
Computing and Informatics, Vol. 34, 2015, 1309–1339

ADAPTABLE SERVICE ORIENTED
INFRASTRUCTURE PROVISIONING
WITH LIGHTWEIGHT CONTAINERS
VIRTUALIZATION TECHNOLOGY

Marcin Jarza̧b

Department of Computer Science, AGH University of Science and Technology
Al. Mickiewicza 30, 30-059 Kraków, Poland
&
Smart Cloud Solutions, Platform Architecture and Security
Samsung Research Poland
Al. Bora-Komorowskiego 25, 31-476 Kraków, Poland
e-mail: mj@agh.edu.pl

Krzysztof Zieliński

Department of Computer Science, AGH University of Science and Technology
Al. Mickiewicza 30, 30-059 Kraków, Poland
e-mail: kz@agh.edu.pl

Abstract. Modern computing infrastructures should enable realization of con-
verged provisioning and governance operations on virtualized computing, storage
and network resources used on behalf of users’ workloads. These workloads must
have ensured sufficient access to the resources to satisfy required QoS. This re-
quires flexible platforms providing functionality for construction, activation and
governance of Runtime Infrastructure which can be realized according to Service
Oriented Infrastructure (SOI) paradigm. Implementation of the SOI management
framework requires definition of flexible architecture and utilization of advanced
software engineering and policy-based techniques. The paper presents an Adapt-
able SOI Provisioning Platform which supports adaptable SOI provisioning with
lightweight virtualization, compliant with the structured process model suitable for
construction, activation and governance of IT environments. The requirements, ar-
chitecture and implementation of the platform are all discussed. Practical usage of

1310 M. Jarza̧b, K. Zieliński

the platform is presented on the basis of a complex case study for provisioning JEE
middleware on top of the Solaris 10 lightweight virtualization platform.

Keywords: Service oriented infrastructure, converged infrastructure, provisioning,
lightweight virtualization, adaptability

1 INTRODUCTION

Modern computing infrastructures for applications should be based on architectures
that provide flexible platforms and operational capabilities for provisioning Runtime
Infrastructure defined as application containers within application middleware run-
ning on an operating system instance. These include activities required to prepare,
deploy and activate a particular application service, and ensure required resources
including: computing, storage, network, supporting middleware and applications.
These are classical provisioning procedures which are repeatable and can be defined
in a structured process [1]. Adaptable provisioning and management of Runtime
Infrastructure must provide means to effective usage of resources to guarantee that
a given application service is available for consumers with a specified Quality of
Service (QoS) that might apply to many aspects associated with a service running,
for instance performance or reliability.

The Service Oriented Infrastructure (SOI) represents a shift from dedicated
infrastructures for specific applications to a generic architecture in which IT re-
sources and system management tools are exposed as services and allocated on
demand. The SOI provides foundational support for a Service Oriented Architec-
ture (SOA) or other application architecture [2]. The goal of the paper is to propose
a suitable methodology for constructing an Adaptable SOI Provisioning Platform
(A-SOI-PP) enabling flexible and adaptive provisioning of lightweight virtualization
environments which ensure the required resources for user applications according
to specified QoS goals. Although the platform is oriented to lightweight virtual-
ization, it is generic and can be used with other virtualization technologies. It
represents an integrated view on infrastructure and applications layers enabling the
realization of adaptable provisioning process including specification of QoS require-
ments and constant governance. In our work the particular attention is devoted to
lightweight virtualization offered by Solaris 10 OS, workloads consolidation and QoS
enforcements using policy-driven adaptive management. Subsequently, software ar-
chitectures and construction techniques of adaptation loops for SOI provisioning
and coherent to Autonomic Computing Systems (ACS) are described. Principles of
controller implementation are proposed and practically (conditions of applicability)
verified.

The paper is organized as follows. Section 2 presents the state of the art. Sec-
tion 3 describes requirements and a model for adaptable SOI provisioning. The
architecture and implementation of A-SOI-PP are presented in Sections 4 and 5 re-

Adaptable Service Oriented Infrastructure Provisioning 1311

spectively. In Section 6 a case study is presented. The paper ends with conclusions
and a list of possible improvements which could be considered a part of the future
work.

2 STATE OF THE ART

BPM

IMF

Business
Requirements

S
e
r
v
i
c
e

G
o
v
e
r
n
a
n
c
e

R
e
s
o
u
r
c
e

M
a
n
a
g
e
m
e
n
t

S
O
I

S
e
r
v
i
c
e

V
i
r
t
u
a
l

P
h
y
s
i
c
a
l

O
r
c
h
i
e
s
t
r
a
t
i
o
n

Service
Level

Requirements

SOA Service
Services Exposed to and Consumed by Business Users

and Applications

S
e
r
v
i
c
e
s

E
x
p
o
s
e
d

a
n
d

C
o
n
s
u
m
e
d

 b
y

I
T

B
u
s
i
n
e
s
s

R
u
l
e
s
e

 Infrastructure Services Provisioning
 Infrastructure Services Monitoring

 Infrastructure Services Management
Infrastracture Services

 Virtualized Services Provisioning

 Virtualized Services Monitoring
 Virtualized Services Management

Virtualized Services

 Physical Services Provisioning
 Physical Services Monitoring
 Physical Services Management

Physical Services

Communications

Communications

Figure 1. SOI reference model

The SOI reference model defined by The Open Group (Figure 1 – [2]) merges
Infrastructure Services with applications and consumers, thus capturing all the ac-
tivities related to IT infrastructure provisioning and governance. The model defines
the conceptual building blocks enabling arbitrary services (or other elements) to be
used in SOI once such architecture is implemented. An Infrastructure Management
Framework (IMF) provides a collection of software tools that enable provisioning
and management of IT infrastructures in an adaptable way, driven by business rules.
An Infrastructure Services expose interfaces for management of infrastructure re-
sources. These services are implemented as combinations of virtualized (specific
hardware virtualization solutions) and physical (hardware, storage and operating
system resources) services. The IMF, a platform for adaptable SOI provisioning,
must be flexible, give the system administrator flexibility and increase the opera-
tional efficiency. The goal is to fit the system not only to requirements defined during

1312 M. Jarza̧b, K. Zieliński

the design phase, but also to prolong the ability of the platform for adaptation dur-
ing the usage phase. The implementation of the framework must be reconfigurable,
built from modularized components that can be re-organized and extended with
new functionality to meet new business requirements. Successful implementation
of the platform for SOI provisioning involves fusion of technologies, business mod-
els and infrastructure management techniques. Such approach would also enable
realization of converged infrastructure [3] concept where computing, network and
storage resources are combined into a single framework thus providing the optimized
computing environment.

Virtualization is a basic mechanism required by SOI which increases IT agility
and flexibility because virtualized environments can be provisioned on demand, al-
lowing deployment of application services (so-called deployable entities – DE). An-
other useful technique is clustering, which takes multiple services that can be running
over virtualized services and using appropriate software technologies, can be exposed
as a single service available to consumers. It enables dynamic scaling across virtu-
alized services through agility to add or remove these services with running DEs.
When used, these two techniques can be extremely powerful in providing better
performance and reliability.

Virtualization techniques differ in the complexity of implementation, ease of
administration and common use. Important aspects are the performance impact
in comparison to the standalone OS, level of access to resources and, of course,
breadth of OS support (Figure 2). Lightweight virtualization [4] is an attrac-
tive approach to SOI provisioning, providing granular resource partitioning: a sin-
gle OS instance can host many instances of Lightweight Virtualization Containers
(LVC). In comparison to other heavyweight virtualization solutions such as Vir-
tual Machines (VM) or Hardware Domains (HD), LVCs are provisioned more eas-
ily and consume fewer resources [5]. Although the number of DEs remains the
same in case of each technology, the management complexity expressed by the
number of Physical Services in terms of servers, hypervisors and OS is the small-
est in case of lightweight virtualization. In addition to mechanisms which enable
resource partitioning between LVCs, it is also capable of apportioning resources
within a particular LVC instance to specific processes organized into groups called
workloads. It can be used in conjunction with VM or HD providing support for
multilevel virtualization. Such aproach is utilized by many Platform as a Service
engines such as CloudFoundry, OpenShift [6] where application containers dedi-
cated for particular users are running over cluster of VMs and isolated within these
VMs with lightweight containers. LVC has negligible impact on performance; how-
ever it also introduces an important limitation related to the fact that applica-
tions are often certified for a specific OS and its version. Some well-known im-
plementations of LVC include Solaris Containers, Linux Containers and OpenVZ.
In opinion of the authors, Solaris provides the most advanced and mature imple-
mentation of LVC because of integrated compute, storage and network virtualiza-
tion stack combined with many services like high-availabilty and clustering frame-
works [7].

Adaptable Service Oriented Infrastructure Provisioning 1313

OS OS OS

OS OS OS
HypervisorOS

LVC LVC LVC
OS

OS - LVC

H
eavyw

eight V
irtualization

Lightw
eight V

irtualization

M
ore Isolation

M
ore Flexibility

One physical hardware with many VM’s
instances hosting various OS (high versatility)

One “global” kernel for each LVC instance
hosting same family of OS (Linux, Solaris)

in same “space” (lower isolation)

Apportioning resources within a particular LVC

Server OS Hyp DE

3 3 0 3

1 4 1 3

1 1 0 3

1 1 0 3

Figure 2. Management complexity of heavyweight and lightweight virtualization

When analyzing implementation of the IMF, lightweight virtualization offers
more unified access interfaces required by the management and monitoring activi-
ties. The Infrastructure Services can only instrument the global kernel OS interfaces
which can operate directly on each LVC instance and running workloads inside. In
case of VM or HD technologies, appropriate agents must be running inside the hy-
pervisor and guest OS. Same occurs in case of security functionality where policies
defined within global OS can be easily replicated to hosted LVCs. Available LVC
implementations do not provide effective tools for QoS management and complex
life-cycle management, including converged view on virtualized resources and run-
ning applications. Administrators may only specify computing resource limitations
for LVC instances in the scope of well-known configurations (number of entities with
assigned resource limits).

Currently there are many platforms which support provisioning of virtualized
infrastructures based on VM and lightweight virtualization technologies. OpenNeb-
ula, OpenStack and Eucalyptus [8] orchestrate compute, storage and networking
resources to provide virtualized environment to end users. They enable dynamic
deployment of multi-tier services (groups of interconnected VMs) on distributed in-
frastructures in accordance with allocation policies. Nimbus [9] provides a toolset for
infrastructure provisioning with emphasis on the needs of science, although many
non-scientific use cases are also supported. It allows clients to lease remote re-
sources by deploying VMs on such resources and configuring them to represent
a user-defined environment (so-called “Virtual Workspace Service”). The presented
frameworks facilitate control and management, permitting clients to deploy and
configure the required appliance software and hardware resources. They lack man-
agement features exploiting Monitor-Analyze-Plan-Execute (MAPE) [26] pattern of

1314 M. Jarza̧b, K. Zieliński

hosted workloads, required to maintain the desired level of QoS for applications as
well as system services. In addition, they do not constitute an integrated framework
for provisioning, monitoring and management of Runtime Infrastructures.

The PMAC [10] framework represents the outcome of IBM’s research into au-
tonomous systems. Although it provides the ability to manage various resources, in
the authors’ opinion, its core services are very complex, heavyweight and inefficient.
Autonomia [11] provides users with all the tools required to specify the appropriate
control and management schemes, as well as with suitable services to configure and
deploy the required software and network resources and then manage their operation
to meet the overall system requirements.

Interesting functionality is provided by OPTIMIS toolkit [12] which enables
cloud services optimization covering cloud lifecycle related to construction, deploy-
ment and operation. Based on architectural framework, developed programming
model, integrated development environment and deployment tools it enables the
service providers and consumers automate the management of infrastructure, and
aims to improve the resource utilization efficiency. Providers and consumers are en-
abled to make intelligent deployment decisions based on preferences regarding trust,
risk, eco-efficiency and cost. Though the toolkit is equipped with features support-
ing the all required activities for the Runtime Infrastructure provisioning it lacks
the services for the constant governance. Another tool supporting comprehensive
Runtime Infrastructure provisioning and governance is SCALR [13] which is cloud
management system designed to aid in the scalability, organization and manage-
ment of public or private cloud infrastructures. It provides integrated framework
with rich funcionality for configuration management (Puppet, Chef) [14], compute
farms composition and monitoring including auto-scaling capabilities based on some
pre-defined policies. The SCALR supports many cloud stacks and provides SDK
which can be utilized by developers to implement new extensions according to well
defined API. However, the architecture is dense and non-flexible, the policy based
management services are limited to horizontal auto-scaling aspects based on several
metrics (CPU, Mem utilization) and do not support business rules regarding e.g.
the infrastructure leasing cost.

Therefore a motivation behind our research is to construct an appropriate IMF
for SOI provisioning with LVC, providing the flexibility typically required in the
context of SOI provisioning and its individual phases: construction, activation and
governance with following features:

Flexible Architecture aligned with SOI paradigm which enables integration with
any elements of Runtime Infrastructure to support required activities within the
phases to extend classical provisioning with mechanisms enabling flexible con-
struction of any DEs on behalf of complex applications. This architecture would
also enable the integration with other infrastructure tools which can be utilized
for particular purpose. The example tools can be those already elaborated (e.g.
OpenStack, Puppet, PMAC) or even public clouds providers to support on-
demand leasing of resources.

Adaptable Service Oriented Infrastructure Provisioning 1315

Converged Exposition of Runtime Infrastructure elements through services char-
acterized with open and interoperable interface which enables the efficient or-
chestration and adaptive management. The proposed construction can provide
the unified and standardised access to computing, storage and network resources
on behalf of virtualization and provisioning purposes.

Declarative Description of above elaborated aspects in terms of composition of
software components exposing Infrastructure Services, provisioning procedures
which orchestrate these Services and adaptation policies exploiting MAPE pat-
tern related to many aspects such as horizontal/vertical scaling or runtime op-
timization regarding defined QoS.

Lightweight Virtualization exploitation that provides better dynamic scaling,
workload management within the server, dynamic resizing supporting horizontal
and vertical scaling. However the framework can be also exploited on behalf of
heavyweight virtualization as well.

The proposed architecture model for the IMF would enable the realisation of adapt-
able SOI provisioning and is open for future extensions.

3 CONCEPT OF ADAPTABLE SOI PROVISIONING PROCESS

The aim of adaptable SOI provisioning is a flexible deployment of application compo-
nents and management of the Runtime Infrastructure through shifting of compute,
storage and network resources according to management policies defining the whole
adaptive management process. These help react to changing business requirements
and allocate computer resources in such a way in order to efficiently fulfill QoS re-
quirements. These requirements are common to various virtualization technologies
and are deployable entities which are running over SOI virtualized services.

3.1 Required Functionality

The IMF must be designed with ease of administration in mind, and operate in
a heterogeneous environment (supporting various implementations of LVC) com-
prised of physical servers that are further virtualized – all of which must be pro-
visioned and managed to satisfy predefined SLA contracts. To support individual
phases of the adaptable SOI provisioning process, several modules should be distin-
guished within the IMF. They must provide an abstraction layer for the computing
infrastructure, providing control over resource allocation and configuration to auto-
mate scaling by adding or removing physical resources, detecting current network
topology configuration and querying resource assignments (list of available CPUs,
memory, number of NICs) which can be partitioned between LVC instances. Many
other complex infrastructure-related tasks, like discovery of physical servers and
LVC instances, must also be supported without the need for manual intervention.
Tenancy support requires each tenant to be provisioned with a dedicated Virtual

1316 M. Jarza̧b, K. Zieliński

Execution Infrastructure (VEI) instance for application deployment, and an LVC
configuration template equipped with all middleware elements. In the context of
support for adaptable systems we need to deal with the so-called Horn’s require-
ments, discussed in detail in [26]: they are expressed as a list of characteristics,
which includes Self-Defining, Context-Aware, Self-Configuring and Re-configuring,
Self-Healing, Open, Self-Optimizing, Self-Protecting, and Anticipatory. The require-
ments are also precisely described and analyzed by authors in [33]. Such function-
ality requires the Infrastructure Services to be well-structured and organized into
categories describing specific aspect of the physical, virtualized and application in-
frastructure.

3.2 Taxonomy of Infrastructure Services

The SOI is founded on the concept of the SOA, along with the notions of service
providers and service consumers for virtualized computing, networking and storage
resources. When the application’s demand for a specific resource changes (e.g. ad-
ditional CPU, RAM, network or I/O bandwidth are needed) a SOA-style request
is dispatched to the IMF. Computational infrastructures built according to the SOI
paradigm are used for hosting a wide spectrum of applications. Thus, the key
challenge is the identification of managed resources within SOI, including the rela-
tionships between provisioned and managed elements to provide a converged view
on the whole infrastructure.

The S3 SOA reference model [15, 16] specifies some elements, like Operational
Systems (OSL), QoS and Governance and Policies that can be mapped to the SOI
conceptual model (Figure 3). The administrator of a SOI-compliant IT infrastruc-
ture monitors and manages the configuration of specific elements within the S3 layers
through specification of QoS goals (QoS layer) for provisioned elements, and defi-
nition of provisioning procedures and adaptation policies (Governance and Policies
layer) stored in a centralized repository. The IMF solution for adaptable SOI pro-
visioning must enable the provisioning of Runtime Infrastructure elements within
the OSL as a Virtual Execution Infrastructure (VEI) with Application Execution
Environments (AEE) for application services.

A reference model of SOI delivers virtualized and physical services that can be
categorized as Platform as a Service (PaaS), Infrastructure as a Service (IaaS) and
Hardware as a Service (HaaS) infrastructures. Such categorization, in turn, en-
ables the structured orchestration of Infrastructure Services to allow the provision
of the Runtime Infrastructure and latter governance according to management poli-
cies. Though it also requires an open mechanism for instrumentation of managed
resources which are asked for the provisioning, monitoring and management. The
presented SOI provisioning scheme enables the automation of management activi-
ties for specific QoS contracts and, in case of problems, it attempts to reconfigure
the system to fulfill the contracts and enable realization of converged infrastructure
framework.

Adaptable Service Oriented Infrastructure Provisioning 1317

Managed Resources – SOI Exposition

Execution Environment
Application Servers, Databases

Service1 ServiceN...

Virtual Execution Infrastructure

Adaptation Policies & Provisioning Procedures

Operational
Systems

Layer

QoS
Layer

...

Governance
& Policies

Layer

Infrastructure as a Service
Virtualized Services

Platform as a Service

Provisioning

M
anagem

ent

M
onitoring

Physical HardwareHardware as a Service
Physical Services

Network StorageCPU/RAM

QoS Goals QoS Metrics

S3 Layers

LVC LVC LVC

In
fr

as
tr

uc
tu

re
 S

er
vi

ce
s

Application

Figure 3. Taxonomy of SOI infrastructure services for adaptable provisioning

3.3 Integration of Cloud Computing and SOI

The concept of exposition of computational infrastructure in the form of services
is also exploited by cloud computing [17] providers, which use virtualization, on-
demand deployment and delivery of services. Cloud platforms expose elastic envi-
ronments to host specific workloads and be expanded on demand to handle specified
performance parameters. Cloud platforms are proprietary solutions and not stan-
dardized, thus some initiatives like Cloud Resource Model API [18], Open Cloud
Computing Interface (OCCI) [19] and Amazon WS [20] define the common ele-
ments of a cloud implementation by specification of the relevant machines, storage
volumes and networks. Unfortunately, the specifications are not relevant to other
aspects like adaptive management of virtualized resources and application middle-
ware (PaaS). The cloud platform for the end user does not provide functionality to
allow flexible allocation of resources for already existing VEIs1.

Introducing mechanisms of lightweight virtualization provides more granular
resource management. Such integration of clouds and physical infrastructure within
the enterprise also allows dynamic sizing of physical resources and using compute
resources from the cloud. For example Docker [21] framework provides automation
services to run any AEE’s and applications as a lightweight, portable, self-sufficient
container running consistently on and between virtually any server.Adaptable SOI
provisioning with lightweight virtualization integrated with cloud platforms provides
fully automated provisioning of compute resources and adaptive management of
such Runtime Infrastructure through adaptation loops. Implementation of such

1 Amazon EC2, for example, does not provide services for dynamic compute resource re-
allocation for already running VM instances; instead auto-scaling services scale provisioned
VEI with a number of VM instances.

1318 M. Jarza̧b, K. Zieliński

deployments using the SOI paradigm provides a framework for provisioning arbitrary
application service models2, universal access3 and scalable services4 thus enabling
cloud-bursting or federation of services [22].

3.4 Model of the SOI Provisioning Process

Provisioned application services are multilayered, often clustered, spanning many
LVC instances (elements of a particular VEI instance) and involving many infras-
tructural components, and have complex relationships with each other. As already
stated in Section 2, the proposed model extends the concept of classical provisioning
providing more flexibility, adaptability and a converged view to complex IT systems
by introducing phases:

1. Construction, which determines the required infrastructure elements for user
applications with QoS metrics;

2. Activation, that is automatic configuration of each provisioned infrastructure
element; and

3. Governance, auditing particular elements in terms of their compliance with
QoS metrics, driven by the adaptive management process.

The process facilitates the orchestration of Infrastructure Services and defines
the generic IMF architecture to support adaptable provisioning of arbitrary elements
of the OSL. Although the model is related to LVC, in our opinion it is generic and
can be also used in context of other well known virtualization technologies. The
proposed process also defines governance phase according to MAPE (Monitor, An-
alyze, Plan, and Execute) pattern used by the ACS specific systems as defined by
IBM [24]. Provisioning procedures (workflows) define actions to be performed on
specific physical resources that are virtualized and exposed via corresponding SOI
services, orchestrated for particular activities when triggered by a specific action on
the target host. A workflow can define an entire provisioning process, affecting mul-
tiple servers, or a single step in a broader reconfiguration process including clustered
configurations where many Runtime Infrastructure elements needs to be installed
and configured in a correct order using operations on Infrastructure Services. SOI
provisioning with LVC can be carried out using LVC-Application Appliances (LVC-
AA), which are pre-engineered and validated IT infrastructure units that conform
to standards and best practices related to security, availability and performance.

Step 1 – Self-Managing Requirements Specification: Specification of SLA
documents which contain QoS metrics for provisioned elements of the OSL run-
ning within LVC.

2 Multi-tenancy, isolated tenancy and mega-tenancy.
3 Ubiquitous services accessed from any device or consumer services.
4 Elastic infrastructures enable on-demand provisioning of extra capacity or reduce

resources used.

Adaptable Service Oriented Infrastructure Provisioning 1319

Figure 4. Adaptable SOI provisioning process model

Step 2 – Providing Manageability Endpoints: Each provisioned element of
the OSL can become a Managed Resource which must be exposed by compo-
nents, enabling management and monitoring services to carry out the adaptation
process. The step requires ensuring that particular infrastructure endpoints, i.e.
computing, storage and network resources are properly instrumented and ex-
posed as converged infrastructure.

Step 3 – Adaptation Policy Definition: Once the computational infrastructure
is provisioned, continuous management to fulfill the SLA becomes necessary.
Each adaptation loop is driven by a specific control algorithm [27] expressed
through policies using a particular policy language [23] – Figure 5. The step
might require system identification and analysis through practical tests which
consider many aspects related to particular applications and working conditions.
Control algorithms can rely upon such disciplines as fuzzy logic, control theory
or heuristics [28]. The choice of method depends mainly on the complexity of
the adaptation process. As computer systems are typically characterized by
a high complexity, using hybrid controllers ensures a stable operation and, at
the same time, allows the adaptation process to ensure effective QoS [29, 30, 31,
32].

The outcome is a management policy using specific adaptation strategies and
parameters which ensure that the managed system will be stable and operate
with the required QoS.

Step 4 – Provisioning Procedure Initiation: Prior to activation of the pro-
visioning procedure, the administrator must specify initial runtime parameters
required to initiate that procedure. In case of complex applications this might

1320 M. Jarza̧b, K. Zieliński

Adaptation Manager

Fuzzy
Systems

Control
Theory Heuristics

Policy LanguageDrools Rules

Control Algorithms

Adaptation Loop

Figure 5. Overview of control algorithms for adaptation loops definition

include “load balancer address” and “number nodes” in the clustered configu-
ration and SOI access points.

Step 5 – Provisioning Procedure Activation: The provisioning procedure is
activated and performs activities for LVC installation and contextualization with
the required configuration of application resources and component deployment,
taking into account the initial tuning phase of AEEs which utilizes performance
heurisitcs. The final task is to activate governance activities with adaptation
loops.

Step 6 – Adaptation Loops Processing: These include monitoring, analyzing,
planning and execution activities that provide the control-loop functionality ac-
cording to predefined policies in Step 3.

The adaptable provisioning process for SOI can be realized by introducing an ar-
chitectural framework equipped with best practices (design patterns and methodolo-
gies ITIL [25]). There must be emphasized that the Construction phase is performed
manually by the system administrator and results i.e. configuration templates, man-
agement policies can be reused by the Activation and Governance which are fully
automated. In the next sections authors present A-SOI-PP which is an implemen-
tation of the IMF that meets the presented business goals, objectives and enables
realization of converged infrastructure concept governed by the adaptable manage-
ment activities.

4 ARCHITECTURE OF A-SOI-PP

The essence of A-SOI-PP lies in its architecture, which is expected to respond to con-
stantly changing business requirements and ensure flexibility and agility, both crucial
for the adoption of new technologies. To support various elements of the adaptable
SOI provisioning process, modules that will provide certain services, should be dis-
tinguished within the A-SOI-PP.

Adaptable Service Oriented Infrastructure Provisioning 1321

4.1 Generic Building Blocks

The A-SOI-PP conceptual model is translated into an architecture which comprises
several major modules, presented in Figure 6. The architecture is consistent with the
SOI Reference Model and fulfills the requirements specified in Section 3.1. Individual
modules are integrated by the common model of understanding the infrastructure
components that describes the relation between VEI and AEE supporting the real-
ization of the process of adaptable SOI provisioning with LVC or other virtualization
technologies.

SOI Managed Elements - Managed Resources

Monitoring and Management Platform Module

Adaptable SOI Provisioning Platform

Adaptation Manager Module

Policy Management Infrastructure Module

Instrumentation

Provisioning Manager Module

SOI Reference Model

Physical

Virtual

Business Rules
Service Level
Requirements

Infrastructure Services

Service Governance

Monitoring and Management AgentMonitoring and Management AgentMonitoring and Management Agent

Virtualized Physical Resources

Resource Access and Translation

Observe

PlanAnalyze

Execute

Adaptation Loops

Policy Engine

Provisioning Procedures Workflows

Provisioning Engine

Policy Storage Policy Definition Tool Procedures Definition
Tool Procedures Storage

Application Execution
Environment

VEI – Lightweight Virtualization

Application Execution
Environment

VEI – Lightweight Virtualization

Application Execution
Environment

VEI – Lightweight Virtualization

Figure 6. A-SOI-PP software modules

The Monitoring and Management Platform (MMP) module exposes a unified
interface to manage or to provide SOI Managed Elements. The interface provides
converged access to Virtualized or Physical Infrastructure Services, exposing infras-
tructure elements for the purposes of observation and control. The platform can be
modular in the sense that monitoring and management agents (MMA) are equipped
with software components delivering sensor and effector interfaces. Sensors enable
access to the state of SOI Managed Elements while effectors provide the functionality
to alter their state.

The Provisioning Manager (PM) module provides a Procedure Definition Tool
for the definition of provisioning procedures that orchestrate Infrastructure Services
to create Runtime Infrastructures with allocated computing resources, as specified

1322 M. Jarza̧b, K. Zieliński

by the system administrator. The Provisioning Engine can manage many procedure
instances concurrently. Upon provisioning, the infrastructure must be constantly
monitored to track SLA contract fulfillment; this process is supervised by the Adap-
tation Manager.

The Adaptation Manager (AM) is a module responsible for controlling the SOI
Managed Elements sensing the performance degradation and determining correc-
tive actions to be taken. The self-adapting process is driven by adaptation loops,
which are defined on the basis of a specific adaptation policy. The architecture of
adaptation loops is based on ACS and consists of monitoring, analysing, planning
and execution phases, each of which requires comprehensive support from IT in-
frastructure, tools and management systems. The module is also equipped with
a Translation Layer internal service, representing a uniform abstraction formalism,
providing access to SOI monitoring and controlling functionality. This layer trans-
lates vendor-specific data and commands into their neutral equivalents and exposes
SOI Managed Elements.

The Policy Management Infrastructure (PMI) module provides tools for adapta-
tion policy definition that administrators can deploy inside the Adaptation Manager.
Each policy specifies adaptation loop activities to be undertaken by the provision-
ing procedure and defines control algorithms suitable for a particular self-adapting
process. Policies are stored in a persistent storage to be reused by provisioning
procedures when activating a specific adaptation loop.

4.2 Layered Architecture

The presented conceptual model of A-SOI-PP promotes modular design and ex-
poses Infrastructure Services for flexible provisioning and adaptive management,
supporting the adaptable SOI provisioning process model. The proposed layered
architecture consists of nine layers (Figure 7), which correspond to the previously
described generic building blocks. The architecture is characterized by the openness
of exposed interfaces and the ability to manage any SOI Managed Elements VEIs
based on arbitrary LVC technologies or AEE with any running software product.
It supports cross-vendor interoperability and scalability, allowing many managed
elements to be handled simultaneously. Exposed interfaces are standardized by
leveraging and implementing industry-standard IT protocols. The individual layers
consist of specific modules, where each layer plays a key role in the process of adapt-
able SOI provisioning and is based on the characteristics of adjacent layers. Each
layer is decomposed into software components whose implementation relies on ap-
propriate architectural design patterns to promote managed element independence.
Each of these components is, in turn, installed within the A-SOI-PP environment.

The Operational Services Layer (OSL) is the bottom layer of the system, with
heterogeneous infrastructure resources to deliver a full-featured Runtime Infrastruc-
ture environment for application services including physical hardware, virtualization
platforms and middleware. Because it must be accesible with common access inter-
face following industry, the next layers provide appropriate abstractions.

Adaptable Service Oriented Infrastructure Provisioning 1323

In the Resource Access Layer (RAL) OSL elements expose access interfaces with
dedicated tools and software which is not accessed directly (due to its specificity or
heterogeneity) and must therefore be covered by an additional layer of abstraction to
enable better provisioning and governance. The RAL uses vendor-specific interfaces
and different methods of communication with the infrastructure elements of the
OSL, enabling instrumentation. In addition to LVC, RAL also enables seamless
integration with any product in the VM virtualization technology, cloud platforms
(OpenNebula, Nimbus, Amazon AWS), middleware (J2EE application servers) and
dedicated provisioning tools (N1 [36]), thus facilitating provisioning (based on LVC-
AA) and configuration (via resource and service managers, and other management
tools). This layer is equipped with software components which for integration with
underlying elements of the OSL can use native access interfaces like shell scripts,
APIs (EC2 or Java Open Cloud API) or native libraries.

The Runtime Infrastructure as a Service Layer (RIaaSL) provides Infrastructure
Services through the usage of composite software components responsible for expos-
ing particular vendor-specific interfaces as parts of a common API, providing a set
of interfaces used for provisioning, monitoring and management of HaaS, IaaS and
PaaS elements. These interfaces are coherent and conform to specific resource speci-
fication thus they constitute a common and open resource interface for constructing
SOI Managed Elements according to converged infrastructure concept.

The Self-Configuration Services Layer (SCSL) provides facilities that ensure
adaptability and context-awareness of MMP. Discovery service components enable
localization of SOI Managed Elements and can dynamically handle lists of available
virtualized physical servers, running LVC, application middleware and other de-
vices. This self-configuration capability implies dynamic reaction to failures and the
capability to dynamically and automatically modify SOI Managed Elements. Dis-
covery Responder components use discovery protocols based on multicast or other
frameworks corresponding to Infrastructure Registry services with MMA addresses.
Dynamic loading ensures automatic deployment of modules containing Manageabil-
ity Endpoints as well as software components that expose services for provisioning,
monitoring and management of SOI. Such auto-configuration features enable MMA
to learn the characteristics of the Runtime Infrastructure and load proper modules
with sensors and effectors, depending on the discovered features of the environment
where a given agent is started. The process uses module descriptors dedicated for
specific hardware and OS platforms, following which of the actual components can
be downloaded from the Components Repository service.

The Information Services Layer (ISL) provides services to the storage and re-
trieval of data about the state of the Runtime Infrastructure (OSL) to determine
the current number of VEI instances, number of LVCs in each VEI, including the
physical server which is used by the particular OS Kernel, and running middleware.
Such information is stored in the Infrastructure Registry, which registers for notifi-
cations from the Discovery Responder components running on particular instance
of the MMA. Notification emitters send or redirect notifications to other interested
parts like PM, AM or GUI management consoles. These notifications contain in-

1324 M. Jarza̧b, K. Zieliński

formation about the state changes of particular SOI Managed Elements, which e.g.
include increased resource usage (CPU, memory) and a lack of resources, like in-
creased garbage collection activities within a specific JVM (Java Virtual Machine)
instance.

The Connectivity Services Layer (CSL) provides communication service compo-
nents exposing common and open access methods for SOI Managed Elements. Due
to its connector-based architecture, the layer allows any type of protocol connector
to be plugged in, including RMI, SOAP, REST, etc. This feature is very important,
since the Adaptation and Provisioning Managers can be implemented in different
technologies, hence access to the current state of the SOI Managed Elements and
control functions should be available via an open interface, implemented with the
use of industry standards.

`

Governance and Policies
Layer

Adaptable SOI Provisioning Platform
Provisioning ManagerPolicy Management Infrastructure

Provisioning
Engine Module

 Procedure Definition
Tool

 Policy
Storage

 Policy Definition
Tool

Policy Management Module

 Procedure Storage

Model-based Translation
Layer

QoS
Layer

Policy Evaluation Module

Policy
Engine1

Policy
EngineN

...

Resource Access Module

Policy
Adaptor1

Policy
AdaptorN...

Adaptation Manager

Operational Services
Layer

Sensor Effector

Resource Interface

Access
Method

Access
Method

Access
Method

SOI Managed Element

Sensor Effector

Resource Interface

Access
Method

Access
Method

Access
Method

SOI Managed Element

Sensor Effector

Resource Interface

Access
Method

Access
Method

Access
Method

SOI Managed Element

SOAP
Connector

RMI
Connector

SNMP
Adapter

HTML
Adapter

 REST
Connector

Monitoring and Management Platform
Connectivity Services

Layer

Self-Configuration
Services

Layer

Resource Access
Layer

Runtime Infrastructure
as a Service

Layer

 Dynamic LoadingSelf Organization Auto Configuration Discovery

ProvisioningProvisioningProvisioning

Information Services
Layer Infrastructure Registry Accounting Database Notification Emitters

 Components Repository

Runtime Infrastructure Elements = Virtual Execution Infrastructure + Application Execution Environements

Figure 7. Layered architecture of the A-SOI-PP

The Model-based Translation Layer (MbTL) is an intermediate layer, generic
and not related to any particular technology or class of managed resources. It is
orthogonal to the management policy performed by the AM, making its integration

Adaptable Service Oriented Infrastructure Provisioning 1325

with resources more straightforward through construction of an interface that sup-
ports interoperability with different policy engines. This layer defines the Resource
Access Module (RAM) of the AM, implemented with components responsible for
integration with the MMP, exposing SOI Managed Elements.

The QoS Layer (QoSL) provides a Policy Evaluation Module (PEM) for the
AM, whose key requirement is management of control loops. Several reasoners
can be installed and operate at the same time, ensuring flexibility through support
for a wide range of policy engines. Differences between reasoners are resolved by
the Policy Engine components which initialize specific reasoner adaptors. Policy
definitions are obtained from the PMI, instantiated by the appropriate Policy Engine
and evaluated.

Finally, the Governance and Policies Layer (GaPL) provides a graphical in-
terface for the system administrator available through GUI management consoles,
enabling system configurations, policies and procedure definitions related to SOI
provisioning and management to be listed and edited. This layer also provides tools
for the initialization of the SOI provisioning process responsible for initial alloca-
tion of resources required by middleware services consumed by applications. This
activity is an element of the specific provisioning procedure which includes initial
verification of the availability of resources at the level required to ensure the re-
quested QoS. The GaPL provides policies used by adaptation loops for management
of SLA, including capacity, performance and security. Graphical management con-
soles expose charts with monitoring metrics for OSL elements and support manual
configuration of some elements.

5 IMPLEMENTATION

From among many well-known and widely available management/monitoring tools
and protocols, the authors have selected the Java language and the Java Managed
Extensions (JMX) [37] platform for the implementation of the MMP [33]. JMX
is an open and standardized management framework widely used throughout the
industry to instrument managed resources, enabling state observation and invo-
cation of operations through notion of so-called MBean components. It provides
service objects such as monitors, timers, relation objects, objects facilitating dy-
namic loading of other MBeans from remote locations, connectors for RMI and
SOAP, adaptors for SNMP and HTML thus supporting open and flexible architec-
ture. These JMX components can be deployed on demand to MMA to fulfill the
requirements of a particular provisioning process required by adaptation loops and
provisioning services. The JMX-MLet service can be used by the MMA for man-
aging modules which contain components for Adaptation and Provisioning man-
agers. Such a process requires a MLet descriptor which defines the information on
the MBeans to be obtained and makes it possible to create dynamically extensible
agents.

1326 M. Jarza̧b, K. Zieliński

<mlet
code=” org . j ims . modules . s o l a r i s . s o l a r i s 1 0 . mbeans . ZoneAgent”
a r ch ive=”sunos−sparc −3 . 0 . 0 . jar , dependenc ies . j a r ”
name=” Management:class=Solaris10Management ” version=” 1 .0 ”>

</ mlet>

The PM module uses JBoss jBPM [40] supporting the entire lifecycle of the pro-
visioning process (authoring, execution, monitoring and management) and provides
tight, powerful integration with business rules and event processing – Figure 8.

Figure 8. Provisioning console

As the technology for implementation of the GUI system, JBoss RHQ [39] and
Google Web Toolkit (GWT) [38] have been chosen. JBoss RHQ is the open platform
that delivers a core user interface for monitoring and management of IT infrastruc-
tures. The RHQ is designed with layered modules that provide a flexible architec-
ture for deployment of plug-ins which implement abstraction interfaces suitable for
arbitrary SOI Managed Elements.

The AM contains modules responsible for adaptation loop management and
integration with the PMI and MMP – Figure 11. It is implemented as a lightweight
library that can be deployed on demand within the MMP and is based on the
JMX technology. The implementation of the AM system exploits the potential
of the rule engine-based [41] approach as attractive solution for the policy-driven
SOI provisioning process. The rule engine is a sophisticated software module that
supports a scalable pattern matching algorithm, thus it might be used for a large
number of facts and rules constituting a representation of knowledge. All rules
are stored in production memory; in addition, facts that were matched against
production rules can be found here (Figure 9). The AM supports reasoners based
on Drools, Jess and even PMAC policy languages [27].

Adaptable Service Oriented Infrastructure Provisioning 1327

Inference Engine
Production Memory Working Memory

Pattern Matcher
Rules Facts

Agenda

Figure 9. Rule engine structure based on rete networks

In the PEM, SOI Managed Elements are represented as facts processed by the
rule engine – Figure 10. Such exposition is performed during the AM’s start-up
phase through the Policy Adaptor component. Its main responsibility is to provide
access to selected resources and policies and to gather events from resources and
provides them to the reasoner. The rule engine is driven by the arrival or change of
the facts residing in the working memory. The changes of facts may be generated
by external events because of rule engine activity or by the expiration of a timer
that could be associated with previously received facts.

1. The elements of the OSL (Managed Resources) are instantiated as MBeans
within the MMA constituting SOI Managed Elements (Manageability End-
points).

2. Policy Adaptors of SOI Managed Elements that play a role of Model-based
Translation services are constructed automatically (2a) and put into Working
Memory as facts (2b). The Policy Adaptor interface is used in this step, which
attaches the particular SOI Managed Element representation to a specific Policy
Engine.

3. Production Rules representing policies are loaded to Production Memory. At
this point the Inference Engine is also started.

4. Pattern Matching algorithms are performed on all rules in production Memory
and facts present in Working Memory.

5. All rules that are evaluated as true are put into Agenda to be performed.

6. Action is performed on the representation of Managed Resource in Working
Memory.

7. The action is forwarded to SOI Managed Elements via Resource Wrapper and
enforced with effectors.

8. Managed Resource parameters changes accessed by sensors are communicated
to Policy Adaptors that triggers execution of Step 4.

Steps 4 to 8 constitute a main execution loop of the Adaptation Manager. Since
rules are declarative knowledge representation forms, they are not called like func-
tions in a procedural language. Instead, they fire in response to changes in the facts
available to the rules engine.

1328 M. Jarza̧b, K. Zieliński

SOI
Managed Element

MBean Server

Monitoring & Management Agent

Policy Evaluation Module

SOI
Managed Element

PMI
(Drools/Jess
Rules Repo)

1

3

7 8

Adaptation Manager

Production Memory Inference Engine Working Memory

Rule1
Policy Rule2

Policy

RuleK
Policy Policy

Adaptor1
Fact1

Policy
Adaptor2

Fact2

Fact3
Pattern Matcher

Agenda
 Result data

 Actions
 Inferred facts

2b4

6

5

RETE Policy Engine

Resource Access Module
SOI Managed Element

Policy Adaptor2
SOI Managed Element

Policy Adaptor1

Policy Adaptor
Velocity Template

2a

Governance and Policies
Layer

QoS Layer

Model-based Translation
Layer

Runtime Infrastructure
as a Service

Layer

Figure 10. Adaptation loop processing performed by the PEM using rule engine

Applying the aforementioned software technologies and frameworks for imple-
mentation of A-SOI-PP yields an IMF that conforms to the adaptable architec-
ture requirement and realizes the defined SOI provisioning process. The imple-
mented A-SOI-PP is based on modular architecture and component design equipped
with many advanced techniques of software engineering like design patterns, re-
flectivity [34] and compositional adaptation [35]. Utilized technologies are based
on the industry standards thus ensuring interoperability requirements. Such im-
plementation promotes flexibility and can be extended with components support-
ing arbitrary elements of the Operational Services Layer exposed as SOI Managed
Elements which are provided and supervised by particular modules of the plat-
form.

Adaptable Service Oriented Infrastructure Provisioning 1329

Figure 11. Web console of the Policy Definition Tool and adaptation loop management

6 CASE STUDY

For demonstration purposes the authors have selected Java Pet Store 2.0 [42], which
is a multi-layered application delivered by the Java BluePrint program. The ap-
plication utilizes the Runtime Infrastructure, provisioned according to the Isolated
Tenancy model with dedicated JEE clustered Glassfish (PaaS layer) application
server and MySQL database running over Solaris LVC (IaaS layer). This setup
is depicted in Figure 12. Preparing such an infrastructure requires many complex
actions which must be performed in the correct order, as explained below. The ac-
tions must include some technological aspects related to virtualization technology,
scheduling algorithms and available management interfaces. They are supported
and automated by the platform supporting the self-configuration properties. The
only responsibility of the system administrator is a definition of LVC-AA templates
with pre-configured middleware and manageability endpoints which are automati-
cally configured, activated and discovered during provisioning process.

VEI provisioned over Solaris Containers [43] would deliver predictable levels of
QoS, owing to scheduling algorithms enforced by the Solaris Resource Manager.
CPU resource consumption within the Solaris Global Zone (Solaris OS Kernel that
hosts LVCs) is managed through Dynamic Compute Resource Pools (DRP) with
default Time Shared Scheduler (TSS) which is assigned to provisioned Container
instances that manage the Glassfish environment. When considering CPU resource
consumption within a LVC with running database, we must consider a situation
where the tools monopolize available processor cycles and impact the database per-

1330 M. Jarza̧b, K. Zieliński

Virtual Execution
Infrastructure

 Solaris OS Kernel

 Solaris OS Kernel

Cluster1

Virtual Execution
Infrastructure

 Solaris
Container

 Cluster1
Instance1

 Solaris
Container

 Cluster1
Instance2

Cluster2
 Solaris

Container

 Cluster2
Instance1

 Solaris
Container

 Cluster2
Instance2

Virtual Execution
Infrastructure

 Solaris OS Kernel

 Solaris Container

Domain Admin
Server

Admin
Server

Instance

 Solaris Container

Load
Balancer
Instance

Virtual Execution
Infrastructure

 Solaris OS Kernel

 Solaris
Container

 Database

 Utility
Tools

C
om

pu
te

R

es
ou

rc
e

Po
ol

C
om

pu
te

R

es
ou

rc
e

Po
ol

C
om

pute
 R

esource Pool
C

om
pute

 R
esource Pool

QoS:
70% availability of CPU

Workloads are controlled
with the FSS

User
applications

Figure 12. Runtime Infrastructure exploiting Solaris LVC, Glassfish and MySQL db

formance. This might lead to a situation where important database transactions
suffer from insufficient CPU time to complete their work. The Fair Share Scheduler
(FSS) provides a precise control of CPU consumption, allowing the optimal system
CPU resource usage as determined by CPU-share resource control [44] settings. The
only challenge is controlling the quantity of the appropriate resource control value
(project.cpu-shares [43] in the use-case), which can be managed by the adaptation
loop.

Platform tuning is a sophisticated task demanding expert knowledge about the
used OS, application server and database. It requires setting many runtime con-
figuration parameters that all depend on each other and, adjusted appropriately,
increase the application performance. In the presented case study (in the context of
a Glassfish application server) information, such as the number of available proces-
sors (including their architecture), memory to be allocated for the JVM operating on
a cluster instance and a garbage collection strategy, needs to be specified. Glassfish
is eqipued with tuner service (Glassfish Performance Advisor – Figure 13) which uti-
lizes internal heuristics to determine the optimal configuration for particular server
instances.

The tuning exploits custom implemented components, which interact with the
tuner during ‘Step 4’ of the process, automating the whole functionality. The draw-
back of using such an approach is the requirement to restart each server instance
whenever the ‘tuned’ configuration is to be applied. Even in the case of clustered
configuration, this can become a problem, as the remaining instances are required
to process an increased number of requests, which can lead to instantaneous per-
formance degradation. The following operations are required when provisioning
such a runtime infrastructure to end users, pursuant to the process described in
Section 3.4.

Step 1 – Self-Managing Requirement Specification: The QoS goal of control
is ensuring constant allocation of the processor in conditions of variable and
constant disturbance, i.e. database workload within the Solaris Container is

Adaptable Service Oriented Infrastructure Provisioning 1331

Figure 13. Glassfish performance advisor console

guaranteed to use 70 % of CPU regardless of the number of other active projects
(disturbances).

Step 2 – Providing Manageability Endpoints: The result of the presented
provisioning procedure is a very sophisticated platform designed according to
the SOI paradigm running over Solaris LVC, with adaptation loops, ensuring
guaranteed CPU reservation for database workloads. The discussed provision-
ing activities require Infrastructure Services for managing Glassfish and Solaris
LVC platforms. Glassfish infrastructure provides a framework (Appserver Man-
agement Extensions – AMX) enabling centralized provisioning of a cluster of in-
stances on multiple hosts and application deployments, support scalability, load
balancing, failover protection and high availability. The A-SOI-PP extensions
for the Glassfish platform use AMX and support management of core elements,
such as initial configurations of node agents running within the provisioned LVC
instance and automatic tuning processes.

Step 3 – Adaptation Policies Definition: For this particular case we have pro-
posed an open-loop regulator using the FSS model extended with appropriate
heuristics. The system administrator expresses the importance of each workload
as the number of shares (which are not the same as CPU percentages – rather,
shares define the relative importance of a given active workload in relation to
other active workloads). If

1. Sw – shares assigned to workload W ;

2. N – number of active workloads;

3. Si – shares assigned to active workload, i = {1, . . . , N},

1332 M. Jarza̧b, K. Zieliński

then the relative entitlement Ew of workload W can be expressed by the following
equation:

Ew =
Sw∑N
i Si

. (1)

The open-loop regulator takes into account the fact that the scheduler considers
only active workloads and, if a given workload is not CPU-bound (consumes all
available resources), then the remaining CPU portions might be consumed by
other workloads. Let us assume that:

1. number of workloads Nw ≥ 2;

2. number of active workload changes at time t according to activity state
vector At = [At

1, . . . , A
t
Nw

] where At
i = 0 if Wi is not active and At

i = 1 if Wi

is active; i = 1, . . . , Nw,

3. each workload is CPU-bound and has Si shares allocated,

4. Uw – required usage of CPU by workload Ww.

Following the mathematical transformations prescribed by Equation (1), we ob-
tain Equation (2) specifying the number shares Sw to be assigned to work-
load Ww:

St
w =

(
Uw

∑Nw
i 6=s Si ∗ At

i

)
(1− Uw)

, (2)

where
∑Nw

i 6=s Si ∗ At
i is the disturbance monitored by the manager, equal to the

sum of all active workload shares, excluding workload Ww at interval ∆t. To
provide the stability of the managed system there were also utilized heuristics
which result from the complexity of the managed LVC infrastructure and must
be exploited in order to ensure that the proposed adaptation process is an ef-
ficient solution for maintaining the required QoS [29]. For instance, if we deal
with the variable disturbances many important factors influence definition of
control policy. In a situation where there is only one CPU-bound workload,
and the whole CPU is assigned to that workload, it makes no sense to run the
control loop. The implemented heuristic based on the FSS model, which assigns
CPU according to share value, considering other active workloads returns a list
of workloads and the controller may check whether the list contains a specific
workload. Another factor in the case of a variable disturbance is a situation
when the CPU share for a controlled workload is not properly calculated. The
explanation is very simple; namely, when monitoring data are stored in a vector,
some of them are acquired at a time when the controlled database workload (db)
is active and assigned nearly the entire CPU. Such data dilute the mean calcu-
lated value and, if the value is bigger than the goal, shares are decreased instead
of increased, leading to instability of the managed workload. The solution to
the problem is to use a rolling average, similar to the Jacobson algorithm [45]
used in the TCP/IP protocol to smooth measured values (Equation (3)), where
ϕ – Jacobson coefficient. Applying these rules provides satisfactory results as

Adaptable Service Oriented Infrastructure Provisioning 1333

to the quality of applied control algorithm and strictly depends on the value of
the Jacobson coefficient.

NU t
w = ϕ ∗ U t−1

w + (1− ϕ) ∗ U t
w (3)

Selection of the appropriate controller settings for the Jacobson coefficient is
related to carrying out manual testing on the system, where finding best values
is done based on the algorithm that calculates the sum of squared error controls,
as presented in the Equation (4).

Ie =
M∑
k=0

e(kTO)2. (4)

The control algorithm based on the FSS model and heuristics is defined with
policies using the PMI based on Drools policy language.

Step 4 – Provisioning Procedure Initiation: Each provisioned LVC instance
must be defined in terms of virtualized storage pool containing the LVC filesys-
tem, physical interfaces (virtualized network [7]), Dynamic Resource Pools (num-
ber of CPUs) and OS schedulers (TSS used by LVC hosting Glassfish cluster and
FSS by LVC with database workloads). Two instances are specified for newly
created cluster nodes and the location of physical servers (LVC placement, i.e.
where the LVC instances are provisioned) is calculated by applying a simple
round-robin strategy.

Step 5 – Provisioning Procedure Activation: Once all the required informa-
tion is specified, the provisioning procedure can be successfully invoked. LVCs
are installed and the Glassfish clustered configuration is automatically tuned.
Subsequently, application components are deployed. The application services use
a database running within the LVC that must be supervised by the Adaptation
Manager to ensure appropriate CPU availability (according to QoS metrics).

Step 6 – Adaptation Loop Processing: The use of an open-loop controller
under conditions of disturbance (defined by square wave function [46]) ensures
that the system may continue to operate at a preset level – Figure 14. However,
in addition to the algorithm used, adaptation policies also involved a set of
heuristics already described in Step 3 to maintain the stability of the managed
system. If comparing to case when there is no control loop (green-line), the
quality of the system is ensured (red-line) to reach the 70 % of the CPU. The
selection of an appropriate period that takes the inertia of the FSS into account
is crucial and also affects the controller interval TO. This is especially important
in case of variable disturbances when FSS must adapt itself to satisfy CPU
consumption according to assigned shares (internal tests showed that this process
requires 60 seconds). In the analyzed scenarios, the controller interval was equal
to TO = 120 seconds, but thread responsible for acquiring monitoring data was
activated each ∆T = 5 seconds and stored metrics in vector, whose values were
then averaged for the control error calculation. The Jacobson’s coefficient was

1334 M. Jarza̧b, K. Zieliński

set to value ϕ = 0.4. The presented concept of exploitation of the traditional
control theory for the realization of control algorithms proved to be an effective
solution for ensuring the defined QoS goal.

Figure 14. Adaptive management of database workload

The presented case study exploits the model of adaptable SOI provisioning with
LVC utilizing Solaris, Glassfish and MySQL platforms, with a particular attention
to guaranteeing the availability of computing resources for the container in which
the database is running. The provisioning process was fully automated, organized
according to a defined model and supported by the A-SOI-PP. Though the JEE and
Solaris OS were used the presented methodology can be aplied to other systems as
well. The only step which is platform specific is ‘Step 2’ which provides specific
manageability endpoints exposing sensors and effectors for particular elements of
the Runtime Infrastructure.

7 SUMMARY

The proposed and implemented architecture of A-SOI-PP supports the model of
adaptable SOI provisioning with lightweight virtualization. The model assumes

Adaptable Service Oriented Infrastructure Provisioning 1335

the existence of specific components that provide SOI Infrastructure Services, en-
abling Runtime Infrastructure provisioning and governance utilizing policies defined
by the input of a particular provisioning process. The platform supports adapt-
able provisioning based on a flexible architecture integrating IaaS and PaaS layers
according to converged computing architectures requirements. Moreover, it sup-
ports definition, deployment and management based on MAPE pattern of arbitrary
Runtime Infrastructure topologies, as required by the application services. The
architecture is based on modular structure and implemented with components uti-
lizing JMX technology which were verified for Solaris and JEE technologies, and
in opinion of authors, it would very efficient solution for other platforms as well.
The A-SOI-PP is open, general in its nature and can be applied to different levels
of a distributed computing system to be provisioned and managed, starting from
physical resources, through virtualized operating systems, up to application servers
and software components. The existing practical applications of virtualization tech-
nology are dominated by the heavy-weight virtualization techniques. However, it is
the authors’ opinion that this situation will change in the direction of solutions to
lightweight virtualization because of the possibility of solving the numerous prob-
lems associated with the scalability of the existing arrangements for resources allo-
cation.

The A-SOI-PP can be adapted in the future to comply other solutions such
as OpenVZ or heavyweight virtualization technologies. An important feature is the
possibility to define any procedure for creating a VEI by using lightweight containers,
configuration templates and policy based management with hybrid controllers that
use control theory and heuristics to ensure the specified QoS.

In the proposed model the activities of the Construction phase are not automated
which is the element of the potential improvement. As it was presented in the case
study this can especially affect the steps necessary to choice the adaptation strategy
which is a very complex process and demands an expert and semantic knowledge in
the domain problem, and it can include the other algorithms based e.g. on queuing
theory or other self-learning techniques. The use of advanced processing tasks using
Complex Event Processing [47] technologies is a very interesting solution, enabling
the identification of the complex symptoms of many parallel streams of messages
from specific SOI Managed Elements that are often together in relationships that
could then be represented as a condition for inference.

The authors are convinced that the implemented A-SOI-PP is a very solid base
for expanding support for other applications to create a universal solution.

Acknowledgment

The presented research was supported by funding from the European Regional De-
velopment Fund No. POIG.01.03.01-00-008/08 and MNSiW No. 15.11.230.267.

1336 M. Jarza̧b, K. Zieliński

REFERENCES

[1] Gassman, B.: Provisioning IT Services. Gartner Group, October 2002.

[2] The Open Group, SOA Working Group: SOI Reference Framework. 2008.

[3] Garber, L.: Converged Infrastructure: Addressing the Efficiency Challenge. Com-
puter, Vol. 45, 2012, No. 8, pp. 17–20.

[4] Vaughan-Nichols, S. J.: New Approach to Virtualization Is a Lightweight. Com-
puter, Vol. 39, 2006, No. 11, pp. 12–14.

[5] Groß-Hohnacker, B.: Server Virtualization on Linux – Analysis and Evaluation.
2006.

[6] Carlson, L.: Programming for PaaS – A Practical Guide to Coding for Platform-
as-a-Service. O’Reilly Media, 2013, ISBN: 978-1-4493-3490-1.

[7] Jarza̧b, M.—Kosinski, J.—Zieliński K.: Virtualization of Grid Networking Re-
sources for Computation Mobility Support. Computational Methods in Science and
Technology, Special Issue, 2010, pp. 35–44.

[8] Delgado, V.: Exploring The Limits of Cloud Computing. M.Sc. Thesis, KTH In-
formation and Communication Technology, 2010, http://upcommons.upc.edu/pfc/
bitstream/2099.1/13421/1/VDelgadothesis.pdf.

[9] Nimbus Platform: http://www.nimbusproject.org.

[10] Chruz, C.—Petty, C.: PMAC Dev Guide. IBM Redbook Guide, 2006.

[11] Dong, X.—Hariri, S.—Xue, L.—Chen, H.—Zhang, M.—Pavuluri, S.—
Rao, S.: Autonomia: An Autonomic Computing Environment. Proceedings of
IEEE International Performance, Computing, and Communications Conference 2003,
pp. 61–68.

[12] Ferrer, A. J.—Hernández, F.—Tordsson, J.—Elmroth, E.—Ali-El-
din, A.—Zsigri, C.—Sirvent, R.—Guitart, J.—Badia, R. M.—Djema-
me, K.—Ziegler, W.—Dimitrakos, T.—Nair, S. K.—Kousiouris, G.—
Konstanteli, K.—Varvarigou, T.—Hudzia, B.—Kipp, A.—Wesner, S.—
Corrales, M.—Forgó, N.—Sharif, T.—Sheridan, C.: Optimis: A Holis-
tic Approach to Cloud Service Provisioning. Future Generation Computer Systems,
Vol. 28, 2012, No. 1, pp. 66–77.

[13] Scalr White Paper, Architecting the Right Stack for Your Enterprise Cloud. http:
//www.scalr.com/white-paper-architecting-the-right-stack.

[14] Spinellis, D.: Don’t Install Software by Hand. Software, IEEE, Vol. 29, 2012, No. 4,
pp. 86–87.

[15] Zieliński, K.—Szydlo, T.—Szymacha, R.—Kosinski, J.—Kosinska, J.—
Jarzab, M.: Adaptive SOA Solution Stack. IEEE Transactions on Services Com-
puting, Vol. 5, 2012, No. 2, pp. 149–163.

[16] Jarzab, M.—Hamiga, M.: An Analysis of Methods for Sharing an Electronic Plat-
form of Public Administration Services Using Cloud Computing and Service Oriented
Architecture. Computer Science, AGH Press, Vol. 13, 2012, No. 4, pp. 115–132.

[17] Liang-Jie, Z.—Zhou, Q.: CCOA: Cloud Computing Open Architecture. Proceed-
ings of the IEEE International Conference on Web Services (ICWS 2009), 2009,
pp. 607–616.

Adaptable Service Oriented Infrastructure Provisioning 1337

[18] Oracle Cloud Resource Model API: Document Number: TBD. Date: 2010-06-28,
Version 1.0, http://www.oracle.com/technetwork/topics/cloud/oracle-cloud-
resource-model-api-154279.pdf.

[19] Open Community Leading Cloud Standards: Open Cloud Computing Interface.
http://occi-wg.org.

[20] Amazon WS: http://aws.amazon.com.

[21] Docker Engine: http://www.docker.io.

[22] Rajkumar, B.—Rajiv, R.—Rodrigo, N.: InterCloud: Utility-Oriented Federa-
tion of Cloud Computing Environments for Scaling of Application Services. Proceed-
ings of the 10th International Conference on Algorithms and Architectures for Parallel
Processing, 2010, Part I, pp. 13–31.

[23] de Leusse, P.—Kwolek, B.—Zieliński, K.: A Common Interface for Multi-
Rule-Engine Distributed Systems. Proceedings of the 4th International Web Rule
Symposium (RuleML-2010), 2010, pp. 21–23.

[24] Nami, R. M.—Bertels, K.: A Survey of Autonomic Computing Systems. Proceed-
ings of the Third International Conference on Autonomic and Autonomous Systems,
2007.

[25] Powell, B.: IT Infrastructure Library (ITIL) V3: Overview and Impact, Global
Technology Services, ITS Strategy and Architecture.

[26] Horn P.: Autonomic Computing: IBM’s Perspective on the State of Information
Technology. VSA Partners, Inc., USA, 2001.

[27] Adamczyk, J.—Chojnacki, R.—Jarza̧b, M.—Zieliński, K.: Rule Engine
Based Lightweight Framework for Adaptive and Autonomic Computing. Proceed-
ings of the 8th International Conference on Computational Science, Part I, LNCS,
Vol. 5101, 2008, pp. 355–364.

[28] Hellerstein, J. L.—Diao, Y.—Parekh, S.—Tilbury, D. M.: Feedback Con-
trol of Computing Systems. Wiley-IEEE Press, August 24, 2004, ISBN: 978-0-471-
26637-2.

[29] Jarzab, M.—Zieliński, K.: Framework for Consolidated Workload Adaptive Man-
agement. Proceedings of the IFIP CEE-SET 2007, Software Engineering in Progress,
2007, pp. 17–30.

[30] Slota, R.—Nikolow, D.—Skalkowski, K.—Kitowski, J.: Management of
Data Access with Quality of Service in PL-Grid Enironment. Computing and Infor-
matics, Vol. 31, 2012, No. 2, pp. 463–479.

[31] Nikolow, D.—Slota, R.—Lakovic, D.—Winiarczyk, P.—Pogoda, M.—
Kitowski, J.: Management Methods in SLA-Aware Distributed Storage Systems.
Computer Science, AGH Press, Vol. 13, 2012, No. 3, pp. 35–44.

[32] Gmach, D.—Krompass, S.—Scholz, A.—Wimmer, M.—Kemper, A.: Adap-
tive Quality of Service Management for Enterprise Services. ACM Transactions on
the Web, Vol. 2, 2008, No. 1, Art. No. 8.

[33] Ba los, K.—Jarza̧b, M.—Wieczorek, D.—Zieliński, K.: Open Interface for
Autonomic Management of Virtualized Resources in Complex Systems – Construc-
tion Methodology. Future Generation Computer System, Vol. 24, Vol. 5, 2008,
pp. 390–401.

1338 M. Jarza̧b, K. Zieliński

[34] Blair, G. S.—Costa, F. M.—Coulson, G.—Duran, H. A.—Parlavant-
zas, N.—Delpiano, F.—Dumant, B.—Horn, F.—Stefani, J. B.: The Design
of a Resource-Aware Reflective Middleware Architecture. Proceedings of the 2nd Inter-
national Conference on Meta-Level Architectures and Reflection 99, Springer, 1999,
pp. 115–134.

[35] McKinley, P. K.—Sadjadi, S. M.—Kasten, E. P.—Cheng, B. H. C.: A Tax-
onomy of Compositional Adaptation. Software Engineering and Network Systems
Laboratory, Michigan State University, TR, MSU-CSE-04-17, May 2004.

[36] Jarza̧b, M.—Kosiński, J.—Zieliński, K.: Role of N1 Technology in the Next
Generation Grids Middleware. Proceedings of the European Grid Conference 2005,
LNCS, Vol. 3470, 2005, pp. 942–951.

[37] Java Management Extensions Specification – Version 1.4, 2006, http://docs.

oracle.com/javase/7/docs/technotes/guides/jmx/JMX_1_4_specification.

pdf.

[38] Tacy, A.—Hanson, R.—Essington, J.—Tokke, A.: GWT in Action. Manning
Publications, 2013, ISBN-10: 1935182846.

[39] JBoss RHQ Platform: http://rhq-project.org/.

[40] JBoss jBPM Suite: http://www.jboss.org/jbpm.

[41] Forgy, Ch. L.: Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern
Match Problem. Book Expert Systems, IEEE Computer Society Press, ISBN: 0-8186-
8904-8, 1990, pp. 324–341.

[42] Java Petstore Reference Application, Oracle Corporation, http://www.oracle.com/
technetwork/java/index-136650.html.

[43] Lageman, M.: Solaris Containers – What They Are and How to Use Them. SUN
Microsystems Blueprint, 2005.

[44] Kay, J.—Lauder, P.: A Fair Share Scheduler. Communication of the ACM, Vol. 31,
1988, No. 1, pp. 44–55.

[45] Jacobson, V.: Congestion Avoidance and Control. Proceedings of the Symposium
on Communications Architectures and Protocols (SIGCOMM ’88), 1988, pp. 314–329.

[46] Abramowitz, Stegun: Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathe-
matics Series, Vol. 55, 1964, pp. 1020.

[47] Balis, B.—Kowalewski, B.—Bubak, M.: Real-Time Grid Monitoring Based
on Complex Event Processing. Future Generation Computer System, Vol. 27, 2011,
No. 8, pp. 1103–1112.

Adaptable Service Oriented Infrastructure Provisioning 1339

Marcin Jarza�b received his Ph.D. degree in computer science
from the University of Science and Technology (AGH – UST) in
Kraków, Poland, in 2012. Currently he works in Samsung Re-
serach Poland, beeing responsible for architecting Smart Cloud
Solutions. He is also Head of Platform Architecture and Secu-
rity Department. He worked as a software consultant at Consol
Solutions and Software from 2000–2002, participating in many
projects for Telco companies. He was an intern at Sun Labs
in the latter half of 2003, investigating the application of the
multi-tasking Java Virtual Machine to the JEE environment.

His research interests include tuning and performance evaluation of distributed systems,
design patterns, frameworks, lightweight virtualization technologies, and architectures of
autonomic computing environments.

Krzysztof Zieli�nski is Full Professor and Head of Institute
of Computer Science at AGH – UST. His interests focus on
networking, mobile and wireless systems, distributed comput-
ing, and service-oriented distributed systems engineering. He
is an author of over 200 papers in this area. He has been
Project/Task Leader of numerous EU-funded projects, like e.g.
PRO-ACCESS, 6WINIT, Ambient Networks. He served as an
expert with Ministry of Science and Education. His research
interest concerns adaptive SOA solution stack, services compo-
sition, service delivery platforms and methodology. He is a mem-

ber of IEEE, ACM and Polish Academy of Sciences, Computer Science Chapter.

