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Abstract. The search process is critical for iterative compilation because the large
size of the search space and the cost of evaluating the candidate implementations
make it infeasible to find the true optimal value of the optimization parameter by
brute force. Considering it as a nonlinear global optimization problem, this paper
introduces a new hybrid algorithm – UMDA/S: Univariate Marginal Distribution
Algorithm with Nelder-Mead Simplex Search, which utilizes the optimization space
structure and parameter dependency to find the near optimal parameter. Elitist
preservation, weighted estimation and mutation are proposed to improve the per-
formance of UMDA/S. Experimental results show the ability of UMDA/S to locate

more excellent parameters, as compared to existing static methods and search al-
gorithms.
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1 INTRODUCTION

Over the last several decades we have witnessed tremendous change in the field
of computer architecture. New architectures have emerged at a rapid pace with
computing capabilities that often exceed our expectations. However, the rapid rate
of architectural innovations is becoming a major concern for the high performance
computing community. Each new architecture or even a new model of a given
architecture has brought with it new features that add to the complexity of the
target platform. As a result, it has become increasingly difficult to exploit the
full potential of modern architectures for complex scientific applications [1]. The
gap between the theoretical peak and the actual achievable performance is widen-
ing over time, due to the tremendous complexity increase in microprocessor and
memory architectures, and to the rising level of abstraction of popular program-
ming languages and styles [2]. High level program transformations are critical in
optimizing the performance of compiled code. Many of these transformations need
numerical parameters, which should be carefully selected. Good parameters could
bring great performance boost, while unsuitable parameters would bring less perfor-
mance improvement, or even degrade performance. Most compilers estimate these
parameters using static architectural models that are hard to achieve because of the
increasing architecture complexity. Recent researches show that iterative compila-
tion approach is a practical means to implement architecture-aware optimizations
for high-performance applications, outperforming static compilation approaches sig-
nificantly [3, 4]. It generates different program versions, and selects the one with the
best performance by actually running them on target hardware and using certain
search strategies [5].

Iterative compilation is promising in determining the optimal parameter values.
It is essentially target neutral, and could adapt to different program behavior and
different platforms. Therefore, it has been a hot research topic in the high perfor-
mance computing community. However, because the optimization space (set of all
possible program transformations) is large and non-linear with many local minima,
finding a good solution using iterative method may be too time-consuming. We
also notice that program optimization is a task where near optimal solutions would
be satisfactory. Therefore, this paper presents a novel search algorithm UMDA/S–
Univariate marginal distribution algorithm with Nelder-Mead simplex search, which
combines Univariate Marginal Distribution Algorithm (UMDA) and Nelder-Mead
simplex method (which will be called simplex method for short in this paper) to
find the near optimal parameter values.

The rest of this paper is organized as follows. Related work is elaborated in Sec-
tion 2. Formal description of the parameter search problem of iterative compilation
is given in Section 3. UMDA/S algorithm is presented in Section 4. Experimental
results are given in Section 5. Finally, we present a short conclusion along with
a discussion about future work in Section 6.
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2 RELATED WORK

The research efforts in iterative compilation search algorithms can be broadly clas-
sified into two categories according to the search space they operate on. Several
ongoing research projects try to find the best compilation sequence using iterative
compilation, known as phase order problem; others concentrate on finding the best
parameter values for transformations that use numerical parameters. Although both
of these approaches deal with very large search space, characteristics of these two
search spaces can be quite different. Thus strategies used in exploring these two
types of search space are also somewhat different. This paper focuses on the latter,
i.e. tuning of numerical parameters.

Many studies on the search strategies for iterative compilation optimization pa-
rameters are unidimensional in nature. That is, they search for the best parameters
of one transformation at a time. Fursin et al. [6] utilize random search algorithm to
explore the search space of tiling, unrolling and array padding factors. Their strat-
egy, however, does not use any intelligent search methods in the search space explo-
ration and is unidimensional. Experiments with three SPEC benchmarks show that
their strategy significantly outperforms native compilers on a variety of platforms.
Chen et al. [7] combine analytical models with empirical search to automatically
tune dense matrix computations to two different architectures. When performing
search in one dimension, reference values are used for other dimensions. Although
this strategy works reasonably well for ATLAS and some of the other empirical
tuning systems, it has one major limitation. That is, the search strategy does not
account for interaction between transformations and their search strategy – except
for the tiling search space – is unidimensional. It is well established that many
transformations interact with each other in complex ways and this complex inter-
action can have significant impact on program performance, especially when loop
transformations are targeting the memory hierarchy. Thus when searching for the
best parameter values for multiple transformations, it is imperative that the search
is multi-dimensional in nature.

However, search the optimization parameters multi-dimensionally is NP-hard in
nature [8]; therefore, many researchers prefer to solve this kind of problems based on
genetic algorithm (GA), which is a non-deterministic method, providing the chance
to efficiently address the NP-hard problems. Experimental results have shown that
it is effective in finding good optimization sequences [5]. However, its applicability
in finding suitable numerical parameters is somewhat limited. For numerical para-
meters, using a GA is not too different from using a random search. Kisuki et al. [4]
use a variety of search techniques including genetic algorithm, simulated annealing,
pyramid search and random search to explore the combined search space of tile sizes
and unroll factors. A somewhat interesting and surprising finding of this work is
that none of the search strategies used in their system has a clear advantage over
the others. In fact, in most cases, random search performs just as well as some of
the other more sophisticated search techniques. The main problem with the search
for iterative compilation numerical parameters is that we still know relatively little
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about the nature of the search space, and thus there are still no models that can
accurately describe the search space. Since many search strategies require some
modelling of the search space to work efficiently, as yet we have not found a suitable
search strategy for exploring the search space of transformation parameters.

One recent principled alternative to traditional evolutionary algorithms is the
so-called estimation of distribution algorithms (EDAs), which use a probabilistic
model of promising solutions to guide the exploration of the search space [9, 10].
EDAs evolve a population of potential solutions to the given optimization problem
using a combination of evolutionary computation and machine learning. There is no
traditional crossover or mutation in EDAs. Instead, they explicitly extract global
statistical information from the parent population set and build a posterior proba-
bility distribution model of promising solutions, based on the extracted information.
New solutions are sampled from the model thus built, and fully or in part replace
the parent population to form the new population. EDAs outperform other types
of evolutionary algorithms on broad classes of challenging problems. Meanwhile,
recent works by Apan Qasem et al. [11, 12] find that simplex search scheme can
be an effective technique for finding good values for transformation parameters in
reasonable time. Therefore, this paper explores the hybrid of EDAs and simplex
method to find near optimal parameters.

3 PROBLEM FORMULATION

In this paper we formalize iterative compilation parameter selection problem as
a global optimization problem, then we apply UMDA/S to solve this problem.

3.1 Formulation of Iterative Compilation Parameter Selection Problem

Let x1, x2, . . . , xn be the performance-critical program transformation parameters,
where n is the number of parameters. To the best of our knowledge, the parame-
ters in program optimization are integers, and based on the domain-specific knowl-
edge, each parameter has an upper bound upi and a lower bound lowi, i.e. xi ∈ Z,
lowi ≤ xi ≤ upi, i = 1, 2, . . . , n. The compositional parameter vector of all trans-
formation parameters (x1, x2, . . . , xn)(xi ∈ Z, lowi ≤ xi ≤ upi, 1 ≤ i ≤ n) is called
a parameter vector, represented as x = (x1, x2, . . . , xn). Each parameter vector is
called a feasible solution or a solution. The space composed by all solutions, i.e.
all the integer points embraced by the lower and upper bound of all parameters, is
called solution space or feasible region, denoted as D. ‖D‖ =

∏

1≤i≤n
(upi − lowi + 1).

Denote the program execution time using parameter vector x as T (x), the fitness
function f(x) = 1/T (x); then iterative compilation parameter search problem can
be formalized as the following global optimization problem:
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minT (x = (x1, x2, . . . , xn)) or max f(x = (x1, x2, . . . , xn))
Subject to
{

lowi ≤ xi ≤ upi, i = 1, 2, . . . , n
xi ∈ Z.

(1)

In this paper, we do not distinguish between the term parameter vector and
solution. The quality of each solution is determined by its fitness function value.
The higher the fitness function value, the better the quality of the parameter vector.

3.2 Optimization Parameter Selection Process

The optimization parameter selection process selects the optimal x so that T (x) is
minimized, and the procedure is as follows:

1) Transform the original program P . For transformations that use parameters,
define the parameters as constants (to be determined in 2) or 4)) in the head
file of the program. This step generates program P ′.

2) The search algorithm generates initial values for the constants in the head file.

3) Program P ′ is compiled with the native compiler.

4) The search engine executes the executable of program P ′, and measures its
execution time. The search engine keeps track of different parameters evaluated,
decides which parameters to apply next and updates the values in the head file.
Goto 3) unless search stop condition is satisfied.

5) The parameter with the shortest execution time so far is selected as the near
optimal parameter.

This paper utilizes UMDA/S to search the parameter values for three parame-
trized transformations: array padding, loop tiling, and loop unrolling.

3.3 Parameterization

Now consider the parameterization, through which the numerical parameters can be
abstracted from the program. Parameterization makes use of the native compiler
to simplify the implementation of iterative compiler and to eliminate repeated pre-
processing procedure, if possible. It uses the head file to interface with the native
compiler. The optimization parameters appear as compile-time constants in the
head file of source program P ′. These parameters are searchable by UMDA/S. For
program P ′, the head file may be defined in the form

Parameter(x1=[value 1], . . . , xn=[value n])

Many high level language compilers provide loop unrolling directives. So for
loop unrolling transformation, we can place an unroll directive before the loop in
the source code and let the native compiler do the actual loop unrolling job. For
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example, if the native compiler is Compaq Visual Fortran, and the unroll factor
is xk, then the loop can be unrolled in this form

CDEC$ UNROLL(xk)
{the target loop }

For array padding transformation, the padding parameters are directly used in
defining the array. If xk is the intra-array padding factor, then the array can be
padded in the form:

A(N,N) =⇒ A(N+xk,N)

For optimizations like loop tiling, the tile sizes are directly used in the optimized
program, and the source code is the same for different tile sizes. In this case, by
regarding the parameters as runtime parameters, we can further remove repeated
native compilation procedures from iterative compilation. This can be done by
defining the parameters as variables, and insert file operations to read them from
parameter file before they are used. For example, if xk and xj are two optimization
parameters, PFile is the parameter file name, then in program P ′:

open(10, file=‘PFile’, status=‘old’)
read(10, 100) xk, xj

100 FORMAT(3I)
close(10)
{codes that use xk and xj}

Nearly all program transformation parameters can be made as runtime para-
meters by multi-version techniques theoretically. However, this may cause code
expansion and other side effects. So we only apply this to some math kernels.
Then UMDA/S is employed to find the near optimal parameter value, which will be
introduced next.

4 UMDA/S: AN EFFECTIVE PARAMETER SEARCH ALGORITHM
FOR ITERATIVE COMPILATION

Before discussing the algorithm and its implementation, let us look into the rationale
of UMDA/S for the search of iterative compilation numerical parameters.

First, the main problem with the search for iterative compilation numerical pa-
rameters is that we still know little about the nature of the search space. Many
transformations interact with each other in complex ways and this complex interac-
tion can have significant impact on program performance; therefore, we do not have
models that can describe the search space with a high degree of accuracy. EDAs use
a probabilistic model of promising solutions to guide the exploration of the search
space. They explicitly extract global statistical information from the parent popula-
tion set and build a posterior probability distribution model of promising solutions,
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based on the extracted information. EDAs outperform other types of evolutionary
algorithms on broad classes of challenging problems. Therefore, we employ EDAs
to exploit the distribution of good points in the search space, guiding the search of
excellent parameters.

Second, why should we use UMDA when much more advanced models are avail-
able, such as multiply connected Bayesian networks? The most important reason to
prefer simple models is efficiency. Simple models can usually be created much faster
than the complex ones and they still provide sufficient accuracy. It has been known
that, in order to efficiently solve a given problem using EDAs, there is no necessity
to represent and use all the dependencies [13, 14, 15, 16]. Problems with certain
interactions between the variables may be candidates to be solved with UMDA [17].

Finally, the addition of other optimization methods to EDAs that use univa-
riate probabilistic models permits the solution of problems with complex interac-
tions without the computational burden of using more complex probabilistic mo-
dels [18, 19]. Simplex method [20], a classical and powerful direct search method
for optimization, fits in the role perfectly. First, the optimization space is too large
to search completely. Second, the simplex method is useful for training parameters,
especially for searching minima of multi-dimensional functions when dimension is
less than 20. It is mainly used to solve the minimization problem: min f(x), where
f : Rn → R, and the gradient information is not available. Finally, the cost of
simplex algorithm can be flexibly controlled. The longer the search runs, the better
the solution may be; but the algorithm can be interrupted at any time, returning
the best solution found up to that time.

From the analysis above, we can see that UMDA/S should be a good choice for
iterative compilation parameter selection strategy by combining UMDA and simplex
method. It uses the probabilistic model of promising solutions in UMDA to guide
the exploration of the search space, and utilizes the simplex method to optimize
parameters in the population, which helps to locate the better-performing solutions
more concisely and then guide the evolutionary direction better.

4.1 Preliminaries

1) Encoding. Most existing EDAs deal with binary-encoded optimization problem,
but the binary encoding has the following shortcomings:

• Two neighboring integers may have a long Hamming distance when using
binary encoding, which will slow down the convergence speed.

• When solving high-dimensional optimization problems, the string of binary
encoding is very long, which will slow down the search speed of the algorithm.

Integer encoding can overcome these problems; what is more, it facilitates the
inclusion of domain-specific heuristic information, enhancing the search ability
of algorithm. Therefore, this paper adopts integer encoding.
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2) Initialization. The distribution of excellent solutions is unknown initially. To
keep the diversity of solutions, and to avoid being trapped in the local op-
tima, when generating the initial population, optimization parameter vectors
should be dispersed in the feasible region as evenly as possible, so that the initial
population can include as much information about feasible region as possible.
Therefore, in UMDA/S, the initial population is generated following uniform
distribution.

3) Selection policy. [10] argued that proportional selection, truncation selection
and tournament selection can theoretically ensure the global convergence of
EDAs. This paper considers proportional selection, and denotes the propor-
tional selection factor as rBest.

4) Build the probability model of the selected solutions

• Learn the probability distribution of each optimization parameter based on
counting. The probability of optimization xi valued j is

p(xi = j) =
#

(

xi = j|DS
l

)

N
(j ∈ [lowi, upi], j ∈ Z) (2)

where DS
l is the selected population, N is the size of DS

l , and #(xi = j|DS
l )

is the number of xi valued j in DS
l . It can be proved to be a maximum

likelihood estimation [21].

• For each xj ∈ DS
l , build the probability model pl(x

j):

pl(x
j) = pl

(

xj|DS
l

)

=
n
∏

i=1

pl(x
j
i ) =

n
∏

i=1

#
(

xi = xj
i |D

S
l

)

N
. (3)

4.2 UMDA/S Algorithm

UMDA/S works as follows:

1. Randomly generate M solutions from D following uniform distribution, then
apply the simplex method to each solution, generatingM new solutions, forming
the initial population.

2. Run the test program, evaluate each solution, and select N (N < M) best-
performing ones to form the excellent population. Build the probability model
of the selected solutions.

3. Sample M solutions from the probability model, then apply the simplex method
to each solution to generate M new solutions, which forms the new population.

4. If the stopping conditions are not satisfied, go to 2).

To clearly illustrate UMDA/S, Algorithm 1 and Algorithm 2 are decomposed
from UMDA/S. Algorithm 1 is the main part of UMDA/S, which uses the proba-
bilistic model of promising solutions in UMDA to guide the exploration of the search
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space; Algorithm 2 adopts simplex method to optimization parameter vectors gene-
rated by UMDA during initialization and sampling, to locate the better-performing
solutions more concisely.

Input: test program testFile, and the number of optimization parameters n;

Output: optimal optimization parameter vector 1 2( , , , )nx x x x  and the corresponding program

running time ( )T x

(1) Setting algorithm parameters: population size M, the size of selected population N, and the

maximum generation Npop.

(2) Initialization. 

a) Generate M optimization parameter vectors 1 2, , , Mx x x! ! !  from D;

b) For each 1 2
, , ,{ }i M

x x x x!! ! ! ! { i
x " NDSimplex (testFile, i

x! ,n) ; } 

c)
1 2
, , ,

M
x x x" form the new population Dl , l = 0. 

(3) Fitness value evaluation. For each 
1 2

{ , , , }
i M

x x x x! " { Run testFile with optimization

parameter vector 
i

x , achieve ( )
i

T x , and compute ( )
i

f x .}

(4) Selection. Select N optimization parameter vectors from Dl to form selected population 
s

l
D .

(5) Build the probability model ( )lp x .

For each 
s

l

j
x D! , build the probability model ( )

j

lp x  based on Formula (3). 

(6) Generate the new population by sampling from the probability model. 

a) Sampling M times from ( )lp x , achieve M optimization parameter vectors 1 2
, , ,

M
x x x! ! ! ;

b) For each 1 2
, , ,{ }i M

x x x x!! ! ! ! { i
x " NDSimplex (testFile, i

x! ,n) ; } 

c)
1 2
, , ,

M
x x x" form the new population Dl+1, l = l +1.

(7) Stop condition check. If l < Npop, go to (3). 

Fig. 1. Algorithm 1: UMDA/S

For the simplicity of algorithm description, we first list some notations in the
simplex–based parameter selection algorithm; and during the process of NDSim-
plex(), if any parameter of the new generated point through reflection, contraction,
expansion, and shrink operators do not belong to D, regenerate a new one.

Notation.

• S(k): The simplex in the kth iteration, i.e.

S(k) =
(

xk
0, x

k
1, . . . , x

k
n

)

;

• xk
h: The highest (worst) point, i.e.

f
(

xk
h

)

= max
{

f
(

xk
i

)

| i = 0, 1, . . . , n
}

;

• xk
inf h: The second highest point, i.e.

f
(

xk
inf h

)

= max
{

f
(

xk
i

)

| i = 0, 1, . . . , n, i 6= h
}

;
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• xk
l : The lowest (best) point, i.e.

f
(

xk
l

)

= min
{

f
(

xk
i

)

| i = 0, 1, . . . , n
}

;

• x̄k: Average of all points, excluding the worst (highest) point;

• MaxIter, ε: The maximum iteration number and precision requirement;

• α, β, γ, ω: The coefficient of reflection, contraction, expansion, and shrink.

From the initial point generated by UMDA, denoted by x̃, the simplex method
will generate the initial simplex in the following way:

{

x0
1 = x̃

x0
i = x̃+ (−1)i ∗ (i/2) ∗ ones(1, n) i = 1, 2, . . . , n

(4)

where ones(1, n) returns an 1-by-n vector of 1s, so that several points will be gene-
rated around x̃ with step 1 or -1, and x̃ will be locally optimized.

4.3 Improvements Policies for UMDA/S

To avoid local convergence and improve the efficiency of optimization, the following
improvement policies are added to the basic UMDA/S:

1) Elitist preservation. In standard UMDA, there is no guarantee that once
a good solution vector is found, it will remain in the population of the sub-
sequent generation. Therefore, elitist preservation is used to resolve this. When
generating the next generation population from the current population, select
a small proportion of elitists, which have the highest fitness, and copy them to
the next generation, so that the evolution will not degrade. We denote ηElitist
proportion of elitists, i.e. proportion of elitists to the population size.

2) Weighted estimation. Formula (3) is substituted with the following formulas:

ωi = 1/T (xj) (5)

pl(x
j) =

n
∏

i=1





ωi ·#
(

xi = xj
i |D

S
l

)

N ·
∑n

i=1 ωi



 (6)

Formula (5) computes the weight of xj . As shown in Formula (6), when build-
ing the probability model, the shorter the execution time of the optimization
parameter vector, the bigger weight it owns. This implies that the better solu-
tions will play a greater role in the distribution estimation for the next popula-
tion.

3) Mutation. In order to perform extensive search, genetic diversity must be main-
tained. Otherwise, it is possible for UMDA/S to settle into a sub-optimal state.
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Input: initial parameter vector x , test program testFile, and the number of optimization parameter n;

Output: optimized parameter vector x. 

(1) Setting parameter of simplex: MaxIter,  , ! , " ,# . k  0. 

(2) Initialization. Based on initial point x , generate n+1 points from D following Formula (4), to

form initial simplex S
(0)

. 

(3) Fitness evaluation. 

a) For each 
1 2 1, , ,{ }k k k k

i nx x x x $% !   

{ Run test program testFile with parameter k

ix , achieve )( k

iT x , and compute )( k

if x .} 

b) Find 
inf

, ,k k k
h h l

x x x& & , and compute 
k

x . 

(4) Reflection. (1 )
kk k

r nx x x  ' $ ( . 

a) if ( ) ( )k k
r l

f x f x)  { go to (6); } 

b) else if 
inf

( ) ( ) ( )k k k
rl h

f x f x f x) )  { k k
n rx x* , go to (8); } 

c) else if 
inf

( ) ( )k k
r h

f x f x+  { go to (8). } 

(5) Expansion. (1 )
kk k

e rx x x" "' ( ( . 

a) if ( ) ( )k k
e rf x f x)  { k k

n ex x* , go to (8); } 

b) else { k k
n rx x* , go to (8). }    

(6) Contraction.  

a) if ( ) ( )k k
r nf x f x,  { (1 )

kk k
c rx x x! !' $ ( . } 

i. if ( ) ( )k k
c rf x f x,  { k k

n cx x* , go to (8); } 

ii. else { go to (7). } 

b) else { (1 )
kk k

c nx x x! !' $ ( . } 

i. if ( ) ( )k k
c nf x f x,  { k k

n cx x* , go to (8); } 

ii. else { go to (7). } 

(7) Shrink. 
0 0( )k k k k

i ix x x x#' $ ( , 1,2 , 1,k n i l' $ & - . 

(8) Stop criterion check.   

a) if  k axM Iter+  or 
1

2 2

0

1
{ [ ( ) ( )] }

1

n kk
i

i

f x f x
n

.
'

( )
$ /

{Stop. Return k
l

x  as the final solution. } 

b) else { 1k k' $ , go to (3). } 

 

Fig. 2. Algorithm 2: NDSimplex()

Mutations are introduced to the basic UMDA/S algorithm to help preserve di-
versity and to escape from local optima. We can apply mutation in each gener-
ation of UMDA/S; however, this will increase the search cost. If the generation
interval for mutations is too long, diversity may be lost. Therefore, we apply
mutation every several generations when the maximum fitness of the generation
keeps unchanged, which indicates UMDA/S may have settled into a sub-optimal
state. In our experiment, if the maximum fitness of the generation keeps un-
changed over any three continuous generations, select two parameter vectors
from the current population using the roulette wheel method, and mutate them
using the full arithmetic mutation:
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{

xi = Mod(xi + irand(−muStepi, muStepi), upi) 1 ≤ i ≤ n
if(xi < lowi) xi = irand(lowi, upi)

(7)

where Mod() is the modulo function, irand(lowi, upi) is the function which ran-
domly generates an integer between lowi and upi, and muStepi(i ≤ i ≤ n) is
the possible maximum mutation step which is defined by users in advance and
is usually set as 1/6 ∼ 1/8 of (upi − lowi).

4) OPEOT (One Parameter Evaluated One Time). Note that the most ti-
me-consuming part of our search algorithm is the measuring of the execution
time. Also notice that at least one set of parameters (the one with the minimum
execution time) remains unchanged from one generation to the next. Therefore,
there is no need to recalculate the execution time for that set of parameters.
In the experiments, we find that more than half of the parameters have already
been executed previously. To improve the performance of the algorithm, we keep
record of the parameters and execution time of previously executed parameters
in a list: ExecList. When measuring execution time for one set of parameters,
we first check ExecList to see if its execution time is available. If so, we move
on to the next set of parameters.

5 PERFORMANCE EVALUATION

5.1 Environmental Setup

We test three typical numerical compute kernels, the matrix multiplication program
(MxM) with matrix sizes 512 and 1 024, Successive Overrelaxation (Sor) with scale
512 and 1 024, and Red-Black Successive Overrelaxation (rbSor) with scale 192 and
256. The outer time step of Sor and rbSor is 100. In this paper we only consider
three parameterized transformations: array padding with parameters up to 64, loop
tiling with parameters up to 256, and loop unrolling with parameters up to 128; their
parameterization has been described in Section 3.3. The search space consists of ap-
proximately 1 052 possible different transformations which are unrealistic to explore.
Experiments are performed on two platforms – Intel Core2 Quad Q6600 (Core2) and
Intel Pentium D 820 (PentiumD). Table 1 lists the architectural parameters of each
platform.

Parameter settings for UMDA/S are as follows: population size N = 100, se-
lected population size M = 50, maximum evolutionary generation Npop = 30, eli-
tist proportion ηElitist = 0.05, proportion selection factor rBest = 0.5. Parameter
settings for GA are as follows: population size N = 100, maximum evolutionary
generation Npop = 30, mutation probability is 0.05, and crossover probability is 0.7.
Settings for simplex are as follows: MaxIter = 10, ε = 0.0001. As to the selection
of α, β, γ, ω, Nelder and Mead [20] recommended that α = 1.0, β = 0.5, γ = 2.0,
ω = 0.5.



UMDA/S for Iterative Compilation Parameter Search 1171

Core2 PentiumD

Frequency
L1Data
L1Instruction
L2 Cache
Memory
OS
Compiler

2.4GHz
4× 32KB
4× 32KB
2×4 096KB
DDR2 2G
Windows XP professional
Intel Fortran Compiler 9.0 -O3

2.8GHz
2× 16KB
2× 12KB
2× 1 024KB
DDR2 1G
Windows XP professional
Intel Fortran Compiler 9.0 -O3

Table 1. Experimental Platforms

5.2 Experimental Results

Before analyzing and comparing execution times or the effect of different search
algorithms, we need to determine the precision of the timing on the particular plat-
form. The execution time is generally measured using the system timer and can
oscillate from run to run due to varying operating system management processes.
We also created an additional tool to measure the precision of the execution time.
In this paper, we execute the same application 10 times and compare the average
performance of the application.

5.2.1 Performance Comparison

5.2.2 Comparison with Existing Static Techniques

We first compare our UMDA/S–based iterative compilation with state-of-the-art
static techniques. Here it is compared to two well-known static optimization tech-
niques proposed by Lam et al. in [22] and by Coleman and McKinley in [23]. Lam,
Rothberg, and Wolf presented LRW [22] for computing the tile size. They select
the largest square tile that does not incur self-interference conflicts for matrix mul-
tiply based on the periodicity in the addressing of a direct-mapped cache and the
constant-stride accesses. This algorithm takes the matrix size N and the cache size
C as the input and returns the largest tile size without conflict misses. Coleman and
McKinley presented TSS [23]. They select rectangular tiles to remove both capacity
and conflict misses. TSS also assumes that the cache is direct-mapped. It takes the
cache size C, the line size and the array column dimensions (N and M) as the input.
It calculates the number of complete columns that fit into cache.

Both techniques attempt to reduce conflict and capacity misses by using loop
tiling. Both techniques are applied to statically determine the tile size. We evaluate
them and compare them with our UMDA/S based iterative optimization. Since both
of them only apply loop tiling, iterative compilation is restricted to loop tiling to have
a fair comparison. Tables 2 and 3 demonstrate the speedup over native compilation
with optimization option -O3 of static optimization algorithms: LRW and TSS, that
of iterative compilation with loop tiling and that of iterative compilation with all
transformations enabled with our UMDA/S search algorithm.
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MxM
512

MxM
1024

Sor
512

Sor
1 024

rbSor
192

rbSor
512

LRW 20.1% 20.5% 0% 0% 0% 0%

TSS 21.3% 21.9% 0% 0% 0% 0%

UMDA/S (only tiling) 26.8% 28.6% 21.8% 22.4% 11.7% 16.0%

UMDA/S (all transformations) 33.2% 35.1% 28.3% 30.2% 14.9% 20.3%

Table 2. Speedup on Core2 of LRW, TSS, and UMDA/S based iterative compilation

MxM
512

MxM
1024

Sor
512

Sor
1 024

rbSor
192

rbSor
512

LRW 19.9% 21.0% 0% 0% 0% 0%

TSS 21.6% 21.9% 0% 0% 0% 0%

UMDA/S (only tiling) 27.0% 28.1% 18.5% 25.7% 11.0% 15.3%

UMDA/S (all transformations) 33.8% 35.9% 24.2% 33.9% 15.0% 18.6%

Table 3. Speedup on PentiumD of LRW, TSS, and UMDA/S based iterative compilation

Results show that LRW and TSS perform well on MxM, outperforming native
compilers which are optimized for maximum speed performed by the compiler on
both platforms. This is because when performing optimizations the native compilers
try to avoid degradation of performance. Therefore, they either do not apply loop
tiling or apply it with a small factor that generally does not degrade performance
but improvement is not so significant. Hence, the above static techniques have
a greater potential to pick up tile size better. However, for Sor and rbSor, LRW
and TSS fail to achieve any performance improvement, mainly due to assuming
the use of the direct-mapped cache that is not the case and by using approxima-
tions to count interferences. Nevertheless, iterative compilation actually executes
different versions of the program with different tiling factors, with UMDA/S search-
ing over the optimization space; therefore, it obtains more performance improve-
ment.

5.2.3 Comparison with Existing Search Algorithms

In our previous work [24], the comparison of the simplex method with other search
algorithms has been done, and the results show that for iterative compilation pa-
rameter selection problem, the Nelder-Mead simplex search strategy can produce
parameter values with better performance than that of GA and random search.
Therefore, in this paper, we only evaluate the effectiveness of UMDA/S by compari-
sons with UMDA, simplex algorithm and GA, and test the impact of improvement
policies to UMDA/S.

Because the execution time of different programs varies greatly and it is hard
to integrate all these programs’ information in one graph, we normalize the perfor-
mance as the speedup over native compilation with optimization option -O3 which
is optimized for maximum speed performed by the compiler.
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Fig. 3. Speedup on Core2 of different search algorithms
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Fig. 4. Speedup on PentiumD of different search algorithms

Figures 3 and 4 show that the optimization parameter obtained by UMDA,
simplex and UMDA/S is more excellent than that by GA, but simply application
of UMDA or simplex will not bring great improvement. Only the combination of
them can boost application performance significantly. This is because by combining
UMDA and simplex, UMDA/S can control the structure of optimization space and
the evolutionary direction on the whole; meanwhile by improving the quality of
optimization parameter vectors in each generation using simplex method, the search
algorithm can locate the local optima better.

5.2.4 Convergence Comparison

Because UMDA/S, UMDA and GA are all population-based evolutionary algo-
rithms, and the ultimate goal of search algorithms is to find the parameters with
the maximum fitness, we test their convergence through comparing how the maxi-
mum fitness of each generation varies with generations. Figures 5 and 6 give the
convergence comparison of MxM on PentiumD.
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Fig. 5. Convergence comparison of MxM512 on PentiumD
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Fig. 6. Convergence comparison of MxM1024 on PentiumD

We can see from Figures 5 and 6 that UMDA has better learning ability than
GA for optimization parameter vectors. It is worth mentioning that although the
maximum fitness achieved by UMDA is lower than that of GA under some cir-
cumstances, UMDA performs better than GA gradually. For example, in Figure 6,
during Generation 1 through 4, the maximum fitness searched by UMDA is lower
than that by GA, but after Generation 5, the maximum fitness found by UMDA
is higher than that by GA, i.e. UMDA performs better gradually. This is because
UMDA/S adopts the simplex method to optimize parameter vectors generated by
UMDA during initialization and sampling, which will facilitate locating the better-
performing solutions more concisely, so as to better guide the evolutionary direction.
In addition, three improvement policies are proposed in UMDA/S, which help avoid
local convergence while improving the efficiency.
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5.2.5 The Impact Analysis of Improvement Policies

To test the impact of different improvement policies, we eliminate elitist preserva-
tion, weighted estimation, mutation and all of them from UMDA/S, denoted by w/o
ER, w/o WE, w/o mutation, and none, respectively, and test how the elimination
affects the convergence of maximum fitness. The results of MxM on PentiumD are
illustrated in Figures 7 and 8.
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Fig. 7. The impact of improvement policies to MxM512 on PentiumD
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Fig. 8. The impact of improvement policies to MxM1024 on PentiumD

Experiments show that adding elitist preservation, weighted estimation, and
mutation to UMDA/S can speed up the convergence and improve the quality of
convergence. Among them mutation affects the convergence the most, weighted
estimation less, and elitist preservation the least. This is because when generat-
ing optimization parameter vectors by sampling from the probability model of the
selected population, optimization parameter vectors are gathering around excellent
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populations, thus the impact of elitist preservation is weakened. Weighted estima-
tion also affects convergence, because it makes the optimization parameter vector
with less execution time own bigger weight when building probability model. Thus
excellent optimization parameter vectors play a more important role in the distribu-
tion estimation of next population, which improves the quality of the population. As
for mutation, it should be mentioned that a shortcoming of EDAs is that, occasion-
ally, solutions that are not very representative of the current model, but nevertheless
they are good, are not well exploited in future iterations. This is because the in-
formation of such solutions is too different from that in the model. Therefore, such
solutions’ impact is of little importance. To overcome this limitation, the muta-
tion operator was introduced. Due to the diversity provided by mutation operators,
the algorithm is less likely to be trapped in a local minimum. In conclusion, the
mutation affects UMDA/S’ performance most, especially in the latter part of the
search.

6 CONCLUSION AND FUTURE WORK

Present compilers face various difficulties to model the complex interplay between
different optimizations and their effects on code on all the different processor ar-
chitecture components. Iterative compilation approach has become a practical and
portable means to implement architecture-aware optimizations for high-performance
applications, boosting the performance of optimizing compilers and bridging the per-
formance gap for high-performance applications.

This paper explores UMDA/S: the hybrid of UMDA and simplex algorithm, to
search the near optimal parameter value in iterative compilation, and presents the
improvement policies of elitist preservation, weighted estimation, and mutation to
improve the performance of UMDA/S. Experimental results show that UMDA/S
can be an effective strategy for the transformation parameter space exploration. Its
ability to discover better solutions while keeping good convergence makes it a good
choice for iterative compilation search strategies. In the future, we plan to improve
UMDA/S by combining static models and architectural information to prune the
search space and to use training data sets during the tuning process to cut down
the program execution time.
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