

[6] Erwin, A.—Gopalan, R. P.—Achuthan, N.R.: A Bottom-Up Projection Based
Algorithm for Mining High Utility Itemsets. Proceedings of the 2nd International
Workshop on Integrating Artificial Intelligence and Data Mining, Volume 84, Gold
Coast, Australia, pp. 3–11, 2007.

[7] Le, B.—Nguyen, H.—Cao, T.A.—Vo, B.: A Novel Algorithm for Mining High
Utility Itemsets. In: Proceedings of 1st Asian Conference on Intelligent Information
and Database Systems, Quang Binh, Vietnam 2009, IEEE Pess, pp. 13–17.

[8] Liu, Y.—Liao, W.—Choudhary, A.: A Fast High Utility Itemsets Mining Algo-
rithm. UBDM ’05 , August 21, 2005, Chicago, Illinois, USA, pp. 90–99.

[9] Luo, P.—Xuong, H.—Lu, K.—Shi, Z.: Distributed Classification in Peer-to-Peer
Networks. KDD07, San Jose, California, USA, August 2007.

[10] IBM synthetic data generation code. http://www.almaden.ibm.com/software/

quest/Resources/index.shtml.

[11] Miller, D. J.—Zhang, Y.—Kesidis, G.: Decision Aggregation in Distributed
Classification by a Transductive Extension of Maximum Entropy/Improved Itera-
tive Scaling. EURASIP Journal on Advances in Signal Processing, Volume 2008
(doi:10.1155/2008/674974), 2008.

[12] Schuster, A.—Wolff, R.: Communication-Efficient Distributed Mining of Asso-
ciation Rules. In Proc. of the 2001 ACM SIGMOD Int’l. Conference on Management
of Data, Santa Barbara, California, pp. 473–484, 2001.

[13] Shankar, S.—Purusothaman, T.—Jayanthi, S.: A Fast Algorithm for Mining
High Utility Itemsets. IEEE International Advance Computing Conference (IACC
2009), Patiala, India.

[14] Shankar, S.—Purusothaman, T.: PA Novel Utility Sentient Approach for Min-
ing Interesting Association Rules. IACSIT International Journal of Engineering and
Technology, Vol. 1, 2009, No. 5, ISSN: 1793-8236.

[15] Shankar, S.—Purusothaman, T.: Discovering imperceptible associations based
on Interestingness: A Utility-Oriented Data Mining Approach. Data Science Journal,
Vol. 9, February 2010.

[16] Shankar, S.—Purusothaman, T.: Utility Sentient Frequent Itemset Mining and
Association Rule Mining: A Literature Survey and Comparative Study. International
Journal of Soft Computing Applications, ISSN: 1453-2277, Issue 4 (2009), pp. 81–95.

1614 K. Subramanian, P. Kandhasamy, S. Subramanian

[17] Tang, P.—Turkia, M.: Parallelizing Frequent Itemset Mining with FP-trees. Tech-
nical Report, Department of Computer Science, University of Arkansas at Little Rock
2005.

[18] Sujni, P.: An Optimized Distributed Association Rule Mining Algorithm in Pa-
rallel and Distributed Data Mining with XML Data for Improved Response Time.
International Journal of Computer Science and Information Technology, Vol. 2, 2010,
No. 2.

[19] Liu, Y.—Liao, W.K.—Choudhary, A.: A Two-Phase Algorithm for Fast Disco-
very of High Utility Itemsets. In: T. B. Ho, D. Cheung, H. Liu (Eds.), 9th Pacific-Asia
Conf. on Advances in Knowledge Discovery and Data Mining (PAKDD 2005), Lecture
Notes in Computer Science, Vol. 3518, pp. 689–695, Springer-Verlag, Berlin 2005.

[20] Liu, Y.—Liao, W.K,.—Choudhary, A.: A Fast High Utility Itemsets Mining
Algorithm. Proceedings 1st Intl. Conf. on Utility-Based Data Mining, Chicago, IL,
August 2005, pp. 90–99.

[21] Yao, H.—Hamilton, H. J.: Mining Itemset Utilities from Transaction Databases.
Data and Knowledge Engineering 59 (2006), pp. 603–626.

[22] Yao, H.—Hamilton, H. J.—Butz, C. J.: A Foundational Approach to Mining
Itemset Utilities from Databases. Proceedings 4th SIAM Intl. Conf. on Data Mining,
Lake Buena Vista, FL, April 2004, pp. 482–486.

[23] Yao, H.—Hamilton, H. J.—Geng, L.: A Unified Framework for Utility-Based
Measures for Mining Itemsets. Proceedings ACM SIGKDD – 2nd Workshop on Utility-
Based Data Mining, Philadelphia, Pennsylvania, August 2006, pp. 28–37.

[24] Li, Y.-C.—Yeh, J.-S.—Chang, C.-C.: Isolated Items Discarding Strategy for Dis-
covering High Utility Itemsets. Elsevier Journal, Data and Knowledge Engineering 64,
2008, pp. 98–217.

[25] Wolff, R.—Schuster, A.: Association Rule Mining in Peer-to-Peer Systems.
IEEE Trans. Systems, Man and Cybernetics, Part B, Vol. 34, 2004, No. 6,
pp. 2426–2438.

[26] Zaki, M. J.: Parallel and Distributed Association Rule Mining: A Survey. IEEE
Concurrency, Special Issue on Parallel Mechanism for Data Mining, 1999, pp. 14–25.

A Novel Approach to Extract High Utility Itemsets from Distributed Databases 1615

Kannimuthu Subramanian is currently working as an As-
sistant Professor in the Department of Information Technology
at Sri Krishna College of Engineering and Technology, Coimba-
tore, India. He is now doing his Ph. D. in computer science and
engineering at Anna University, Chennai, India. He did his Mas-
ter of Engineering in CSE and Bachelor of Technology in IT at
Anna University, Chennai, India. He has more than 6 years of
teaching experience. He has published many papers in various
international journals. He has presented a number of papers in
various national and international conferences. He has delivered

more than 25 guest lectures in reputed engineering colleges on various topics. He has
guided a number of research-oriented as well as application oriented projects organized by
well-known companies like IBM. His research interests include data mining, component
based enterprise software development, web services and open source technologies.

Premalatha Kandhasamy is currently working as a Professor in the Department of
Computer Science and Engineering at Bannari Amman Institute of Technology, Erode,
India. She completed her Ph. D. in computer science and engineering at Anna University,
Chennai, India. She did her Master of Engineering in CSE and Bachelor of Engineering in
CSE at Bharathiar University, Coimbatore, India. She has 17 years of teaching experience
in academic field. She published 25 papers in national and international journals and
presented more than 20 papers in international and national conferences. Her research
interests include data mining, information retrieval and soft computing.

Shankar Subramanian is currently working as an Associate Professor in the Depart-
ment of Information Technology at Sri Krishna College of Engineering and Technology,
Coimbatore, India. He did his Ph. D. in computer science and engineering at Anna Uni-
versity of Technology, Coimbatore, India. He did his Master of Engineering in CSE and
Bachelor of Engineering in CSE at Anna University, Chennai and Bharathiar University,
respectively. He has more than 11 years of teaching experience. He is an IBM certified
DB2 professional and has obtained Brain Bench certification in various disciplines. He
has presented a number of papers in various national and international conferences and
journals. He has guided a number of research-oriented as well as application oriented
projects organized by well-known companies like IBM. His research interests include data
mining, soft computing and database management systems.

