
Computing and Informatics, Vol. 35, 2016, 143–176

PAFSV: A FORMAL FRAMEWORK
FOR SPECIFICATION AND ANALYSIS
OF SYSTEMVERILOG

Ka Lok Man

Department of Computer Science and Software Engineering
Xi’an Jiaotong-Liverpool University, Suzhou, China
e-mail: ka.man@xjtlu.edu.cn

Chi-Un Lei

The University of Hong Kong, Hong Kong

Hemangee K. Kapoor

Indian Institute of Technology Guwahati, India

Tomas Krilavičius

Vytautas Magnus University, Lithuania
&
Baltic Institute of Advanced Technology, Lithuania

Jieming Ma

Suzhou University of Science and Technology, China

Nan Zhang

Department of Computer Science and Software Engineering
Xi’an Jiaotong-Liverpool University, China
&
CITIC Securities, China

144 K. L. Man, C.-U. Lei, H. K. Kapoor, T. Krilavičius, J. Ma, N. Zhang

Abstract. We develop a process algebraic framework PAFSV for the formal speci-
fication and analysis of IEEE 1800TM SystemVerilog designs. The formal semantics
of PAFSV is defined by means of deduction rules that associate a time transition
system with a PAFSV process. A set of properties of PAFSV is presented for
a notion of bisimilarity. PAFSV may be regarded as the formal language of a sig-
nificant subset of IEEE 1800TM SystemVerilog. To show that PAFSV is useful for
the formal specification and analysis of IEEE 1800TM SystemVerilog designs, we
illustrate the use of PAFSV with a multiplexer, a synchronous reset D flip-flop and
an arbiter.

Keywords: SystemVerilog, process algebras, formal semantics, PAFSV, formal
specification and analysis, circuit verification

Mathematics Subject Classification 2010: 68Q45

1 INTRODUCTION

The goal of developing a formal semantics is to provide a complete and unambiguous
specification of the language. It also contributes significantly to the sharing, porta-
bility and integration of various applications in simulation, synthesis and formal
verification. Formal languages with a semantics well-defined in Computer Science
increase understanding of systems, increase clarity of specifications and help prob-
lem solving and remove errors. Over the years, several flavours of formal languages
have gained the industrial acceptance.

Process algebras [1] are formal languages that have formal syntax and semantics
for specifying and reasoning about different systems. They are also useful tools for
verification of various systems. Generally speaking, the process algebras describe
behaviour of processes and provide operations that allow to compose systems in
order to obtain more complex systems.

Moreover, the analysis and verification of systems described using the process
algebras can be partially or completely carried out by mathematical proofs using
equational theory.

In addition, the strength of the field of process algebras is in the ability to use
Algebraic Reasoning [1] (also known as equational reasoning) that allows rewriting
processes using axioms (e.g. for commutativity and associativity) to a simpler form.
By using axioms, we can also perform calculations with processes. These can be
advantageous for many forms of analysis.

Process algebras have also helped to achieve a deeper understanding of the
nature of concepts like observable behaviour in the presence of non-determinism,
system composition by interconnection of system components modelled as processes
in a parallel context, and notions of behavioural equivalence (e.g. bisimulation [1])
of such systems.

PAFSV: A Formal Framework for Specification and Analysis of SystemVerilog 145

Serious efforts have been made in the past to deal with systems (e.g. real-time
systems [2, 3] and hybrid systems [4, 5]) in a process algebraic way. Over the years,
process algebras have been successfully used in a wide range of problems and in
practical applications in both academia and industry fields for analysis of many
different systems.

On the other hand, the need for a formal and well-defined semantics of a Hard-
ware Description Languages (HDLs) is widely accepted and desirable for architects,
engineers and researchers in the electronic design community. IEEE 1 800TM Sys-
temVerilog [6] (SystemVerilog) is the industry’s first unified hardware description
and verification language (HDVL) standard [7, 8, 9]; and SystemVerilog is a major
extension of the established IEEE 1 364TM Verilog language [10, 11]. However, the
standard semantics of SystemVerilog is informal.

We believe that the fundamental tenets of process algebras are highly compatible
with the behavioural approach of systems described in SystemVerilog. Hence, in this
paper, we present PAFSV [12, 13] (Process Algebra Framework for SystemVerilog)
that is suitable for modelling and analysis of systems described in SystemVerilog.

The formal semantics of PAFSV is defined by means of deduction rules in a stan-
dard Structured Operational Semantics (SOS) [14] style that associate a Time Tran-
sition System (TTS) [15] with a PAFSV process. A set of properties of PAFSV is
presented for a notion of bisimilarity.

PAFSV covers the main features of SystemVerilog including decision statements
and immediate assertions, and also aims to achieve a satisfactory level of abstrac-
tion and a more faithful modelling of concurrency. Although it is desirable and very
important to have pure parallelism for hardware simulation, the SystemVerilog sim-
ulators “in-use” at this moment still implement parallelism via non-determinism.
Therefore, we realise that it is more fruitful to develop our process algebraic frame-
work for SystemVerilog such that the execution of a system described in such
a framework (PAFSV) consists of interleaving transitions from concurrent processes.

Moreover, we adopt the view that a system described in PAFSV is a system in
which an instantaneous state transition occurs on the system performing an action
and a delay takes place on the system idling between performing successive actions.
A technical advantage of our work (see also Section 7 for details) is that, in contrast
to other attempts to formalise semantics of SystemVerilog, specifications described
in PAFSV can be directly executable.

This paper is organised as follows. Section 2 presents a brief review focusing
on concepts and features of SystemVerilog that are relevant to PAFSV. Section 3
shows the goals, the data types, time model, formal syntax and formal semantics of
our process algebraic framework PAFSV. To illustrate the use, effectiveness and ap-
plicability of the deduction rules, in Section 4, some simple specifications of PAFSV
are provided. In Section 5, correctness of the formal semantics of PAFSV defined
in Section 3 is discussed; and a notion of equivalence is defined, which is shown
to be a congruence for all PAFSV operators. Also, a set of useful properties of
closed PAFSV process terms is given in the same section. Samples (modelling Sys-
temVerilog designs) of the application of PAFSV and a formal analysis (by means of

146 K. L. Man, C.-U. Lei, H. K. Kapoor, T. Krilavičius, J. Ma, N. Zhang

a complete mathematical proof) of a SystemVerilog design via PAFSV are shown in
Section 6. The comparison with other formal approaches and the direction of future
work are given in Section 7 and Section 9, respectively. Finally, concluding remarks
are made in Section 8.

2 SYSTEMVERILOG

SystemVerilog is a unified hardware design, specification and verification language
that is originally based on Accellera SystemVerilog 3.1a, as defined in [11]. Princi-
pally, SystemVerilog extends the use of the traditional hardware description language
Verilog to efficiently and flexibly specify designs of ever increasing complexity and
size, and to easily and effectively verify these complex designs.

This section presents a brief review focusing on concepts and features of Sys-
temVerilog that are relevant to PAFSV. For an extensive treatment of SystemVer-
ilog, the reader can be referred to [6, 10].

2.1 2-State Modelling

SystemVerilog extends the Verilog variable types by adding 2-state types, where
each bit can be “0” or “1”. Modelling Register Transfer Level (RTL) designs using
2-state logic leads simulation performance/enables simulators to be more efficient,
because these variables can be used whenever the values “X” and “Z” are not needed,
for example, in test benches and as for-loop variables.

2.2 Hardware-Specific Procedures

In Verilog, the always procedural block is used to represent RTL designs of sequen-
tial logic, combinational logic and latched logic. Synthesisers and other software
tools need to infer the intent of the always procedural block from the context of the
statements within the always procedural block. This infer may lead to mismatches
between simulation and synthesis.

In addition to Verilog, three procedural blocks can be explicitly used in Sys-
temVerilog to show the intent of the logic of a blocks. This increases the readability
of the codes and avoids the mismatches between simulation and synthesis. The three
procedural blocks are as follows:

always ff – represents sequential logic block;

always comb – represents combinational logic block;

always latch – represents latched logic block.

2.3 Unique and Priority Statements

The if else and case statements in Verilog can be a source of mismatches between
RTL simulation and how synthesiser interprets such a RTL design. Similarly, an-

PAFSV: A Formal Framework for Specification and Analysis of SystemVerilog 147

other common mistake in Verilog RTL designs is the misuse of the full case and
parallel case pragmats. Such misuses can be effectively avoided in SystemVerilog
by using statements unique and priority, because these statements are used to in-
struct simulators, synthesisers and other software tools the specific type of hardware
intended.

A brief description of the idea behind the statements unique and priority is
given below:

unique – enforces completeness and uniqueness of the conditional, this means that
only one branch of the conditional should be considered at run-time;

priority – enforces a less rigorous set of checks, it checks only that at least one
branch of the conditional is considered.

2.4 Enhanced Fork-Join Statement Block

A Verilog fork join statement block groups two or more statements together in par-
allel, so that all statements are evaluated concurrently. The block itself terminates
only if all parallel statements have completed. Thus, the execution of any statements
after a Verilog fork join statement block is blocked until all parallel statements of
such a fork join statement block have completed execution successfully.

SystemVerilog allows the use of fork join statement block construct in a more
flexible way by means of two statement blocks join none and join any:

join none – statements that follow a join none statement block are not blocked
when the parallel statements are executing;

join any – statements that follow a join any statement block are not blocked
from execution as long as the first of any of parallel statements has completed
execution successfully.

2.5 Clocking Blocks

Rather than applying traditional event-based methodology of specifying transition
times for each test signals in test-benches, SystemVerilog allows the test-benches to
be defined using a cycle-based methodology. In SystemVerilog, this requirement can
be achieved by using the clocking block clocking endclocking. The SystemVeri-
log clocking endclocking clocking block specifies a clock signal, the timing and
synchronisation requirements of the block in which the clock is used.

2.6 Assertion-Based Verification

SystemVerilog provides special language constructs that can be used to validate
(through assertions) the behaviour of a design. An assertion is basically a sort of
statement expressing something that must be true.

148 K. L. Man, C.-U. Lei, H. K. Kapoor, T. Krilavičius, J. Ma, N. Zhang

In SystemVerilog, there are two kinds of assertions namely immediate assertions
and concurrent assertions :

Immediate assertions – they principally are intended to be used in simulation.
They follow (event-based) simulation semantics for their execution and are ex-
ecuted as a statement in a procedural block.

Concurrent assertions – they are built on clock semantics and use sampled val-
ues of variables.

3 PAFSV

We propose a process algebraic framework namely PAFSV in this paper. Since it is
not possible to cover all the aspects of SystemVerilog and define a process algebraic
framework for it in one paper, we would outline the goals of our process algebraic
framework PAFSV. Then, we present the data types, time model, formal syntax and
formal semantics of PAFSV.

3.1 Our Goals

PAFSV has a formal and compositional semantics based on a time transition system
for formal specification and analysis of SystemVerilog designs. The intention of our
process algebraic framework PAFSV is as follows:

• to give a formal semantics to a significant subset of SystemVerilog using the
operational approach of [14];

• to serve as a mathematical basis for improvement of design strategies of Sys-
temVerilog and possibilities to analyse SystemVerilog designs;

• to serve as a coherent first step for a semantics interoperability analysis on
semantics domain such as SystemC and SystemCFL;

• to initiate an attempt to extend the knowledge and experience of the field of
process algebras to SystemVerilog designs;

• to be used as the formal language for a significant subset of SystemVerilog.

3.2 Data Types and Time Model

In order to define the semantics of processes, we need to make some assumptions
about the data types:

1. Let Var denote the set of all variables (x0, . . . , xn, time). Besides the variables
x0, . . . , xn, the existence of the predefined reserved global variable time which
denotes the current time, the value of which is initially zero, is assumed. This
variable cannot be declared.

PAFSV: A Formal Framework for Specification and Analysis of SystemVerilog 149

2. Let Value denote the set of all possible values (v0, . . . , vm,⊥) that contains at
least all Integers, all Reals, all Shortreals, all 2-state values and all 4-state values
as defined in SystemVerilog (see [6] for details); all Booleans and ⊥, where ⊥
denotes the “undefinedness”.

3. We then define a valuation as a partial function from variables to values. Syntac-
tically, a valuation is denoted by a set of pairs {x0 7→ v0, . . . , xn, 7→ vn,time 7→ t},
where xi represents a variable and vi its associating value; and t ∈ R≥0.

4. Further to this, the set of all valuations is denoted by Σ.

Note that the type “array” in SystemVerilog is not formalised yet in PAFSV.
However, the behaviour of elements in an array in SystemVerilog can be modelled
in PAFSV by introducing fresh variables. As an example, for an array A[0 : 10] in
SystemVerilog, we can introduce fresh variables A0, . . . , A10 in PAFSV to associate
correspondingly A[0] with A0, A[1] with A1 and so on.

The time in PAFSV is dense. So, timing is measured on a continuous time
scale. PAFSV has a strong time determinism principle [3]. This means that passage
of time cannot result in making a choice between the two operands of the choice.
Also, the maximal progress [15], which is a process that can delay only if it cannot
do anything else, is not implicit in PAFSV. According to our industrial experience in
hardware system design, the time model used in PAFSV is well-suited for modelling
the timing behaviour of hardware systems.

3.3 Formal Syntax

To avoid confusion with the informal definition of a process in SystemVerilog, it
is important to clearly state that, in our process algebraic framework PAFSV, we
choose the terminology “a process term” as a formal term (generated restrictively
through the formal syntax of PAFSV) to describe the possible behaviour of a PAFSV
process (see Section 3.5) and not a process, as defined in SystemVerilog.

Furthermore, process terms p ∈ P are the core elements of the PAFSV. The
semantics of those process terms is defined in terms of the core process terms given
in this subsection. The set of process terms P is defined according to the following
grammar for the process terms p ∈ P :

p ::= deadlock | skip | x := e
| delay(n) | any p | if(b) p else p
| p; p | wait(b) p | while(b) p
| assign w := e | @(η1(l1),...,ηn(ln)) p
| p~ p | p ‖ p | repeat p
| assert(b) p | p disrupt p

Here, x and w are variables taken from Var and n∈R≥0. b and e denote a Boolean ex-
pression and an expression over variables from Var, respectively. Moreover, η1, . . . , ηn
represent Boolean functions with corresponding parameters l1, . . . , ln ∈ Var.

150 K. L. Man, C.-U. Lei, H. K. Kapoor, T. Krilavičius, J. Ma, N. Zhang

In PAFSV, we allow the use of common arithmetic operators (e.g. +, −), rela-
tional operators (e.g. =, ≥) and logical operators (e.g. ∧, ∨) as in mathematics to
construct expressions over variables from Var.

The operators are listed in descending order of their binding strength as follows:
{if() else ,wait() ,while() , assert() }, ; , disrupt , { ~ , ‖ }.

The operators inside the braces have equal binding strength. In addition, oper-
ators of equal binding strength associate to the right, and parentheses may be used
to group expressions. For example, p; q ; r means p; (q ; r), where p, q, r ∈ P .

Apart from process terms: deadlock, skip, any , disrupt , and ~ , all
other syntax elements in PAFSV are the formalisation of the corresponding language
elements (based on classical process algebra tenets) in SystemVerilog.

Process terms deadlock and skip; and operator ~ are mainly introduced for
calculation and axiomatisation purposes. The any operator was originally intro-
duced in Hybrid Chi [4] (to be precise, in Hybrid Chi, such an operator is called
“the any delay operator” and denoted by “[]”). It is used to give an arbitrary delay
behaviour to a process term. We can make use of this operator to simplify our
deduction rules in a remarkable way (see Section 3.7 for details).

The disrupt is inspired by the analogy of the disrupt operator in HyPA [5].
This can be used to model event controls in PAFSV in a very efficient way.

As in many programming languages, non-primitive language elements can be
easily defined in terms of other primitive language elements. For instance, a forever
S statement in SystemVerilog can be expressed as while (1=1) S, where S denotes
a Verilog program. In this paper, for brevity, we do not include the formal syntax
of the formalisation of some SystemVerilog statements and constructs (e.g. Non-
blocking assignment (<=), Fork join, Join any, Join non, Priority, Unique,
For and Case), because they can be easily rewritten in terms of other syntax given
above. Nevertheless, by means of illustrative examples shown in Section 3.8, the
interpretation of some SystemVerilog statements and constructs (as indicated above)
in PAFSV is given in terms of varied PAFSV process terms.

Also, in SystemVerilog, three procedures always ff, always comb and
always latch; and initial block initial are not formalised in PAFSV yet, because
the three procedures are relevant (mainly) in simulation and synthesis results; and
the use of an initial block in SystemVerilog can be captured by the initialisation of
a PAFSV process (as shown in Section 6.3).

A concise explanation of the formal syntax of PAFSV is given below. Section 3.6
gives a more detailed account of its meaning.

3.4 Atomic Process Terms

The atomic process terms of PAFSV are process term constructors that cannot be
split into smaller process terms. They are:

1. The deadlock process term deadlock is introduced as a constant, which repre-
sents no behaviour. This means that it cannot perform any actions or delays.

PAFSV: A Formal Framework for Specification and Analysis of SystemVerilog 151

2. The skip process term skip can only perform the internal action τ to termina-
tion, which is not externally visible.

3. The procedural assignment process term x := e assigns the value of expression e
to variable x (in an atomic way).

4. The continuous assignment process term assign w := e continuously watches
for changes of the variables that occur on the expression e. Whenever there is
a change, the value of e is re-evaluated and then propagated immediately to w.

5. The delay process term delay(n) denotes a process term that first delays for n
time units, and then terminates by means of the internal action τ .

3.5 Operators

Atomic process terms can be combined using the following operators. The operators
are:

1. By means of the application of the any operator to process term p ∈ P (i.e.
any p), delaying behaviour of arbitrary duration can be specified. The resulting
behaviour is such that arbitrary delays are allowed. As a consequence, any delay
behaviour of p is neglected. The action behaviour of p remains unchanged. This
operator can even be used to add arbitrary behaviour to an undelayable process
term.

2. The if else process term if(b) p else q first evaluates the Boolean expression b.
If b evaluates to true, then p is executed, otherwise q ∈ P is executed.

3. The sequential composition of process terms p and q (i.e. p; q) behaves as process
term p until p terminates, and then continues to behave as process term q.

4. The wait process term wait(b) p can perform whatever p can perform under
the condition that the Boolean expression b evaluates to true. Otherwise, it is
blocked until b becomes true.

5. The while process term while(b) p can perform whatever p can do under the
condition that the Boolean expression b evaluates to true and then followed by
the original iteration process term (i.e. while(b) p). In case b evaluates to false,
the while process term while(b) p terminates by means of the internal action τ .

6. The event process term @(η1(l1),...,ηn(ln)) p can perform whatever p can perform
under the condition that any of the Boolean functions η1(l1), . . . , ηn(ln) returns
to true. If there is no such function, p will be triggered by η1(l1), . . . , ηn(ln).
Intuitively, functions η1, . . . , ηn are used to model event changes as event controls
levelchange, posedge and negedge in SystemVerilog.

7. The alternative composition of process terms p and q (i.e. p ~ q) allows a non-
deterministic choice between different actions of the process term either p or q.
With respect to time behaviour, the participants in the alternative composition
have to synchronise.

152 K. L. Man, C.-U. Lei, H. K. Kapoor, T. Krilavičius, J. Ma, N. Zhang

8. The parallel composition of process terms p and q (i.e. p ‖ q) executes p and q
concurrently in an interleaved fashion. For the time behaviour, the participants
in the parallel composition have to synchronise.

9. The repeat process term repeat p represents the infinite repetition of process
term p. Note that the idea behind the repeat statement in SystemVerilog is
slightly different from repeat p in PAFSV. The repeat statement specifies the
number of times a loop to be repeated. The same goal can be achieved by using
the repeat process term in combination with the if else process term in PAFSV.

10. The assert process term assert(b) p checks immediately the property b (ex-
pressed as a Boolean expression). If b holds, p is executed.

11. The disrupt process term p disrupt q intends to give priority of the execution
of process term p over process term q. The need and use of this operator will be
illustrated in Section 6.3.

3.6 Formal Semantics

A PAFSV process is a tuple 〈p,σ〉, where p∈P and σ ∈Σ. In this subsection, we give
a formal semantics to the syntax defined for PAFSV in the previous subsection, by
constructing the Timed Transition System (TTS), for each process term and each
possible valuation of variables (see [15] for details). In such TTS, three different
kinds of transition relations are defined, namely:

1. one associated with termination transition;

2. one associated with action transition (for discrete action);

3. one associated with time transition (delay behaviour).

Definition 1. The set of actions Aτ contains at least aa(x, v) and τ , where aa(x, v)
is the assignment action (i.e. the value of v is assigned to x) and τ is the internal
action. The set Aτ is considered as a parameter of PAFSV that can be freely
instantiated.

Definition 2. We give a formal semantics for PAFSV processes in terms of the
TTS, and define the following transition relations on processes of PAFSV:

• −→ 〈X, 〉 ⊆ (P ×Σ)×Aτ ×Σ, denotes termination, where X is used to indicate
a successful termination, and X is not a process term;

• −→ ⊆ (P × Σ)× Aτ × (P × Σ), denotes action transition;

• 7−→ ⊆ (P × Σ)× R≥0 × (P × Σ), denotes time transition (so-called delay).

For p,p′ ∈ P ; σ,σ′ ∈Σ, a∈Aτ and d∈R≥0, the three kinds of transition relations
can be explained as follows:

1. Firstly, a termination 〈p, σ〉 a−→ 〈X, σ′〉 is that the process executes the action a
followed by termination.

PAFSV: A Formal Framework for Specification and Analysis of SystemVerilog 153

2. Secondly, an action transition 〈p, σ〉 a−→ 〈p′, σ′〉 is that the process 〈p, σ〉 executes
the action a starting with the current valuation σ and by this execution p evolves
into p′, where σ′ represents the accompanying valuation of the process after the
action a is executed.

3. Thirdly, a time transition 〈p, σ〉 d7−→ 〈p′, σ′〉 is that the process 〈p, σ〉 may idle
during a d time units and then behaves like 〈p′, σ′〉.

3.7 Deduction Rules

The above transition relations are defined through deduction rules (SOS style).
These rules (of the form permises

conclusions
) have two parts: on the top of the bar we put

premises of the rule, and below it the conclusions. If the premises hold, then we
infer that the conclusion (can be more than one) holds as well. In case there is no
premise, the deduction rule becomes an axiom.

Apart from the syntax restriction as already shown in Section 3.3 (e.g. x, w ∈
Var), for all deduction rules, we further require that p, q, p′, q′ ∈ P ; σ, σ′, σ′′ ∈ Σ;
a, b ∈ Aτ , d ∈ R≥0, dom(σ) = dom(σ′) = dom(σ′′); σ, σ′, σ′′ and σ̄(e) are defined,
where the notation σ̄(e) is used to represent the value of expression e in σ.

Also, we make use of the sets of variables Var− = {x− | x∈Var} and Var+ = {x+ |
x∈Var}, modelling the current and future value of a variable, respectively. Similarly,
e− and e+ are used to represent the current and future value of e respectively.
Furthermore, in order to increase the readability of the PAFSV deduction rules, two
abbreviations may be used:

1. In case the deduction rules are defined in a similar way for both action transition

and time transition, the notation
z
� is used as a short-hand for

a−→ and
d7−→.

2. Θ ∈ {X, } | } = p′ ∈ P ∨ } = q′ ∈ P}.

We want to state that it is not our intention to define deduction rules for all
inductive cases for all operators in this paper. For simplicity, only relevant deduction
rules for the use of this paper are shown in this subsection.

3.7.1 Skip

〈skip, σ〉 τ−→ 〈X, σ〉
(1)

Rule (1) states that the process term skip performs the τ action followed by termi-
nation, and has no effect on the valuation.

3.7.2 Procedural Assignment

〈x := e, σ〉 aa(x,σ̄(e))−−−−−→ 〈X, σ[σ̄(e)/x]〉
(2)

154 K. L. Man, C.-U. Lei, H. K. Kapoor, T. Krilavičius, J. Ma, N. Zhang

By means of a procedural assignment (see Rule (2)), the value of e is assigned to x.
Notice that σ[σ̄(e)/x] denotes the update of valuation σ such that the new value of
variable x is σ̄(e).

3.7.3 Delay

n = 0

〈delay(n), σ〉 τ−→ 〈X, σ〉
(3)

d ≤ n

〈delay(n), σ〉 d7−→ 〈delay(n− d), σ〉
(4)

Rule (3) is used to model a delay of 0 duration by means of performing the internal
τ action. Rule (4) states that a delay process term can perform a delay which is
smaller than or equal to the value of the argument of the delay process term, and
has no effect on the valuation.

3.7.4 Any

〈p, σ〉 a−→ 〈Θ, σ′〉
〈any p, σ〉 a−→ 〈Θ, σ′〉

(5)

t ∈ R>0

〈any p, σ〉 t7−→ 〈any p, σ〉
(6)

Rule (5) shows that the any operator does not affect the action behaviour of p. The
any operator allows arbitrary time transitions for p, as seen in Rule (6).

3.7.5 If else

〈p, σ〉 a−→ 〈Θ, σ′〉, σ |= b

〈if(b) p else q, σ〉 a−→ 〈Θ, σ′〉
(7)

〈q, σ〉 a−→ 〈Θ, σ′〉, σ |= ¬b
〈if(b) p else q, σ〉 a−→ 〈Θ, σ′〉

(8)

〈p, σ〉 d7−→ 〈p′, σ′〉, σ |= b

〈if(b) p else q, σ〉 d7−→ 〈p′, σ′〉
(9)

〈q, σ〉 d7−→ 〈q′, σ′〉, σ |= ¬b
〈if(b) p else q, σ〉 d7−→ 〈q′, σ′〉

(10)

PAFSV: A Formal Framework for Specification and Analysis of SystemVerilog 155

If b evaluates to true in σ (denoted by σ |= b), the if else process term (if (b) p else
q) behaves as process term p. If b evaluates to false (denoted by σ |= ¬b), then it
behaves as process term q (see from Rule (7) to Rule (10)).

3.7.6 Sequential Composition

〈p, σ〉 a−→ 〈X, σ′〉
〈p; q, σ〉 a−→ 〈q, σ′〉

(11)

〈p, σ〉
z
� 〈p′, σ′〉

〈p; q, σ〉
z
� 〈p′ ; q, σ′〉

(12)

The process term q is executed after (successful) termination of the process term p,
as defined by Rules (11) and (12).

3.7.7 Wait

〈p, σ〉 a−→ 〈Θ, σ′〉, σ |= b

〈wait(b) p, σ〉 a−→ 〈Θ, σ′〉
(13)

3[mm]
〈p, σ〉 d7−→ 〈p′, σ′〉, σ |= b

〈wait(b) p, σ〉 d7−→ 〈p′, σ′〉
(14)

σ |= ¬b
〈wait(b) p, σ〉 τ−→ 〈any(wait(b) p), σ〉

(15)

If b evaluates to true in σ, the wait process term wait(b) p behaves as process term
p, as defined by Rules (13) and (14). Otherwise, it is blocked until b becomes true
(see Rule (15)).

3.7.8 While

〈p, σ〉 a−→ 〈X, σ′〉, σ |= b

〈while(b) p, σ〉 a−→ 〈while(b) p, σ′〉
(16)

〈p, σ〉
z
� 〈p′, σ′〉, σ |= b

〈while(b) p, σ〉
z
� 〈p′ ; while(b) p, σ′〉

(17)

σ |= ¬b
〈while(b) p, σ〉 τ−→ 〈X, σ〉

(18)

If the condition σ |= b holds and process term p terminates, the while process term
while(b) p restarts, as shown in Rule (16). If the condition σ |= b holds in Rule (17)

156 K. L. Man, C.-U. Lei, H. K. Kapoor, T. Krilavičius, J. Ma, N. Zhang

and p can perform an action or a time transition, the while process term while(b) p
behaves as the sequential composition of the resulting process term after performing
such a transition (i.e. p′) and while(b) p (i.e. p′ ; while(b) p). If b evaluates to false
in σ, the while process term while(b) p terminates immediately by means of the
internal action τ (see Rule (18)).

3.7.9 Continuous Assignment

e− 6= e+

〈assign w := e, σ〉 aa(w,σ̄(e))−−−−−−→
〈assign w := e, σ[σ̄(e)/x]〉

(19)

e− = e+

〈assign w := e, σ〉 τ−→ 〈any(assign w := e), σ〉
(20)

If the condition e− 6= e+ in Rule (19) holds, the value of e is assigned to w. Rule (20)
is similar to Rule (15).

3.7.10 Event

〈p, σ〉 a−→ 〈X, σ′〉, η1(l1) ∨ . . . ∨ ηn(ln)

〈@(η1(l1),...,ηn(ln)) p〉
a−→ 〈X, σ′〉

(21)

〈p, σ〉
z
� 〈p′, σ′〉, η1(l1) ∨ . . . ∨ ηn(ln)

〈@(η1(l1),...,ηn(ln)) p, σ〉
z
� 〈p′, σ′〉

(22)

¬(η1(l1) ∨ . . . ∨ ηn(ln))

〈@(η1(l1),...,ηn(ln)) p, σ〉
τ−→

〈any (@(η1(l1),...,ηn(ln)) p), σ〉

(23)

In case that η1(l1)∨ . . .∨ ηn(ln) evaluates to true, process term @(η1(l1),...,ηn(ln)) p can
perform whatever p can do, as shown in Rules (21) and (22). The intuition behind
Rule (23) is similar to Rule (20).

Note that η1, . . . , ηn are Boolean functions of the form of η∗ that are defined to
indicate a change in variables l1, . . . , ln ∈Var. For k ∈Var and ∗ ∈ {sentitive,posedge,
negedge}, η∗ is defined as follows:

1. Indicating a level change of the value in k,

ηsensitive(k) =

{
true, if k− 6= k+

false, otherwise

}
.

PAFSV: A Formal Framework for Specification and Analysis of SystemVerilog 157

2. Indicating a positive change of the value in k,

ηposedge(k) =

{
true, if k− < k+

false, otherwise

}
.

3. Indicating a negative change of the value in k,

ηnegedge(k) =

{
true, if k− > k+

false, otherwise

}
.

3.7.11 Alternative Composition

〈p, σ〉 a−→ 〈X, σ′〉
〈p~ q, σ〉 a−→ 〈X, σ′〉

(24)

〈q, σ〉 a−→ 〈X, σ′〉
〈p~ q, σ〉 a−→ 〈X, σ′〉

(25)

〈p, σ〉 a−→ 〈p′, σ′〉
〈p~ q, σ〉 a−→ 〈p′, σ′〉

(26)

〈q, σ〉 a−→ 〈q′, σ′〉
〈p~ q, σ〉 a−→ 〈q′, σ′〉

(27)

〈p, σ〉 d7−→ 〈p′, σ′〉, 〈q, σ〉 d7−→ 〈q′, σ′〉
〈p~ q, σ〉 d7−→ 〈p′ ~ q′, σ′〉

(28)

The effect of applying the alternative composition to process terms p and q (i.e.
p~ q) is that the execution of a termination or an action transition by either one of
them results in a definite choice as shown from Rule (24) to Rule (27).

With respect to time transition, process terms p and q have to synchronise, as
stated in Rule (28).

158 K. L. Man, C.-U. Lei, H. K. Kapoor, T. Krilavičius, J. Ma, N. Zhang

3.7.12 Parallel Composition

〈p, σ〉 a−→ 〈X, σ′〉
〈p ‖ q, σ〉 a−→ 〈q, σ′〉

(29)

〈q, σ〉 a−→ 〈X, σ′〉
〈p ‖ q, σ〉 a−→ 〈p, σ′〉

(30)

〈p, σ〉 a−→ 〈p′, σ′〉
〈p ‖ q, σ〉 a−→ 〈p′ ‖ q, σ′〉

(31)

〈q, σ〉 a−→ 〈q′, σ′〉
〈p ‖ q, σ〉 a−→ 〈p ‖ q′, σ′〉

(32)

〈p, σ〉 d7−→ 〈p′, σ′〉, 〈q, σ〉 d7−→ 〈q′, σ′〉
〈p ‖ q, σ〉 d7−→ 〈p′ ‖ q′, σ′〉

(33)

The parallel composition of the process terms p and q (i.e. p ‖ q) has as its behaviour
with respect to action transitions the interleaving of the behaviours of process terms
p and q (see Rules from (29) to (32)). If both process terms p and q can perform
the same delay, then the parallel composition of process terms p and q (i.e. p ‖ q)
can also perform that delay, as defined by Rule (33).

3.7.13 Repeat

〈p, σ〉 a−→ 〈X, σ′〉
〈repeat p, σ〉 a−→ 〈repeat p, σ′〉

(34)

〈p, σ〉
z
� 〈p′, σ′〉

〈repeat p, σ〉
z
� 〈p′; repeat p, σ′〉

(35)

If the argument (i.e. p) of a repeat process term repeat p can perform a transition
to termination, the repeat process term repeat p just repeats itself after performing
such a transition, as shown in Rule (34). Rule (35) states that if the process term
p can perform an action transition or time transition, then the repeat process term
repeat p can also perform that action transition or time transition followed by its
repetition (i.e. p′; repeat p).

PAFSV: A Formal Framework for Specification and Analysis of SystemVerilog 159

3.7.14 Immediate Assertion

〈p, σ〉 a−→ 〈Θ, σ′〉, σ |= b

〈assert(b) p, σ〉 a−→ 〈Θ, σ′〉
(36)

〈p, σ〉 d7−→ 〈p′, σ′〉, σ |= b

〈assert(b) p, σ〉 d7−→ 〈p′, σ′〉
(37)

σ |= ¬b
〈assert(b) p, σ〉 τ−→ 〈X, σ〉

(38)

If the property (expressed as a Boolean expression) holds in Rule (36) (i.e. σ |= b),
then p is executed. Rule (37) is similar to Rule (36). If the property does not hold,
as stated in Rule (38), it terminates immediately by means of the internal action τ
and no effect on the valuation.

Remark 1. In SystemVerilog, an immediate assertion statement is a test of an ex-
pression performed when the statement is executed. The expression is non-temporal
and is interpreted the same way as an expression in the condition of an if statement.
This means that the semantics of “immediate assertion” in PAFSV can also be de-
fined in terms of other language elements in PAFSV. Although defining deduction
rules for SystemVerilog immediate assertion statement in PAFSV is not very useful,
in order to allow more intuitive specifications in PAFSV (as in the example provided
in Section 6.3), such deduction rules are given here.

3.7.15 Disrupt

〈p, σ〉 a−→ 〈X, σ′〉
〈p disrupt q, σ〉 a−→ 〈X, σ′〉

(39)

〈q, σ〉 a−→ 〈X, σ′〉
〈p disrupt q, σ〉 a−→ 〈X, σ′〉

(40)

〈p, σ〉 a−→ 〈p′, σ′〉, 〈q, σ〉 b−→ 〈q′, σ′′〉, a 6= b, a 6= τ

〈p disrupt q, σ〉 a−→ 〈p′ disrupt q′,Ω(σ, σ′, σ′′)〉
(41)

〈p, σ〉 d7−→ 〈p′, σ′〉
〈p disrupt q, σ〉 d7−→ 〈p′ disrupt q, σ′〉

(42)

Rules (39) and (40) show that either process term p or process term q terminates,
and the disrupt process term p disrupt q terminates as well. If process terms p and
q can perform two different action transitions, the disrupt process term p disrupt q

160 K. L. Man, C.-U. Lei, H. K. Kapoor, T. Krilavičius, J. Ma, N. Zhang

gives a higher priority to the action transition performed by p than the action
transition performed by q, and the valuation associating to the disrupt process after
performing the action transition (as p performed) is the merge of the valuations after
the execution of (two different) action transitions performed by p and q, as defined
by Rule (41). The disrupt process term p disrupt q can perform whatever delays p
can perform regardless the delay behaviour of q, as shown in Rule (42).

Clearly, a 6= b and a 6= τ , as stated in Rule (41), for σ, σ′, σ′′ ∈ Σ, Ω(σ, σ′, σ′′) is
formally defined as follows:

Ω(σ,σ′,σ′′) = σ′ � {x | x∈ dom(σ),σ(x) 6= σ′(x)}∪σ′′ � {x | x∈ dom(σ),σ(x) 6= σ′′(x)}.

Note that � is the restriction operator on function, which is formally defined below: If
f is a function, dom(f) and range(f) denote the domain and range of f , respectively.
If S is a set, f � S denotes the restriction of f to S, that is, the function g with
dom(g) = dom(f) ∩ S, such that g(c) = f(c) for each c ∈ dom(g).

3.8 Non-Primitive Statements

For illustration purposes, the interpretation of some SystemVerilog non-primitive
statements and constructs in PAFSV, through simple examples, is given below.

3.8.1 Non-Blocking Assignment

In SystemVerilog,

begin

#3 b <= a;

#6 x <= c;

end

In PAFSV,

delay(3); b := a ‖ delay(6); x := c.

In both cases, the value of a (at time = 0) is assigned to b at time = 3 and the value
of c (at time = 0) is assigned to x at time = 6. A more tricky case in SystemVerilog,

begin

a = 67;

10;

a <= 4;

c <= #15 a;

d <= #10 9;

b <= 3;

end

PAFSV: A Formal Framework for Specification and Analysis of SystemVerilog 161

In PAFSV,

a := 67; a′ := a; delay(10); (a := 4 ‖ delay(15); c := a′ ‖ delay(10); d := 9 ‖ b := 3).

In both cases, a = 4 and b = 3 (at time = 10), d = 9 (at time = 20) and c = 67 (at
time = 10 + 15, the value of a′ is assigned to c).

Remark 2. In the PAFSV specification, variable a′ is introduced (as a copy of a)
to save the temporary value of a. Similar things can be seen in the non-blocking
assignments in the SystemVerilog design. The right-hand side variables of the non-
blocking assignments are read and stored in temporary memory locations. As we
can see, it is not difficult to give formal specification of SystemVerilog non-blocking
assignment (with the help of modelling technique) in PAFSV using the formal syntax
presented in Section 3.3. Therefore, deduction rules for non-blocking assignment are
not specifically defined in this paper.

3.8.2 Fork join

In SystemVerilog,

begin

c = 0;

#5;

fork

#5 a = 0;

#10 b = 0;

join

c =1;

end

In PAFSV,

c := 0; delay(5); (delay(5); a := 0 ‖ delay(10); b := 0); c = 1.

Note that c becomes 1 when time = 15 for both cases.

3.8.3 Priority

In SystemVerilog,

priority if (a == 0) y = in1;

else if (a == 1) y = in2;

else y = in3;

In PAFSV,

if(a = 0) y := in1 else (if(a = 1) y := in2 else (y := in3)).

Both maintain the decision order (as specified) for execution/transition.

162 K. L. Man, C.-U. Lei, H. K. Kapoor, T. Krilavičius, J. Ma, N. Zhang

3.8.4 Unique

In SystemVerilog,

unique case(a)

0 : y = in1;

1 : y = in2;

endcase

In PAFSV,

if(a = 0 ∧ ¬(a = 0 ∧ a = 1)) y := in1 else deadlock~

if(a = 1 ∧ ¬(a = 0 ∧ a = 1)) y := in2 else deadlock~

if¬(a = 0 ∨ a = 1) skip else deadlock.

Both ensure that the decisions are mutually exclusive.

4 EXAMPLES

Deduction rules offer preciseness, because they come with a mathematically defined
semantics. Formal specifications can be analysed using deduction rules providing
an absolute notion of correctness. Also, these deduction rules can ensure the correct-
ness of PAFSV specifications and can help modellers to make correct specifications.

In order to demonstrate the effectiveness and applicability of the deduction rules,
two toy specifications in PAFSV are given in this section. These specifications
also show how (illustrated by means of transition traces) process evolves during
transitions. Using the deduction rules, for instance, we can show that:

1. the process 〈x := 5; y := 7, {x 7→ 0, y 7→ 1}〉 can terminate successfully after
a finite number of transitions.

Transition traces: According to Rule (2), the process 〈x := 5,{x 7→ 0, y 7→ 1}〉
can always perform an assignment action to a terminated process as follows:

〈x := 5, {x 7→ 0, y 7→ 1}〉 aa(x,5)−−−−→ 〈X, {x 7→ 5, y 7→ 1}〉. Due to this, we can

apply Rule (12) to obtain 〈x := 5; y := 7, {x 7→ 0, y 7→ 1}〉 aa(x,5)−−−−→ 〈y :=
7, {x 7→ 5, y 7→ 1}〉. Applying Rule (2) again, we have 〈y := 7, {x 7→ 5, y 7→
1}〉 aa(y,7)−−−−→ 〈X, {x 7→ 5, y 7→ 7}〉.

2. the process 〈(x := 1 ‖ y := 2); z := 3, σ〉 cannot terminate successfully in two
transitions.

Semantical proof: We assume to have 〈(x := 1 ‖ y := 2); z := 3, σ〉 a−→ 〈z :=
3, σ′〉 for some a and σ′ in such a way that the process can terminate success-
fully in two transitions. This means that we must have the action transition

PAFSV: A Formal Framework for Specification and Analysis of SystemVerilog 163

〈x := 1 ‖ y := 2, σ〉 a−→ 〈X, σ′〉 as a premise necessarily for Rule (11). However,
this is not possible due to Rules (29) and (30).

5 VALIDATION OF THE SEMANTICS

This section first shows that the term deduction system of PAFSV is well-defined.
Then a notion of equivalence called Stateless Bisimilarity is defined [4, 16]. It is also
shown that this relation is an equivalence and a Congruence [1] (which also means
that compositionality preserved operationally in PAFSV) for all PAFSV operators.

A set of useful properties of PAFSV is sound with respect to the stateless bisim-
ilarity that is also introduced.

5.1 Well-Definedness of the Semantics

The deduction rules defined in Section 3.7 constitute a Transition System Specifi-
cation (TSS) as described in [17]. The transitions that can be proven from a TSS
define TTS.

The TTS of PAFSV contains terminations, action transitions and time transi-
tions that can be proven from the deduction rules. In general, TSSs with negative
premises1 might not be meaningful (see [17] for details).

Well-definedness of the term deduction system can be obtained by providing
a stratification [18]. A stratification is a metric on formulas that, for each deduction
rule of the TTS, does not increase from conclusion to all positive premises and
strictly decreases from conclusion to negative premises.

We define the mapping that associates the value 0 with every positive termina-
tion and action transition and the value 1 with every positive time transition. Then,
it is not hard to see that the PAFSV deduction rules of the TTS are stratifiable (note
that no negative premise is used in our deduction rules for PAFSV). This also means
that the system defines a unique transition system for each closed process term of
PAFSV.

5.2 Bisimilarity

Two closed PAFSV process terms are considered equivalent if they have the same
behaviour (in the bisimulation sense) in case both are considered, from the current
state and the valuation of variables. We also assume that the valuation (of the
current state) contains at least free occurrences of variables in the two closed PAFSV
process terms being equivalent.

Definition 3 (Stateless bisimilarity). A stateless bisimilarity on closed process
terms is a relation R ⊆ P × P such that ∀(p, q) ∈ R, the following holds:

1 We write a negative premise for action transition as 〈p, σ〉 a9 for the set of all transi-
tions formulas ¬(〈p, σ〉 a−→ 〈p′, σ′〉), where p, p′ ∈ P , a ∈ Aτ and σ, σ′ ∈ Σ. In a similar way,
we can define negative premises for termination and time transition.

164 K. L. Man, C.-U. Lei, H. K. Kapoor, T. Krilavičius, J. Ma, N. Zhang

1. ∀σ, a, σ′ : 〈p, σ〉 a−→ 〈X, σ′〉 ⇔ 〈q, σ〉 a−→ 〈X, σ′〉,
2. ∀σ, a, p′, σ′ : 〈p, σ〉 a−→ 〈p′, σ′〉 ⇒ ∃q′ : 〈q, σ〉 a−→ 〈q′, σ′〉 ∧ (p′, q′) ∈ R,
3. ∀σ, a, q′, σ′ : 〈q, σ〉 a−→ 〈q′, σ′〉 ⇒ ∃p′ : 〈p, σ〉 a−→ 〈p′, σ′〉 ∧ (p′, q′) ∈ R,

4. ∀σ, d, p′, σ′ : 〈p, σ〉 d7→ 〈p′, σ′〉 ⇒ ∃q′ : 〈q, σ〉 d7→ 〈q′, σ′〉 ∧ (p′, q′) ∈ R,

5. ∀σ, d, q′, σ′ : 〈q, σ〉 d7→ 〈q′, σ′〉 ⇒ ∃p′ : 〈p, σ〉 d7→ 〈p′, σ′〉 ∧ (p′, q′) ∈ R.

Two closed process terms p and q are stateless bisimilar, denoted by p ↔ q, if there
exists a stateless bisimilarity relation R such that (p, q) ∈ R.

Stateless bisimilarity is proved to be a congruence with respect to all operators
PAFSV operators. As a consequence, algebraic reasoning is facilitated, since it is
allowed to replace equals by equals in any context.

Theorem 1 (Congruence). Stateless bisimilarity is a congruence with respect to all
operators of PAFSV.

Proof. All deduction rules of PAFSV are in the process-tyft format of [16]. It
follows from [16] that stateless bisimilarity is a congruence. �

5.3 Properties

In this subsection, some properties of the operators of PAFSV that hold with respect
to stateless bisimilarity are discussed. Most of these correspond well with our intu-
itions, and hence this can be considered as an additional validation of the semantics.
But it is not our intention to provide a complete list of such properties (complete
in the sense that every equivalence between closed process terms is derivable from
those properties).

Proposition 1 (Properties). A set of properties is introduced for PAFSV described
in this paper for p, q, r ∈ P . These properties are sound with respect to the stateless
bisimilarity.

1. skip ↔ delay(0),

2. deadlock; p ↔ deadlock,

3. (p; q); r ↔ p; (q ; r),

4. any p; q ↔ any (p; q),

5. p~ q ↔ q ~ p,

6. (p~ q); r ↔ p; r ~ q ; r,

7. (p~ q)~ r ↔ p~ (q ~ r),

8. p ‖ q ↔ q ‖ p,
9. (p ‖ q) ‖ r ↔ p ‖ (q ‖ r),

10. any p~ any q ↔ any (p~ q),

PAFSV: A Formal Framework for Specification and Analysis of SystemVerilog 165

11. p ‖ q ↔ p; q ~ q ; p.

Proof. We leave out the proofs, because most of the proofs are proofs for distributiv-
ity, commutativity and associativity as in classical process algebras. Similar proofs
can also be found in [4]. �

The intuition of the above properties is as follows:

• Since skip and delay(0) can only perform the internal action τ to termination,
both process terms are equivalent.

• A deadlock process term followed by some other process terms is equivalent
to the deadlock itself because the deadlock process term does not terminate
successfully, i.e. deadlock is a left-zero element for sequential composition.

• Sequential composition is associative.

• Any operator distributes the argument of a sequential composition to the right.

• Alternative composition and parallel composition are commutative and associa-
tive.

• Alternative composition distributes over sequential composition from the left,
but not from the right.

• Any operator distributes over the alternative composition.

• Parallel composition can be eliminated by means of sequential composition and
alternative composition.

6 EXAMPLES OF PAFSV SPECIFICATIONS

This section shows samples of the application of PAFSV, i.e., to give a first impres-
sion of how one can describe the behaviour of a SystemVerilog design in a complete
mathematical sense using PAFSV. In order to illustrate our work clearly, only sim-
ple examples were given in this paper. Nevertheless, the use of PAFSV is generally
applicable to all sizes and levels of hardware systems. We describe the behaviour of
a multiplexer and a simple synchronous reset D flip-flop. Then, we formally analyse
a simple arbiter.

6.1 A Simple Modelling of a Multiplexer

In electronic designs, a multiplexer (MUX) is a device that encodes information
from two or more data inputs into a single output (i.e. multiplexers function as
multiple-inputs and single-output switches).

A multiplexer described below (in SystemVerilog) has two inputs and a selector
that connects a specific input to the single output. Figure 1 depicts such MUX.

module simple_mux (

input wire a,

166 K. L. Man, C.-U. Lei, H. K. Kapoor, T. Krilavičius, J. Ma, N. Zhang

MUX y
a

b

sel

Figure 1. MUX

input wire b,

input wire sel,

output wire y

);

assign y = (sel) ? a : b;

endmodule

The formal PAFSV specification (as a process term) below can be regarded as the
(formal) mathematical expression of the above multiplexer (described as a Sys-
temVerilog module):

if(sel) y := a else y := b

Needless to say that, in SystemVerilog, the conditional operator “(condition) ?
(result if true) : (result if false)” can be considered as an if() else statement. In
the PAFSV specification, an if else process term is used to model the behaviour of
such a MUX.

6.2 A Simple Modelling of a Synchronous Reset D Flip-Flop

Synchronous reset D flip-flops are among the basic building blocks of RTL designs.
A synchronous reset D flip-flop has a clock input (clk) in the event list, a data input
(d), a reset (rst) and a data output (Q). Figure 2 depicts such a synchronous reset
D flip-flop.

A synchronous reset D flip-flop described below (as a module in SystemVerilog)
is inferred by using posedge clause for the clock clk in the event list.

module dff_sync_reset (

input wire d,

input wire clk,

input wire rst,

output reg Q

);

PAFSV: A Formal Framework for Specification and Analysis of SystemVerilog 167

Figure 2. A synchronous reset D flip-flop

always_ff @ (posedge clk)

if (~reset) begin

Q = 1’b0;

end else begin

Q = d;

end

endmodule

The formal PAFSV specification (as a process term) of the above synchronous
reset D flip flop is given as follows:

DFF ≈ repeat(@(ηposedge(clk))OUT)
OUT ≈ if(¬rst) Q := 1 ′b0 else Q := d

In the PAFSV specification (i.e. process term DFF), the behaviour of the syn-
chronous reset D flip-flop is modelled by means of the if else process term using
“¬rst (active low reset)” as the condition of such a process term.

This if else process term is further triggered repeatedly by the event process
term, which is positively sensitive to the clock (i.e. clk).

6.3 A Detailed Analysis of an Arbiter

Arbiter circuits are standard digital hardware verification benchmark circuits. In
general, the role of an arbiter is to grant access to the shared resource by raising
the corresponding grant signal and keeping it that way until the request signal is
removed.

A test for the arbiter can be generated by an immediate assertion as follows:

“assertion : grant ∧ request”.

This test can be considered as a “liveness property” of the arbiter. If the assertion
holds, this means that the arbiter works as expected. Below is the SystemVerilog
description of the simple arbiter:

168 K. L. Man, C.-U. Lei, H. K. Kapoor, T. Krilavičius, J. Ma, N. Zhang

module assert_immediate();

reg clk, grant, request;

time current_time;

initial begin

clk = 0;

grant = 0;

request = 0;

#4 request = 1;

#4 grant = 1;

#4 request = 0;

#4 $finish;

end

always #5 clk = ~ clk;

always @ (negedge clk)

begin

if (grant == 1) begin

CHECK_REQ_WHEN_GNT:

assert(grant && request) begin

current_time = $time;

$display {‘‘Works as expected’’);

end

end

endmodule

A formal PAFSV specification of the above SystemVerilog arbiter is given as
follows:

〈 INIT ‖ ARB ‖ CLK disrupt ASSER, σ 〉,
where

INIT ≈ clk := 0; grant := 0; request := 0
ARB ≈ R1 ; G; R0 ; S

R1 ≈ delay(4); request := 1
G ≈ delay(4); grant := 1

R0 ≈ delay(4); request := 0
S ≈ delay(4); skip

CLK ≈ repeat(delay(5); clk := ¬clk)
ASSER ≈ repeat(@(ηnegedge(clk))PROP; skip)
PROP ≈ assert(grant ∧ request) t := time

σ = {clk 7→ ⊥, grant 7→ ⊥, request 7→ ⊥, t 7→ ⊥, time 7→ 0}.
The formal specification of the arbiter is a parallel composition of process terms

INIT, ARB and CLK disrupt ASSER:

• INIT – It assigns the initial values to variables clk , grant and request (i.e. the
initialisation).

PAFSV: A Formal Framework for Specification and Analysis of SystemVerilog 169

• ARB – It models the change of behaviour of variables clk , grant and request
according to time.

• CLK – It models the behaviour of a clock (i.e. clk) which swaps the values
between “0” and “1” every 5 time units.

• ASSER – It expresses the immediate assertion for the arbiter (as indicated
above).

• CLK disrupt ASSER – It models the fact that the test of the immediate asser-
tion is executed whenever there is a negative change in clk . When this happens,
the current time is assigned to the variable t.

6.3.1 Formal Analysis of the Arbiter

We formally analyse (the immediate assertion of) the arbiter described in PAFSV by
means of a complete mathematical proof via transition traces according to deduction
rules defined in Section 3.7.

To increase the readability of the following proof, we often apply the commuta-
tivity property and associativity property of the parallel composition without explic-
itly referring to the deduction rules and such properties. We also do not specifically
mention which assignment actions are used in the action transitions. We just men-
tion them as some actions a and a′. Also, several unimportant brackets are intro-
duced to group expressions, which may help the reader to follow the proof in a more
intuitive way. In addition, we only consider the maximum duration for a possible
time transition and the transitions of intermediate time points for such a time tran-

sition are not shown. For example, we only show 〈delay(5), σ〉 57−→ 〈delay(0), σ〉
and not 〈delay(5), σ〉 ti7−→, . . . , tj7−→ 〈delay(0), σ〉 for some ti, tj ∈ R>0 such that
ti + . . .+ tj = 5.

1. We start with the above PAFSV process:

〈INIT ‖ ARB ‖ CLK disrupt ASSER, σ〉.

2. Applying Rules (31), (29), (12) and (11) (for several times), we obtain:

〈INIT ‖ ARB ‖ CLK disrupt ASSER, σ〉
a,...,a−−−→ 〈ARB ‖ CLK disrupt ASSER, σ2〉,

where σ2 = {clk = grant = request 7→ 0, t 7→ ⊥, time 7→ 0}.

3. Due to Rules (33), (35), (12), (4), (31), (11), (3) and (42), the process has to
perform a time transition of 4 time units first and then to execute the internal

170 K. L. Man, C.-U. Lei, H. K. Kapoor, T. Krilavičius, J. Ma, N. Zhang

action τ as follows:

〈ARB ‖ CLK disrupt ASSER, σ2〉
47−→ τ−→

〈(request := 1; G; R0 ; S) ‖ (delay(1);

clk := ¬clk); CLK disrupt ASSER, σ3〉,

where σ3 = {clk = grant = request 7→ 0, t 7→ ⊥, time 7→ 4}.
4. Followed by Rules (31), (11) and (2), we have:

〈(request := 1; G; R0 ; S) ‖ (delay(1);

clk := ¬clk); CLK disrupt ASSER, σ3〉
a−→

〈(G; R0 ; S) ‖ (delay(1); clk := ¬clk); CLK

disrupt ASSER, σ4〉,

where σ4 = {request 7→ 1, clk = grant 7→ 0, t 7→ ⊥, time 7→ 4}.
5. Using Rules (33) and (12) together with (4), (3), (32), (11) and (2), we get:

〈(G; R0 ; S) ‖ (delay(1); clk := ¬clk);

CLK disruptASSER, σ4〉
17−→ τ−→ a−→ 〈(

delay(3); grant := 1; R0 ; S) ‖ CLK

disrupt ASSER, σ5〉,

where σ5 = {clk = request 7→ 1, grant 7→ 0, t 7→ ⊥, time 7→ 5}.
6. Similarly, applying Rules (33), (42), (31), (12), (4), (3) and (30), we obtain:

〈(delay(3); grant := 1; R0 ; S) ‖ CLK

disruptASSER, σ5〉
37−→ τ−→ a−→ 27−→ τ−→

〈(delay(2); request := 0; S) ‖ clk := ¬clk ;

CLK disruptASSER, σ6〉,

where σ6 = {clk = request = grant 7→ 1, t 7→ ⊥, time 7→ 10}.
7. At this stage, we know that the process term:

delay(2); request := 0; S ‖ clk := ¬clk ; CLK

disrupt ASSER

can only perform an action transition, because the first sub-process term of the
right-argument (i.e. clk := ¬clk) of the parallel cannot delay (see also Rules (33)
and (12)).

PAFSV: A Formal Framework for Specification and Analysis of SystemVerilog 171

(a) We know that we can have: 〈assert(grant ∧ request) t := time, σ6〉
τ−→ a′−→

〈X, σ′7〉 for some a′ using Rules (36) and (2), where σ′7 = {clk = request =
grant 7→ 1, t 7→ 10, time 7→ 10}.

(b) Since ηnegedge(clk) holds, because it is caused by the process term clk :=
¬clk ; CLK (also the left-argument of the disrupt process term clk := ¬clk ;
CLK disrupt ASSER) performing an action a from σ6. So, we can apply

Rule (21) to obtain: 〈@(ηnegedge(clk))PROP, σ6〉
a−→ 〈X, σ′7〉.

(c) According to Rule (11), we further get: 〈@(ηnegedge(clk))PROP; skip, σ6〉
a−→

〈skip, σ′7〉.
(d) By Rule (35), we can have: 〈ASSER, σ6〉

a′−→ 〈skip; ASSER, σ′7〉.
(e) Clearly, a 6= a′ and a 6= τ , based on the above-mentioned transition traces and

using Rules (41) and (12), it is possible to have: 〈clk := ¬clk ; CLK disrupt

ASSER, σ6〉
a−→ 〈CLK disrupt skip; ASSER, σ7〉, where

σ7 = {clk 7→ 0, request = grant 7→ 1, t 7→ 10, time 7→ 10}.
(f) From Rules (32), (41), (12) and (2), it is not hard to see that: 〈(delay(2);

request := 0; S) ‖ clk := ¬clk ; CLK disrupt ASSER, σ6〉
a−→ 〈(delay(2);

request := 0; S) ‖ CLK disrupt skip; ASSER, σ7〉.
(g) Following the same fashion, more transition traces can be performed accord-

ing to the deduction rules.

8. In σ7, the variable t is mapped to the value of the current time (when the
property is checked). This also means that the property holds, i.e. the arbiter
worked as expected at least for one time.

6.3.2 Analysis Result

In simple words, through a complete formal (mathematical) proof of a desirable
property of the above arbiter described in PAFSV, we showed that such arbiter
worked as expected. Meanwhile, the operational semantics of PAFSV, by means of
deduction rules, has been illustrated to allow for direct execution of formal speci-
fications of PAFSV. Such deduction rules are also shown to be useful and suitable
for formal analysis of SystemVerilog designs via our process algebraic framework
PAFSV.

7 COMPARISON WITH OTHER FORMAL APPROACHES

Over the years, different formal approaches have been studied and investigated for
VHDL [19], Verilog [20, 21, 22] and SystemC [23, 24]. Most of these works could only
be considered as theoretical frameworks, except a few trails [22, 25], because they
are not executable. Research works in formal semantics of SystemVerilog based on
Abstract State Machines (ASMs) [26] and rewrite rules already exist (see Annex E
in [6]). Also, ASM specifications and rewrite rules are not directly executable.
However, it is also generally believed that structured operational semantics (SOS)

172 K. L. Man, C.-U. Lei, H. K. Kapoor, T. Krilavičius, J. Ma, N. Zhang

provides more clear intuitions; and ASM specifications and rewrite rules appear
to be less suited to describe the dynamic behaviour of processes. Since processes
are the basic units of execution within SystemVerilog that are used to simulate
the behaviour of a system, a process algebraic framework in SOS style is a more
immediate choice to give the formal semantics of SystemVerilog (these motivated us
to develop PAFSV in a process algebraic way with SOS deduction rules).

Based on the similar motivations and needs, a timed process algebra Sys-
temCFL [25, 27, 33] was introduced for formal specification and analysis of Sys-
temC designs recently. SystemCFL initiated an attempt to extend the knowledge
and experience of the field of process algebras to SystemC designs. However, we
believe that the formal semantics of SystemCFL is not intuitive for designers and
engineers in the electronic design community. For instance, the use/definition of
two valuations (e.g. previous accompanying valuation and current valuation) in the
quintuple of a SystemCFL process is highly unintuitive for the users (see [28] for
details).

On the other hand, as presented in this paper, only one valuation is defined in
a PAFSV process. For a given current valuation σ and a given future valuation σ′

(after a transition), deduction rules in PAFSV have been defined in such a way that,
starting from the current state/valuation (i.e. σ), a more specific transition (e.g.

〈p, σ〉
aspecific−−−−→ 〈p′, σ′〉) is precisely defined to reach the future state/valuation (i.e. σ′).

In other words, such a transition is highly restricted by the current state/valuation
and future state/valuation. The advantage of this approach to define deduction
rules is that the defined deduction rules become simpler and more intuitive. It also
helps to reduce non-determinism regarding the behaviour of the PAFSV process.
Nevertheless, a formal comparison between SystemCFL and PAFSV is indispensable.

8 CONCLUSIONS

PAFSV has been presented for the formal specification and analysis of IEEE Sys-
temVerilog designs in this paper. We reached our goals (as indicated in Section 3.1).
We also believe that our process algebraic framework PAFSV can serve as a math-
ematical basis for improvement of the design strategies of SystemVerilog, and pos-
sibilities to analyse SystemVerilog designs, because PAFSV

1. comprises mathematical expressions for SystemVerilog;

2. allows for analysis of specifications in a compositional way;

3. allows for equational reasoning on specifications;

4. contributes significantly to the investigation of interoperabilites of SystemVerilog
with SystemC and SystemCFL.

Furthermore, we have successfully applied PAFSV to model and analyse null con-
vention logic circuits.

PAFSV: A Formal Framework for Specification and Analysis of SystemVerilog 173

Further to our knowledge, PAFSV is the first formalisation framework for a sig-
nificant subset of SystemVerilog using a standard operational semantics (SOS) and
such a semantics allows for direct execution of formal specifications.

9 FUTURE WORK

Our future work will focus on the development of a formal translation between PSL
and PAFSV to reach the goal of verification of concurrent assertions in PAFSV
as indicated above. We also investigate the translations of PAFSV to SMV [34],
Promela [30] and timed automata that are input languages of the verification tools
SMV and Uppaal [31], respectively.

For practical applications, we will apply PAFSV to formally represent Sys-
temVerilog designs (for formal analysis purposes) in the design flow of the project:
“MOQA Processor: An Entirely New Type of Processor for Modular Quantitative
Analysis”, as reported in [32].

REFERENCES

[1] Baeten, J.—Weijland, W.: Process Algebra. Cambridge University Press, 1990.

[2] Baeten, J.—Middelburg, C.: Process Algebra with Timing. Springer-Verlag,
2002.

[3] Baeten, J. C. M.—Basten, T.—Reniers, M. A.: Process Algebra: Equational
Theories of Communicating Processes. Cambridge University Press, 2009.

[4] van Beek, D. et al.: Syntax and Consistent Equation Semantics of Hybrid Chi.
Journal of Logic and Algebraic Programming, Vol. 68, 2006, No. 2, pp. 129–210.

[5] Cuijpers, P.—Reniers, M.: Hybrid Process Algebra. Journal of Logic and Alge-
braic Programming, Vol. 62, 2005, No. 2, pp. 191–245.

[6] IEEE-1800, IEEE Standard for SystemVerilog – Unified Hardware Design, Specifica-
tion, and Verification Language. Technical report, IEEE Std 1800TM, IEEE Computer
Society, 2009.

[7] Sutherland, S.—Davidmann, S.—Flake, P.: SystemVerilog for Design:
A Guide to Using SystemVerilog for Hardware Design and Modeling. Springer, 2003.

[8] Datla, S.—Thornton, M.—Hendrix, L.—Henderson, D.: Quaternary Ad-
dition Circuits Based on SUSLOC Voltage-Mode Cells and Modeling with Sys-
temVerilog. Proceedings International Symposium on Multiple-Valued Logic, 2009,
pp. 147–156.

[9] Spear, C.: SystemVerilog for Verification. Springer, 2008.

[10] IEEE-1364, IEEE Standard for Verilog Hardware Description Language. Technical
report, IEEE Std 1364-2005, IEEE Computer Society, 2009.

[11] SystemVerilog: SystemVerilog 3.1a: Accellera’s Extensions to Verilog. Available
on: http://www.systemverilog.com/, 2003.

174 K. L. Man, C.-U. Lei, H. K. Kapoor, T. Krilavičius, J. Ma, N. Zhang

[12] Man, K.—Boubekeur, M.—Schellekens, M.: Algebraic Approach to Sys-
temVerilog. Proceedings IEEE Canadian Conference on Electrical and Computer
Engineering, 2007.

[13] Man, K.: PAFSV: A Process Algebraic Framework for SystemVerilog. Proceedings
IEEE International Multiconference on Computer Science and Information Technol-
ogy, 2008, pp. 535–542.

[14] Aceto, L.—Fokkink, W.—Verhoef, C.: Structural Operational Semantics.
Handbook of Process Algebra, 2001, pp. 197–292.

[15] van Beek, D. A. et al.: Syntax and Semantics of Timed Chi. Technical Report,
Eindhoven University of Technology, 2005.

[16] Mousavi, M.: Structuring Structural Operational Semantics. Ph.D. Thesis. Eind-
hoven University of Technology, 2005.

[17] Aceto, L.—Fokkink, W.—Verhoef, C.: Structural Operational Semantics.
Proc. BPS, 1999, pp. 197–292.

[18] Mousavi, M. R.—Reniers, M. A.—Groote, J. F.: Notions of Bisimulation and
Congruence Formats for SOS with Data. Information and Computation, Vol. 200,
2005, No. 1, pp. 107–147.

[19] Breuer, P.—Kloos, C. D.: Formal Semantics for VHDL. Kluwer Academic Pub-
lishers, 1995.

[20] Andraus, Z. S.—Liffiton, M. H.—Sakallah, K. A.: Reveal: A Formal Verifi-
cation Tool for Verilog Designs. Logic for Programming, Artificial Intelligence, and
Reasoning, 2008, pp. 343–352.

[21] Raffelsieper, M. et al.: Formal Analysis of Non-Determinism in Verilog Cell
Library Simulation Models. Formal Methods for Industrial Critical Systems, 2009,
pp. 133–148.

[22] Bowen, J.: Animating the Semantics of Verilog Using Prolog. Technical report, In-
ternational Institute for Software Technology, United Nations University UNU/IIST
Report 1999, No. 176.

[23] Razavi, N. et al.: Sysfier: Actor-Based Formal Verification of SystemC. ACM Trans-
actions on Embedded Computing Systems, Vol. 10, 2010, No. 2, pp. 1–35.

[24] Vardi, M. Y.: Formal Techniques for SystemC Verification. Proceedings ACM/IEEE
Design Automation Conference, 2007, pp. 188–192.

[25] Man, K.: SystemCFL: Formalization of SystemC. Proceedings IEEE Mediterranean
Electrotechnical Conference, 2004.

[26] Mueller, W.—Zambaldi, M.—Ecker, W.—Kruse, T.: The Formal Simulation
Semantics of SystemVerilog. Proceedings IEEE Forum on Specification and Design
Languages, 2004.

[27] Man, K.: Formal Communication Semantics of SystemCFL. Proceedings IEEE Eu-
romicro Conference on Digital System Design, 2005.

[28] Man, K. et al.: SystemCFL
tlm: Motivation and Development. Proceedings IAENG

International MultiConference of Engineers and Computer Scientists, 2008.

[29] IEEE Standard for Property Specification Language. Technical report, IEEE Std
1850-2010, IEEE Computer Society, 2010.

PAFSV: A Formal Framework for Specification and Analysis of SystemVerilog 175

[30] Holzmann, G.: The SPIN Model Checker – Primer and Reference Manual. Technical
report, Addison-Wesley, 2004.

[31] Larsen, K.—Pettersson, P.—Yi, W.: UPPAAL in a Nutshell. Journal of Soft-
ware Tools for Technology Transfer, Vol. 1, 1997, No. 1-2, pp. 134–152.

[32] Schellekens, M. et al.: Towards Fast and Accurate Static Average-Case Perfor-
mance Analysis of Embedded Systems: The MOQA Approach. Proceedings IEEE
East-West Design and Test International Symposium, 2007.

[33] SystemCFL. Available on: http://digilander.libero.it/systemcfl/, 2009.

[34] SMV: The SMV Model Checker and User Manual. Available on: http://www-2.cs.
cmu.edu/modelcheck/, 2009.

Ka Lok Man is currently Associate Professor in the Depart-
ment of Computer Science and Software Engineering at Xi’an
Jiaotong-Liverpool University in Suzhou, China. Furthermore,
he has a good publication record and to date has more than 300
published academic articles.

Chi-Un Lei is Honorary Assistant Professor in the Department
of Electrical and Electronics Engineering, University of Hong
Kong.

Hemangee K. Kapoor is Associate Professor with the Depart-
ment of Computer Science and Engineering, Indian Institute of
Technology Guwahati, Assam, India.

176 K. L. Man, C.-U. Lei, H. K. Kapoor, T. Krilavičius, J. Ma, N. Zhang

Tomas Krilavi�cius is Professor at Vytautas Magnus Univer-
sity, Kaunas, Lithuania. His main research interests are data
mining, visualization and language technologies. He works as
the Head of IT Department in Baltic Institute of Advanced Tech-
nologies.

Jieming Ma is Lecturer with School of Electronic and Informa-
tion Engineering, Suzhou University of Science and Technology,
Suzhou, China. His current research interests lie in the field of
modeling and control of solar power systems.

Nan Zhang is currently working in the CITIC Securities, Shen-
zhen, China, as a quantitative trading strategy designer and de-
veloper.

