
Computing and Informatics, Vol. 29, 2010, 1103–1116

COMBINED APPROACH TO PROGRAM
AND LANGUAGE EVOLUTION

Ján Kollár, Michal Forgáč

Department of Computers and Informatics

Faculty of Electrical Engineering and Informatics

Technical University of Košice

Letná 9, 042 00 Košice, Slovakia

e-mail: Jan.Kollar@tuke.sk, Michal.Forgac@tuke.sk

Manuscript received 2 June 2009; revised 13 May 2010

Communicated by Prabhat Kumar Mahanti

Abstract. Program can be viewed as a sequence of statements that are aimed to
produce some result. The execution is done by a platform that interprets the pro-
gram sequence of statements. The new result of a computation can be achieved
by modification of a program, a language interpreter, or both. Software evolution
as long-term process can be supported by adaptive language and by environment,
which offers reflective possibilities. This paper presents our adaptive approach to
both program and language modification in order to support dynamic evolution.
Effective software evolution needs to be supported by appropriate execution envi-
ronment. We have proposed such experimental execution environment, which allows

both run-time program and language modification. As we hope, mutating a pro-
gramming language to a higher abstraction may decrease structural complexity of
programs in the future.

Keywords: Software evolution, program modification, language modification, soft-
ware language engineering, adaptive experimental environment

Mathematics Subject Classification 2000: 68N15, 68N20

1104 J. Kollár, M. Forgáč

1 INTRODUCTION

Modification of complex software systems after their delivery means a difficult pro-
cess. The most often reasons for such modification are, on the one hand, detected
faults, which have to be fixed, or, on the other hand, requirements for new func-
tionality, which systems have to include (e.g. replacement of a system from one
computational environment into the new one). Such modifications require addi-
tional costs. Even implementation of required changes takes in some cases longer
than implementation of the first operational software version. Thus there is signifi-
cant demand for reaching optimal methods in order to achieve effective modification
of software systems.

Modification can be understood as software maintenance or software evolution.
These terms are often used as synonyms but we incline rather to the claim (according
to e.g. [11]) that these terms do not express similar meaning because the purpose
of maintenance is mostly in removal of some faults and the purpose of evolution
is adaptation of a system according to the new external or internal requirements.
According to [12], software evolution is defined as a collection of all programming
activities intended to generate a new version from an older and operational version.
Two main types of software evolution can be named as static and dynamic evo-
lution [15]. Static evolution consists in evolving the code of an application while
it is stopped whereas dynamic evolution consists in evolving an application during
its execution, without stopping it. The advantage of the former is that there is
no need for state transfer or active thread to solve, whereas main disadvantage is
that application is stopped and thus its services are stopped too (there is temporary
unavailability). The advantage of the latter is no unavailability but there are some
uncertain technical issues. Furthermore, evolution can be anticipated or unanti-
cipated [15]. Anticipated evolution is an evolution that has been foreseen by the
programmer while unanticipated evolution consists in evolution that has not been
foreseen.

Software evolution also includes language evolution as an actual issue. Some
projects may fail not because of bugs in programs, but because of the lack of recog-
nition of language issues. Thus according to [5], software is composed of a pro-
gram and a language. In this approach, language implementation (e.g. interpreters,
compilers, and other language-dependent tools) is regarded as a metalevel of a pro-
gram.

This paper is composed as follows: Section 2 presents basic information about
software language engineering. Section 3 deals with modification of interpreted
functionality, namely modification of program, modification of interpreter and mo-
dification of both elements in order to produce different result. Section 4 presents our
adaptive experimental environment as innovative approach in the field of language
engineering. Section 5 contains discussion about our approach and related works.
Finally, Section 6 concludes the paper.

Combined Approach to Program and Language Evolution 1105

2 LANGUAGE ENGINEERING

Every natural language offers means for spoken and written communication. If
these languages could be recognized through a computer without any ambiguity,
there would be no need for artificial programming languages; but computers need
exact specification of statements with unambiguous meaning in order to execute
these statements properly.

In order to have a usable computer language, there is a need for exact and
complete description. Description of a language can be divided into its structure
and its meaning. According to [9], description of a programming language should
contain the following elements:

• an abstract syntax description,

• at least one concrete syntax description,

• a mapping from concrete to abstract syntax description,

• a description of the semantics.

Programming language offers notation, which facilitates program construction for
given language. This notation is known as concrete syntax. Computer program
commonly written by a programmer is in the form of concrete syntax. Original
meaning of the term abstract syntax comes from the domain of natural languages [2],
where abstract syntax means hidden, basic, unified structure of several sentences
(two various sentences represent the same). Abstract syntax is typically used for
internal representation of a program.

Description of semantics can be divided into formal or informal description.
There are several ways for description of semantics through the formal way, e.g.
denotational, operational, action or translational semantics.

Appropriate design of computer language assures expressiveness and under-
standability for the programmer from one side, and accuracy and simplicity for
the computer from other side. In the context of language engineering, there are
three types of users [10]. Language user just uses a language with the aim to create
software for a need of a customer. Language engineer creates software (modeling or
programming) languages in order to create language, which allows effective build-
ing software by language user. Meta-language engineer creates tools for language
engineers. This language user develops language for description of language specifi-
cations and provides support for its utilization.

3 MODIFICATION OF INTERPRETED FUNCTIONALITY

Program P can be viewed as a sequence of statements that are aimed to produce
some result R. This result R is obtained through the execution of the program P. The
execution is done by a platform that interprets the program’s sequence of statements.
The result R of a computation depends on both a program P and interpreter I.

1106 J. Kollár, M. Forgáč

Interpreter may be any virtual machine or in general even CPU. Different result
may be obtained by changing at least one of the elements of the couple 〈P, I〉 [1].

3.1 Modification of Program

This approach is based on modification of the program P0 from the couple 〈P0, I0〉.
The interpreter I0 is kept unchanged. A new program P1 is built from both the
application aspects and the program P0. Just aspect-oriented programming [7], [8]
is based on this principle and transformation of the program P0 into the program P1

is performed using transformation process named weaving. Originally this approach
is named as weaving through program transformation [1].

Modification of semantics through program transformationmay be accomplished
in various ways. Modification can be realized in various times of program processing
in invasive or non-invasive manner.

This modification can be static or dynamic depending on the time when a compo-
sition tool is used. If composition is performed before compiling or it is built during
the compilation process, this composition is static; if it is performed after compil-
ing, it is dynamic composition. In static composition, compile-time approaches are
used. It can help in suggestion of software projects in which it is not important
that system must be halted and then changes must be run again. Dynamic compo-
sition can be performed during run-time. This is very helpful for applications and
services, which require non-stop running because they cannot be shut down due to
safety or financial reasons. There is also another case, namely load-time program
composition, which can belong to the static or dynamic approaches group depend-
ing on whether this composition is realized only once during initial program loading
into execution environment (static approach) or this loading is realized also during
program execution (in case of program addition).

Modification can be classified also as invasive or non-invasive adaptation depend-
ing on whether it performs transformation of base code (in various forms) in order
to achieve an additional functionality. Typical case of this invasive modification is
modification of a source or binary code. If there is no preservation of information
about origin of individual parts (e.g. in the form of metainformation), then after
composition, it will not be possible to differentiate the origin of individual parts of
code. Typical example of non-invasive composition is run-time weaving in aspect-
oriented programming, which works on the principle of interception of certain event
in the base functionality and consecutive execution of additional functionality. This
type of execution is performed with support of run-time environment. Invasive com-
position can be performed by addition of program code in well-defined form with
new functionality obtained for example by repeated compilation of methods.

3.2 Modification of Interpreter

This approach is based on modification of the interpreter I0 from the couple 〈P0, I0〉.
The program P0 is kept unchanged. Originally this approach is named weaving

Combined Approach to Program and Language Evolution 1107

through interpreter transformation [1] since aspect weaving consists in applying
these transformation rules to the initial interpreter I0 and so a new (or modified)
interpreter I1 is created. The interpreter I1 is built from both the application aspects
and the interpreter I0.

Our idea of interpreter transformation is extended by transformation of various
components of the execution mechanism. Thus, execution is a synonym for trans-
formation in general, such as translation, type checking, code generation, loading,
interpretation, modeling, algebraic specification, and even for informal but construc-
tive thinking about algorithmic problems.

Foundations of our adaptive language implementation were started with simple
LL(1) language and its adaptive interpreter consisting of lexical analyzer, adaptive
translator and evaluator. Depending on the result of interpretation, the LL(1) lan-
guage was changed, and the next interpretation followed different semantics, i.e.
potentially different result of the same source expression.

3.3 Modification of Both Elements

This approach is based on the case in which is attempted to change the second
element I from the couple 〈P, I〉 and consecutively to change the first element P from
the presented couple, i.e. from 〈P0, I0〉 to 〈P0, I1〉 and then to 〈P1, I1〉 (Figure 1).
Our objective is to achieve this modification during run-time with utilization of
the appropriate experimental run-time environment. The designed solution should
support partially unanticipated evolution.

language
increment

initial
state

program
modification

time

language
increment

program
modification

P , I0 1 P , I1 1 P , I1 2 P , I2 2P , I0 0

Fig. 1. Modification of both elements from the couple 〈P, I〉

4 ADAPTIVE EXECUTION ENVIRONMENT

An extensible language allows users to define new language features. These features
may include new notation or operations, new or modified control structures, or even
elements from different programming paradigms [23].

The value of dynamic evolution of software systems is important in systems,
which must provide non-stop availability. Provided that there is a requirement for
modification of this system during its execution, but there is also another require-
ment for modification of its programming language (for example addition of new

1108 J. Kollár, M. Forgáč

language elements for given domain), the proposed adaptive execution environment
could represent solution for this task.

4.1 Architecture

Our adaptive execution environment, shown in Figure 2, offers run-time modification
of:

• program,

• language for this program.

Program modification means that running program will be modified in the sense
of addition, removal or change of selected program statements. Under language
modification it is possible to consider modification of its syntax (in the form of
modification or addition of language grammar) and modification of its semantics (in
the form of modification or addition of semantic actions).

program
in the form of

source code textual AST modular
semantic actionsexperimental execution

environment

result in
time t

lexical and
syntactic
analysis

Fig. 2. Adaptive execution environment

Adaptive approach is based on several technologies. The adaptive execution
environment is implemented in object-oriented Java programming language with
utilization of Javassist [3], which is class library for editing bytecodes in Java. An-
other utilised mechanism is HotSwap [4], which allows dynamic reloading of required
class file to update the class definition.

Lexical and syntactic analysis is performed by program generated through
ANTLR parser generator [16], into which we input individual versions of our lan-
guage grammar and we will have generated program translator from the input pro-
gram (in the concrete syntax form) to abstract syntax form. This abstract form
is represented through textual abstract syntax tree (AST) in the form related to
S-expressions [13].

Every version of AST (initial or modified during program execution) is inserted
into adaptive execution environment and then AST is transformed into internal
object form. The basic idea of our run-time adaptation of running program is the
fact that only modified subtrees will be changed and references between unchanged

Combined Approach to Program and Language Evolution 1109

objects remain untouched. Moreover, program statements are evaluated as atomic
elements.

Every tree node in AST has assigned semantic action in the form of Java class.
Execution environment allows modification of existing semantic actions with uti-
lization of reloading mechanism. Another case is the situation when grammar is
modified and after program modification AST has of a new tree node type. Before
modified program application it is required to add the relevant semantic action.

4.2 Adaptive Experiment

This adaptive experiment demonstates possibility and usability of our adaptive ap-
proach.

4.2.1 Initial Language and Program

For simplicity, the grammar presented in this section is not in the ANTLR grammar
specification form but in more readable Extended Backus-Naur Form (EBNF) with
the same meaning. The initial demonstrative language has syntax in EBNF as
follows:

Program -> {Statement}

Statement -> Declaration|Block|Assignment

|WhileStatement|PrintStatement|SleepStatement

Declaration -> int ID

Block -> "{" {Statement} "}"

Assignment -> ID "=" expr

WhileStatement -> "while" "("Condition")"Block

Condition -> "(" atom "<" atom ")"

|"(" atom "==" atom ")"

|"(" atom ">" atom ")"

PrintStatement -> "print" expr

SleepStatement -> "sleep" INT

expr -> atom {("+" | "-") atom}

atom -> INT|ID

Formulation of INT and ID through regular expressions is as follows:

INT : ’0’..’9’+

ID : (’a’..’z’|’A’..’Z’)+

This language offers several types of statements known e.g. from C programming
language, such as integer variables, while loops work with numeric expressions and so
on. The sleep statement offers possibility for program interruption (time expressed
in seconds) and consecutive continuation.

The initial computer program is as follows:

1110 J. Kollár, M. Forgáč

int a

a=0

while(a<100){

a=a+1

print a

sleep 1

}

This program increments the value of the variable a, prints its value, sleeps for one
second and continues in the next loops while the condition holds.

Internal AST representation of this program in bracket form is as follows:

(PROGRAM

(INT (ID a))

(ASSIGNMENT(ID a)(NUM 0))

(WHILE

(CONDITION (SMALLER (ID a) (NUM 100)))

(BLOCK

(ASSIGNMENT (ID a)(PLUS (ID a) (NUM 1)))

(PRINT (ID a))

(SLEEP (NUM 1))

)

)

)

This AST form is translated into the object form with references between indi-
vidual objects.

For example,

(ASSIGNMENT (ID a)(PLUS (ID a) (NUM 1)))

can be processed into the following object form (of course, names of objects are
diferent):

Tree t1 = new Tree("ID",a);

Tree t2 = new Tree("NUM",1);

Tree t12 = new Tree("ADDITION",t1,t2);

Tree t3 = new Tree("ID",a);

Tree t4 = new Tree("ASSIGNMENT",t3,t12);

The execution environment processes this object form according to the token
in every object representation. Every token defines operation, which must be per-
formed by execution environment on given objects. Execution environment offers
the possibility for observation of program representation in AST form and also of
the relevant semantic actions. This functionality shown in Figure 3, where seman-
tic action for ASSIGNMENT statement can be seen. Every operation implements
common interface which dictates presence of the execute method.

Combined Approach to Program and Language Evolution 1111

Fig. 3. AST and semantics actions observation window

4.2.2 Modification of Language and Program

Our environment does not support multiplication by now and we need this func-
tionality, because we want to add multiplication into modified program.

The rule expr will be changed to the new form:

expr -> mulExpr{("+" | "-") mulExpr}

The rule mulExpr will be added into the EBNF grammar.

mulExpr -> atom {"*" atom}

Execution environment supports run-time modification. The handle for multipli-
cation must be inserted before program modification through new Java class, which

1112 J. Kollár, M. Forgáč

is loaded during execution-environment run-time. It is evident from our approach
that individual language elements are represented in modular manner.

We have added semantic action and now we can modify program during run-
time into the new form. Special operator ‘@’ for modification of the program will
be used.

int a

a=0

while(a<100){

a=a+1 @{a=a*2}

print a

sleep 1

}

This program multiplies the value of the variable a by the number two in every
transition of the while loop. Internal AST representation for modified statement
will be changed into the new form:

(ASSIGNMENT (ID a)(MULTIPLICATION (ID a)(NUM 2)))

Object representation of this statement will be changed into the new one:

Tree t5 = new Tree("ID",a);

Tree t6 = new Tree("NUM",2);

Tree t56 = new Tree("MULTIPLICATION",t5,t6);

//t3 without change

//t4 exists yet, but must be modified

t4.changeTree("ASSIGNMENT",t3,t56);

Run-time modification will be ensured, because only required objects will be mo-
dified and references between other objects will be preserved. Program is modified
during its run-time and consists of new language element with relevant semantics.

5 DISCUSSION AND RELATED WORKS

In general, our experiment offers three possible cases of utilization:
The first case allows program modification without modification of actual lan-

guage. It is possible to add, remove or replace one or more statements from an
existing program during its execution. For example a variable assignment in a while
loop can be altered to the new value (e.g. a=a+1 to a=a+2).

The second case is based on a change of the execution environment, which
interprets the same program. In this case, the semantics of this program can be
changed (e.g. semantics of operator “+” can be altered from addition to subtraction).

The third case offers execution environment change in the sense of new language
element addition and consecutive change of used program with utilization of such
new language element. For example addition of a print statement into the execution

Combined Approach to Program and Language Evolution 1113

environment can be accomplished and then this statement can be inserted into
a while loop.

Even though our approach offers run-time modification, it can be utilized in
the process of language prototyping, development and testing in the sense of static
language evolution.

There are several approaches to support program modification in various times,
supporting static program modification (typical representative is AspectJ [8]) or
dynamic program modification (e.g. PROSE [14] or Jasco [22]). These approaches
are mostly connected to the aspect oriented programming paradigm. Our solution
also offers dynamic program modification, because it allows run-time modification
of every statement in aspect-oriented programming way, i.e. before, after or around
particular statement.

Approaches which deal with language modification are connected mainly to the
static modification of languages through several possibilities of language engineering
tools (e.g. language workbenches [6]). Adaptive language modification is based
on the language modification according to several internal conditions and relevant
actions were located on the metalevel through predefined rules. This solution was
implemented in Haskell functional programming language. Related research was also
oriented to another programming platforms, e.g. Java [17, 18, 19]. The approach
presented in this paper, however, represents dynamic language modification based
on external effects driven by programmers.

From related works, there are for example Lisp macros [13] and its programming
mechanisms, which allow data execution as program code (with addition of new
functions which can be basically new language elements), thus this solution is related
to our approach.

6 CONCLUSIONS

The presented experiment was explained using a language, which is related to the
general purpose C programming language. However, our approach can also be uti-
lized in some specific application domains. Domain specific languages are usually
simple languages dedicated to some specific domains [20, 21]. Our adaptive config-
urable environment is open for various languages. If there would be requirement
for some domain specific language modification or modification of its program, it
would be possible to successfully utilize our environment. For example, we could
have control program for an industrial machine and there would be a need for op-
timization of the manufacturing process during run-time without device stopping.
Such optimization would require new language elements with appropriate semantics.
Another example may be a computer program, which processes various data in one
way and there is a requirement for modification of this data manipulation without
program interrupting.

However, there are various challenges for improvement of our experimental so-
lution, whose implementation is now relatively simple. For example, change man-

1114 J. Kollár, M. Forgáč

agement is one of them. Without change management, risk for modification estab-
lishment may override the consequences of program stopping and restarting. Thus
at least change history could be useful.

Our innovative approach follows our previous language experiment with lan-
guage adaptation according to the internal conditions. This work is our another
contribution in the field of language modification. Although the presented solution
is in early phase of research, it would be useful in the future. Practical utilization
of our proposal in extended form can be in evolution of complex software system
through incremental design of its programming language with the possibility of its
modification (mainly run-time modification is of special importance).

Acknowledgement

This work was supported by VEGA Grant No. 1/0015/10 “Principles and me-
thods of semantic enrichment and adaptation of knowledge-based languages for au-
tomatic software development”, and by bilateral project “Software Evolution by
Language Adaptation” between Slovakia (Grant No. SK-SI-0001-08) and Slovenia
(Grant No. BI-SK/08-09-002).

REFERENCES

[1] Bouraqadi, N.—Ledoux, T.: How to weave? ECOOP 2001 Workshop on Ad-
vanced Separation of Concerns, June 2001.

[2] Črepinšek, M.—Mernik, M.: Inferring Context-Free Grammars for Domain-
Specific Languages. Conf. on Language Descriptions, Tools and Applications, LDTA
2005, April 3, Edinburgh, Scotland, UK, pp. 64–81.

[3] Chiba, S.—Nishizawa, M.: An Easy-to-Use Toolkit for Efficient Java Bytecode
Translators. In 2nd International coference on Generative Programming and Compo-
nent Engineering (GPCE ’03), LNCS 2830, pp. 364–376, Springer-Verlag, 2003.

[4] Chiba, S.—Sato, Y.—Tatsubori, M.: Using HotSwap for Implementing Dynamic
AOP Systems. ECOOP ’03 Workshop on Advancing the State of the Art in Runtime
Inspection (ASARTI), July 21st, 2003.

[5] Favre, J.M.: Languages Evolve Too – Changing the Software Time Scale. Eighth
International Workshop on Principles of Software Evolution (IWPSE0́5), 2005,
pp. 33–44.

[6] Fowler, M.: Language Workbenches: The Killer-App for Domain Specific
Languages? 2005, http://www.martinfowler.com/articles/languageWorkbench.
html.

[7] Kiczales, G.—Lamping, J.—Mendekar, A.—Maeda, C.—Videira Lopes,

C.—Loingtier, J.M.—Irwin, J.: Aspect-Oriented Programming. 11th European
Conf. Object-Oriented Programming, volume 1241 of LNCS, Springer Verlag, 1997,
pp. 220–242.

Combined Approach to Program and Language Evolution 1115

[8] Kicszales, G.—Hilsdale, E.—Hugunin, J.—Kersten, M.—Palm, J.—

Griswold. W.: An Overview of AspectJ. In Proceedings of ECOOP ’01, European
Conference on Object/Oriented Programming, Springer-Verlag (LNCS 2072), 2001,
pp. 327–355.

[9] Kleppe, A.: A Language Description is More than a Metamodel. In: the 4th Inter-
national Workshop on (Software) Language Engineering, 2007.

[10] Kleppe, A.: Software Language Engineering: Creating Domain-Specific Languages

Using Metamodels. 1 edition. Addison-Wesley, 2008, 240 pp.

[11] Lehman, M.: Laws of Software Evolution Revisited. EWSPT96, Oct. 1996, LNCS
1149, Springer Verlag, 1997, pp. 108–124.

[12] Lehman, M.—Ramil, J.: Towards a Theory of Software Evolution – and Its Prac-
tical Impact. Proceedings of the International Symposium on Principles of Software
Evolution, Nov. 2000, Japan, pp. 2–11.

[13] Leitão, A.M.: From Lisp S-Expressions to Java Source Code. COMSiS – Computer
Science and Information Systems, Vol. 5, 2008, No. 2, pp. 19–38.

[14] Nicoara, A.—Alonso, G.: Dynamic AOP with PROSE. In: Proceedings of Inter-
national Workshop on Adaptive and Self-Managing Enterprise Applications (ASMEA
2005) in conjunction with the 17th Conference on Advanced Information Systems En-
gineering (CAISE 2005), Porto, Portugal, June 2005.

[15] Oriol, M.: An Approach to the Dynamic Evolution of Software Systems. Ph.D.
Thesis, University of Geneva, Geneva, Switzerland, April 2004, 191 pp.

[16] Parr, T.: The Definitive ANTLR Reference: Building Domain-Specific Languages.
Pragmatic Bookshelf, May 2007, 376 pp.

[17] Porubän, J.—Václav́ık, P.: Extensible Language Independent Source Code
Refactoring, AEI 2008: International Conference on Applied Electrical Engineering
and Informatics, Greece, Athens, September 8–11, Košice, FEI TU, 2008, pp. 58–63.

[18] Porubän, J.—Sabo, M.: Jessine: Integrating Rules in Enterprise Software Ap-
plications. Journal of Information, Control and Management Systems, Vol. 7, 2009,
No. 1, pp. 81–88.

[19] Sabo, M.—Porubän, J.: Preserving Design Patterns using Source Code Anno-
tations. Journal of Computer Science and Control Systems, Vol. 2, 2009, No. 1,
pp. 53–56.

[20] Václav́ık, P.—Porubän, J.: Template-Based Content Management System, AEI
2008 International Conference on Applied Electrical Engineering and Informatics,
Athens, Greece, September 8–11, 2008, pp. 153–157.

[21] Václav́ık, P.: Application Domain Name-Based Analysis. Journal of Computer
Science and Control Systems, Vol. 2, 2009, No. 2, pp. 66–69.

[22] Vanderperren, W.—Suvee, D.—Cibran, M.—Verheecke, B.—Jonckers,

V.: Adaptive Programming in JAsCo. In Proceedings of AOSD 2005, ACM Press,
Chicago, USA.

[23] Zingaro, D.: Modern Extensible Languages. SQRL Report 47, McMaster Univer-
sity, Hamilton, Ontario, Canada, October 2007.

1116 J. Kollár, M. Forgáč

Ján Koll�ar is Full Professor of Informatics at Department of

Computers and Informatics, Technical university of Košice, Slo-
vakia. He received his M. Sc. summa cum laude in 1978 and his
Ph.D. in Computer Science in 1991. In 1978–1981 he was with
the Institute of Electrical Machines in Košice. In 1982–1991 he
was with Institute of Computer Science at the P. J. Šafárik Uni-
versity in Košice. Since 1992 he is with the Department of Com-
puter and Informatics at the Technical University of Košice. In
1985 he spent 3 months in the Joint Institute of Nuclear Research
in Dubna, USSR. In 1990 he spent 2 months at the Department

of Computer Science at Reading University, UK. He was involved in research projects
dealing with real-time systems, the design of microprogramming languages, image pro-
cessing and remote sensing, dataflow systems, implementation of programming languages,
and high performance computing. He is the author of process functional programming
paradigm. Currently his research area covers formal languages and automata, program-
ming paradigms, implementation of programming languages, functional programming, and
adaptive software and language evolution.

Michal Forg�a�
 is Assistant Professor of Informatics at De-
partment of Computers and Informatics, Technical university of
Košice, Slovakia. He received his M. Sc. in 2006 and his Ph.D.
in Computer Science, in 2009. Since 2009 he is with the Depart-
ment of Computers and Informatics at Technical University of

Košice. The subject of his research is metaprogramming, pro-
gramming paradigms, and systems evolution by run-time adap-
tation.

