
Computing and Informatics, Vol. 29, 2010, 1251–1265

SOLVING THE GENERALIZED VERTEX COVER
PROBLEM BY GENETIC ALGORITHM

Marija Milanović

Faculty of Mathematics
University of Belgrade
Studentski trg 16/IV, 11 000 Belgrade, Serbia
e-mail: marija.milanovic@gmail.com

Manuscript received 20 October 2008; revised 4 March 2009

Communicated by Jǐŕı Posṕıchal

Abstract. In this paper an evolutionary approach to solving the generalized ver-
tex cover problem (GVCP) is presented. Binary representation and standard ge-
netic operators are used along with the appropriate objective function. The exper-
iments were carried out on randomly generated instances with up to 500 vertices
and 100 000 edges. Performance of the genetic algorithm (GA) is compared with
CPLEX solver and 2-approximation algorithm based on LP relaxation. The genetic
algorithm outperformed both CPLEX solver and 2-approximation heuristic.

Keywords: Vertex cover, genetic algorithms, evolutionary approach, combinatorial
optimization, graph algorithms

1 INTRODUCTION

In 1972 Karp [10] showed that 21 diverse problems from graph theory and combi-
natorics are NP-complete. The vertex cover problem (VCP) was one of them. VCP
is defined over an undirected graph G = (V, E) and searches for a set of vertices S
such that for each edge e ∈ E at least one of its endpoints belongs to S and |S| is
as small as possible.

Up to now, numerous researchers have studied this problem, mostly from the
aspect of approximation. Nevertheless, there is significantly smaller number of re-
searchers who have given experimental results. Some of their recently published,
successful methods for solving VCP are given in [7, 12, 30, 31].

1252 M. Milanović

There are several papers dealing with various generalizations of the vertex cover
problem [2, 8, 9, 29]. In this paper a formulation from [9] was chosen.

Let G = (V, E) be an undirected graph, with three numbers d0(e) ≥ d1(e) ≥
d2(e) ≥ 0 for each edge e ∈ E. The solution is a subset S ⊆ V and di(e) represents
the cost contributed to the solution by the edge e if exactly i of its endpoints are in
the solution. The cost of including a vertex v in the solution is c(v). The solution
has a cost that is equal to the sum of the vertex costs and the edge costs. The
generalized vertex cover problem is to compute a minimum cost set of vertices.

The vertex cover problem has many real-world applications. Examples of the
areas where this problem occurs are communications, civil and electrical engineering,
and bioinformatics (the vertex cover problem finds applications in the construction
of phylogenetic trees, in phenotype identification, and in analysis of microarray
data). One of the problems that were a motivation for the generalized vertex cover
problem is presented in [23]: given a budget that can be used to upgrade vertices,
the goal is to upgrade a vertex set such that in the resulting network the minimum
cost spanning tree is minimized.

In [9] Hassin and Levin have studied the complexity of GVCP with the costs
d0(e) = 1, d1(e) = α, d2(e) = 0 for every e ∈ E and c(v) = β for every v ∈ V for
all possible values of α and β. They have also provided 2-approximation algorithms
for the general case.

In the special case when d0(e) = 1, d1(e) = d2(e) = 0 for every e ∈ E and
c(v) = 1 for every v ∈ V , GVCP is reduced to VCP. Thus, the generalized vertex
cover problem is NP-hard as a generalization of the vertex cover problem which is
proved to be NP-hard problem. Hassin and Levin have also proved that there are
some cases when GVCP can be solved in polynomial time ([9]).

In the literature, there were no papers offering experimental results for GVCP.

2 MATHEMATICAL FORMULATION

Let G = (V, E) be an undirected graph. For every edge e ∈ E three numbers
d0(e) ≥ d1(e) ≥ d2(e) ≥ 0 are given and for every vertex v ∈ V a number c(v) ≥ 0
is given.

For a subset S ⊆ V denote S = V \S, E(S) is the set of edges whose both
end-vertices are in S, E(S, S) is the set of edges that connect a vertex from S with
a vertex from S, c(S) =

∑

v∈S c(v), and for i = 0, 1, 2 di(S) =
∑

e∈E(S) di(e) and

di(S, S) =
∑

e∈E(S,S) di(e).

The generalized vertex cover problem is to find a vertex set S ⊆ V that minimizes
the cost c(S) + d2(S) + d1(S, S) + d0(S). Thus, the value di(e) represents the cost
of the edge e if exactly i of its endpoints are included in the solution, and the cost
of including a vertex v in the solution is c(v).

An integer programming formulation of the generalized vertex cover problem,
introduced in [9], is shown below.

Solving the GVCP by Genetic Algorithm 1253

min
n
∑

i=1

c(i)xi +
∑

(i,j)∈E

(

d2(i, j)zij + d1(i, j)(yij − zij) + d0(i, j)(1− yij)
)

(1)

subject to:

yij ≤ xi + xj for every (i, j) ∈ E (2)

zij ≤ xi for every i ∈ V, (i, j) ∈ E (3)

zij ≤ xj for every j ∈ V, (i, j) ∈ E (4)

xi, yij, zij ∈ {0, 1} (5)

where xi is an indicator variable that is equal to 1 if vertex i is included in solution;
yij is an indicator variable that is equal to 1 if at least one of the vertices i and j is
included in the solution, zij is an indicator variable that is equal to 1 if both i and
j are included in the solution.

Example 1. Let |V | = 4 and |E| = 5. The costs c(v) of including vertices in the
solution are given in Table 1. For every edge its end-points and d0, d1, and d2 costs
are given in Table 2.

v 1 2 3 4

c(v) 1 2 3 4

Table 1. c(v) costs

start end d0 d1 d2

1 2 5 3 2
1 3 4 4 3
1 4 5 2 2
2 3 3 2 1
3 4 2 2 2

Table 2. Edges and their d0, d1, d2 costs

The optimal objective value in this example is 15 and the generalized vertex cover
consists of only one vertex (vertex 1). The corresponding vertex cost c(S) = c(1) = 1
and the edge costs are d1(S, S) = d1(1, 2) + d1(1, 3) + d1(1, 4) = 3 + 4 + 2 = 9,
d0(S) = d0(2, 3) + d0(3, 4) = 3 + 2 = 5 and d2(S) = 0. Optimal solution is obtained
by CPLEX solver using integer programming (Equations (1) through (5)).

1254 M. Milanović

3 PROPOSED GA METHOD

Genetic algorithm (GA) is a heuristic method based on Darwin’s theory of evolution
and genetic laws. In the first iteration of the algorithm, population usually consists
of randomly generated individuals. Each individual represents an encoded solution
of a problem and has a value named fitness associated with it, which represents
a quality of the individual in the current population. After applying the genetic
operators of selection, crossover and mutation to the current population, the next
generation is formed. This process is iteratively performed until some finishing
criterion is satisfied. In [28], detailed description of GA can be found.

Extensive computational experience on various optimization problems shows
that GA often produces high quality solutions in a reasonable time. Some of recent
applications are:

• hub location [6, 18, 19, 20, 34, 35];

• facility location [4, 14, 16, 27, 33];

• biconnectivity augmentation of graphs [24, 25, 26];

• metric dimension of graphs [21, 22];

• generalized Euclidean distances [1];

• spanning sets coverage [11];

• binary sequencing [13].

• maximally balanced connected partition of graphs [3];

• index selection [17];

• machine-job assignment [32].

In proposed implementation of GA, the binary encoding of the individuals is
used. Each solution is represented by a binary string of length |V |. Digit 1 in the
genetic code denotes that particular vertex is in corresponding vertex cover S, while
0 shows it is not.

Example 2. Let genetic code be 1000. This means that x1 = 1, x2 = x3 = x4 = 0,
implying S = {1}. According to Example 1, this genetic code represents its optimal
solution.

For improving objective value of the best individual in the current population,
the local search is used. The local search is performed only when the best individual
is changed and not before the 20th generation. As can be seen below, there is no
need for local search if there is no change of the best individual. Also, in the first
20 generations, all the individuals have relatively bad solution quality, so using the
local search would be a waste of time.

The local search is performed by using add/remove heuristic with first improve-
ment, that usually outperforms best improvement heuristic. In more detail, for each
ch ∈ {1, . . . , |V |}, local search tries to complement S[ch] to 1−S[ch]. If that brings

Solving the GVCP by Genetic Algorithm 1255

improvement to the objective value, the change is performed. That process is re-
peated until there is no improvement in some iteration, and the last objective value
is declared as final objective value.

The proposed GA implementation uses gvcChange1() function, whose code is
given in Figure 1, for calculating the objective value of the vertex cover S with S[ch]
being complemented to 1 − S[ch]. In the given code, val represents the objective
value of S before the change is performed, vne is array of dimension |V | such that
vne[ch] is the number of edges having vertex ch as one of its endpoints, while E and
V are matrices of dimension |V | ∗ |V | containing ordinal numbers of those edges and
their remaining endpoints, respectively.

double gvcChange1(int *S, double val, int ch)

{

int i;

double res=val;

if(S[ch]){

res-=c[ch];

for(i=0; i<vne[ch]; i++)

if(S[V(ch,i)])

res-=d2[E(ch,i)]-d1[E(ch,i)];

else

res-=d1[E(ch,i)]-d0[E(ch,i)];

}

else{

res+=c[ch];

for(i=0; i<vne[ch]; i++)

if(S[V(ch,i)])

res+=d2[E(ch,i)]-d1[E(ch,i)];

else

res+=d1[E(ch,i)]-d0[E(ch,i)];

}

return res;

}

Fig. 1. Code for gvcChange1 function

Initial population of Npop = 150 individuals is randomly generated. This ap-
proach provides maximal diversity of genetic material. Fitness of an individual is
computed by scaling objective values of all individuals from the population into the
interval [0,1] so that the best individual has fitness 1 and the worst one has fitness 0.

Explicitly, find =
objindmin

− objind
objindmin

− objindmax

. Nelite = 50 elite individuals are automatically

passed to the next generation. The genetic operators are applied to the rest of
the population. Objective value of every elite individual is the same as in the pre-

1256 M. Milanović

vious generation and is calculated only once, providing significantly better run-time
performance of the algorithm.

Individuals with the same genetic code are discarded in every generation in
order to avoid premature convergence. Their fitness values are set to zero, except
for the first occurrence, so that selection operator avoids them to enter the next
generation. Individuals with the same objective value, but different genetic codes,
may dominate in some cases in the population. Thus, it is useful to limit the number
of their appearance to some constant Nrv. In this implementation Nrv = 40.

The selection operator chooses the non-elitist individuals which will participate
in recombination process and give offspring. In this process, individuals with higher
fitness value are favored. As a selection method, the fine grained tournament selec-
tion (FGTS), described in [4] is used. This operator uses a real (rational) parameter
Ftour, representing preferable average tournament size. The first type of tourna-
ments is held k1 times and its size is ⌊Ftour⌋, while the second type is performed

k2 times with ⌈Ftour⌉ individuals participating, so Ftour ≈
k1·⌊Ftour⌋+k2·⌈Ftour⌉

Npop−Nelite
.

Extensive numerical experiments in [4, 5, 6, 33] performed for different optimiza-
tion problems indicate that FGTS gives the best results for Ftour = 5.4. The same
value is used in this GA implementation. The running time for FGTS operator is
O((Npop − Nelite) · Ftour). In practice Ftour and Npop − Nelite are considered to be
constant that gives a constant running time complexity. For detailed information
about FGTS see [5].

After pairs of parents are randomly selected from the set of individuals chosen
by FGTS, a crossover operator is applied to them producing two offsprings per each
pair of parents. The standard one-point crossover operator is used in the proposed
GA. This operator is performed by exchanging segments of two parents’ genetic
codes starting from a randomly chosen crossover point. The crossover operator is
realized with probability pcross = 0.85. It means that approximately 85% pairs of
individuals exchange their genetic material.

Modified simple mutation operator is used in this GA implementation. It is
performed by changing a randomly selected gene in the genetic code of the individual,
with a certain mutation rate. During the GA execution it may happen that all
individuals in the population have the same gene on a certain position. This gene
is called frozen. If the number of frozen genes is l, the search space becomes 2l

times smaller and the possibility of a premature convergence increases rapidly. The
selection and crossover operators can not change the bit value of any frozen gene and
the basic mutation rate is often too small to restore lost subregions of the search
space. On the other hand, if the basic mutation rate is increased significantly,
a genetic algorithm becomes a random search. For that reason, mutation rate is
increased on frozen genes only. In this implementation, the mutation rate for frozen
genes is increased 2.5 times (1.0/n), compared to non-frozen ones (0.4/n).

The run-time performance of GA is improved by caching technique. The main
idea is to avoid computing the same objective value every time when genetic opera-
tors produce individuals with the same genetic code. Evaluated objective values are

Solving the GVCP by Genetic Algorithm 1257

stored in a hash-queue data structure using the least recently used (LRU) caching
technique. When the same code is obtained again, its objective value is taken from
the cache memory, that provides time-savings. In this implementation the number of
individuals stored in the cache memory is limited to 5 000. For detailed information
about caching GA see [15].

A research group the author belongs to has a large experience on genetic al-
gorithms. The choice of GA parameters presented in this paper is based on that
experience. In [33] GA parameters were intensively tested and values reported as
best are chosen here.

4 EXPERIMENTAL RESULTS

All computations were executed on Intel 2.5GHz PC with 1GB RAM under Win-
dows XP operating system. Genetic algorithm was coded in C programming lan-
guage.

Since there were no instances for this problem, the author randomly generated
instances using the following algorithm:

• input data: |V |, |E|, random seed;

• |E| out of all possible |V |∗(|V |−1)
2

edges are randomly generated;

• for each edge e ∈ E, d0(e) is a random real number from interval [0,100], d2(e)
is a random real number from interval [0, d0(e)], d1(e) is a random real number

from interval [d2(e),
d0(e)+d2(e)

2
];

• following pseudo code describes generation of c(v) for all v ∈ V :

for(i=0; i<|V|; i++){

avg_gain=0;

for(j=0;j<100;j++) {

for(k=0; k<|V|; k++) S[k] = random(0,1);

avg_gain += calculate_gain_of_d(i);

}

avg_gain /= 100;

c[i] = avg_gain;

}

Supposing S is the current vertex cover, procedure calculate gain of d() returns
the value obtained as the edge costs gain of adding vertex v to the cover S.
The previous pseudo code calculates the cost c(v) of including vertex v in the
solution as the average edge costs gain of including vertex v in 100 random
solutions. All of the modern exact and heuristic methods have a preprocessing
part which removes all “useless” variables, i.e. the ones which clearly can not
participate in any good solution. Taking the previously described average gain
as c(v), generated instances have a small number of “useless” vertices.

1258 M. Milanović

Moreover, previous procedure for generating GVCP instances effectively pre-
vents occurrence of “easy” instances that can be solvable in polynomial time.
Detailed information about cases when GVCP is polynomially solvable can be
found in [9]. Thus, the calculation of right endpoints of intervals from which
coefficients d1 were chosen during the generation of instances is based on results
from [9].

CPLEX (2-hour) 2-appr
Instance name Optsol Sol t Sol t

(sec) (sec)

gvc-30-50 2 227 opt 0.031 2 543 0.015
gvc-30-100 4 163 opt 0.125 4 685 0.031
gvc-30-200 9 687 opt 1.031 10 703 0.062
gvc-30-400 18 553 opt 18.750 20 146 0.125
gvc-50-100 4 326 opt 0.109 4 930 0.046
gvc-50-200 8 853 opt 0.546 9 899 0.296
gvc-50-500 23 072 opt 245.296 25 384 0.156

gvc-50-1000 – 46 729 7 200 50 518 0.640
gvc-100-200 8 430 opt 0.343 9 468 0.046
gvc-100-500 22 334 opt 157.796 24 867 0.109
gvc-100-1000 – 44 922 7 200 49 283 0.343
gvc-100-4000 – 185 359 7 200 199 840 6.656
gvc-200-500 22 510 opt 10.453 25 553 0.234
gvc-200-2000 – 90 486 7 200 99 198 2.515
gvc-200-5000 – 231 586 7 200 249 837 6.093
gvc-200-15000 – 707 176 7 200 755 170 171.140
gvc-300-1000 – 44 319 7 200 49 826 0.421
gvc-300-5000 – 231 947 7 200 253 128 8.453
gvc-300-20000 – 934 713 7 200 999 471 195.656
gvc-300-40000 – 1 865 107 7 202 1 992 350 1760
gvc-400-1200 – 53 953 3 903.* 60 483 1.218
gvc-400-5000 – 227 290 7 200 247 458 6.937
gvc-400-20000 – 934 176 7 200 997 593 189.125
gvc-400-70000 – 3 280 984 7 201 3 497 365 6 004
gvc-500-1500 – 67 628 6 110.* 75 631 0.859
gvc-500-5000 – 228 311 7 200 249 300 6.828

gvc-500-30000 – 1 403 360 7 200 1 499 411 352.234
gvc-500-100000 – 4 725 438 7 202 4 993 478 4 420

Table 3. CPLEX and 2-appr results

Integer programming formulation (Equations (1) through (5)) is implemented
and tested by CPLEX 10.1.0 solver in order to obtain optimal solutions. Time
limitation was set to 7 200 seconds per execution preventing very long running time.
According to this limitation, in some cases optimal solutions were not reached, so
best found solution was reported.

Solving the GVCP by Genetic Algorithm 1259

0

2

4

6

8

10

12

14

16

18

20

CPLEX 2-hour 10 3 0 13

2-appr 0 0 0 0

GA 5 8 6 19

Small Medium Large All

Fig. 2. Number of optimal/best solutions of GA, CPLEX 2-hour, and 2-appr methods

0.1

1

10

100

1000

10000

CPLEX 2-hour 43.448 6801 7201 4488

2-appr 0.112 3.724 1870 469.079

GA 0.556 4.657 46.876 13.747

Small Medium Large All

Fig. 3. Average running times of GA, CPLEX 2-hour, and 2-appr methods

1260 M. Milanović

GA
Instance name Bestsol Sol t Gen Eval Cache

(sec) (%)

gvc-30-50 2 227 opt 0.259 2 210 19 546 82
gvc-30-100 4 163 opt 0.252 2 225 15 550 86
gvc-30-200 9 687 opt 0.274 2 261 19 980 82
gvc-30-400 18 553 opt 0.269 2 047 14 966 85
gvc-50-100 4 326 4 327 0.376 2 447 29 342 76
gvc-50-200 8 853 8 880 0.412 2 576 32 276 75
gvc-50-500 23 072 opt 0.457 2 264 28 466 75

gvc-50-1000 46 665 best 0.607 2 292 30 992 73
gvc-100-200 8 430 8 438 0.666 2 787 53 850 61
gvc-100-500 22 334 22 355 0.832 2 825 56 465 60
gvc-100-1000 44 815 best 1.359 3 372 70 298 58
gvc-100-4000 184 327 best 3.074 3 007 64 612 58
gvc-200-500 22 510 22 579 1.767 4 154 106 005 49
gvc-200-2000 90 294 best 2.668 3 260 83 994 49
gvc-200-5000 229 782 best 6.728 4 171 111 989 46
gvc-200-15000 701 164 best 16.471 3 931 107 367 46
gvc-300-1000 44 319 44 414 3.284 4 796 135 735 43
gvc-300-5000 230 810 best 8.028 4 419 127 094 42
gvc-300-20000 925 711 best 20.974 3 460 101 868 41
gvc-300-40000 1 853 084 best 37.974 3 209 95 163 41
gvc-400-1200 53 953 54 033 3.816 4 434 131 280 41
gvc-400-5000 226 097 best 8.103 4 081 122 797 40
gvc-400-20000 922 492 best 19.615 3 083 93 384 39
gvc-400-70000 3 257 512 best 80.215 3 474 106 971 39
gvc-500-1500 67 628 67 758 4.870 4 482 137 535 39

gvc-500-5000 227 207 best 8.692 4 070 125 570 38
gvc-500-30000 1 387 633 best 36.475 3 744 117 362 37
gvc-500-100000 4 651 995 best 116.410 3 236 103 695 36

Table 4. GA results

Since there were no papers containing experimental results for GVCP, for com-
paring with performances of the GA, 2-approximation algorithm from [9] was imple-
mented and tested. 2-approximation algorithm is based on LP relaxation of (1)–(5)
integer program, fixing all relaxed binary variables with values greater than or equal
to 1

2
to 1. Other variables (with relaxed value less than 1

2
) were fixed to 0. For solving

this LP relaxation, CPLEX 10.1.0 solver is also used.

Table 3 summarizes CPLEX and 2-approximation algorithm results on generated
instances. In the first column the test instance name is given. The instance’s
name carries information about the number of vertices and the number of edges,
respectively. For example, the instance gvc 100 1000 is created by using the above
algorithm given 100 as a number of vertices, and 1 000 as a number of edges.

Solving the GVCP by Genetic Algorithm 1261

The second column contains optimal solution on the current instance, if it is
known (obtained by CPLEX solver), otherwise sign − is written. The third and
fourth columns contain solution and running time of CPLEX solver while solution
and running time of 2-approximation heuristic are presented in the fifth and sixth
columns of the table. Mark opt is given if optimal solution is reached. Sign ∗ in the
column t is written for the cases when CPLEX solver run out of memory.

The finishing criterion of GA is the maximal number of generations Ngen =
5 000. The algorithm also stops if the best individual or best objective value remains
unchanged through Nrep = 2 000 successive generations. Since the results of GA are
nondeterministic, the GA was run 20 times on each problem instance.

In Table 4 results of GA are presented. The first column also contains the test
instance name. The second column contains the best known solution on the current
instance, i.e. the best solution among the solutions given by CPLEX (2-hour), 2-ap-
proximation, and GA. The best GA value GAbest is given in the following column,
with mark opt in cases when GA reached optimal solution (obtained by CPLEX
solver). If the GA reached the best-known solution, which is not proved to be
optimal, the mark best is written. The next column t contains the average running
time (in seconds) used to reach the final GA solution. The average number of
generations for finishing GA is presented in column Gen. In the last two columns,
Eval represents the average number of the objective function evaluations, while
Cache displays savings (in percent) achieved by using cache technique.

In both tables, time values are shown without decimal places if they are greater
than 1 000, and with three decimal places otherwise. Also, all other values are
presented without decimal places.

The results shown in Table 3 and Table 4 are put together and illustrated in
a graphical form in Figures 2 and 3. Instances are divided into three groups: small
(up to 500 edges), medium (between 1 000 and 5 000 edges) and large (more than
5 000 edges). In Figure 2 for every of three compared methods (CPLEX, 2-ap-
proximation, and GA) and every group of instances, the number of the group’s
instances on which the method has reached optimal/best solution is reported. Also,
the corresponding number for group of all 28 instances is presented. In Figure 3 for
every group of instances and every method the average running time of that method
on the instances of that group is presented. Also, the corresponding average running
time is presented for group of all 28 instances. A logarithmic scale is used in Figure 3.

As can be seen from Table 3, 2-approximation algorithm has not reached either
optimal or best solution. In five cases (gvc− 30− 50, gvc− 30− 100, gvc− 30− 200,
gvc− 30− 400, gvc− 50− 500) both GA and CPLEX solver have reached optimal
solution. On other five instances (gvc− 50− 100, gvc− 50− 200, gvc− 100− 200,
gvc − 100 − 500, gvc − 200 − 500) CPLEX has reached optimal solution, but GA
has not. CPLEX has not reached optimal solution in 2 hours, but produced better
solution than GA in 3 more cases: gvc−300−1000, gvc−400−1200, gvc−500−1500.
For remaining 15 instances GA produced better solutions than CPLEX. Note that
CPLEX is more suitable for solving GVCP on smaller dimension sparse graphs,
while GA has advantages on larger and/or dense graphs.

1262 M. Milanović

Except for instances: gvc−30−50, gvc−30−100, gvc−50−100, gvc−50−200,
gvc− 100− 200 where running time of both CPLEX and GA is less than 1 second,
on all other instances GA has much smaller running time. Note that GA running
time did not exceed 117 seconds for all instances. On the other hand, CPLEX
has different behavior, in cases of smaller dimension sparse graphs where optimal
solution was reached in less than 246 seconds, in other cases, even after 2 hours of
execution quality of solution was rather bad.

5 CONCLUSIONS

In this paper an efficient evolutionarymetaheuristic for solving the generalized vertex
cover problem is presented. The binary representation, the mutation with frozen
genes, limited number of different individuals with the same objective value and the
caching technique were used. Solution quality is improved by using the local search
heuristic that is efficiently implemented in GA.

As can be seen from experimental results, this approach seems to be a good can-
didate for solving GVCP. Computational experiments demonstrate the robustness
of the proposed algorithm with respect to the solution quality and running times.
Comparisons with the results of the CPLEX and 2-approximation heuristic show
the appropriateness of applying the proposed algorithm components.

Future research will be directed to parallelization of the presented GA, incorpo-
ration in exact methods and application for solving similar problems.

Acknowledgement

This research was partially supported by the SerbianMinistry of Science and Ecology
under project 144007. The author is grateful to Jozef Kratica, Jelena Kojić and
Ivana Ljubić for their useful suggestions and comments.

REFERENCES

[1] Aler, R.M.—Valls, J.—Fernandez, O.: Evolving Generalized Euclidean Dis-
tances for Training RBNN. Computing and Informatics, Vol. 26, 2007, No. 1,
pp. 33–43.

[2] Broersma, H. J.—Paulusma, D.—Smit, G. J.M.—Vlaardingerbroek, F.—

Woeginger, G. J.: The Computational Complexity of the Minimum Weight Pro-
cessor Assignment Problem. Lecture Notes in Computer Science, Vol. 3353, 2004,
pp. 189–200.

[3] Djurić, B.—Kratica, J.—Tošić, D.—Filipović, V.: Solving the Maximally
Balanced Connected Partition Problem in Graphs by Using Genetic Algorithm. Com-
puting and Informatics, Vol. 27, 2008, No. 3, pp. 341–354.

[4] Filipović, V.—Kratica, J.—Tošić, D.—Ljubić, I.: Fine Grained Tournament
Selection for the Simple Plant Location Problem. Proceedings of the 5th Online World

Solving the GVCP by Genetic Algorithm 1263

Conference on Soft Computing Methods in Industrial Applications – WSC5, Septem-

ber 2000, pp. 152–158.

[5] Filipović, V.: Fine-Grained Tournament Selection Operator in Genetic Algorithms.
Computing and Informatics, Vol. 22, 2003, pp. 143–161.

[6] Filipović, V.: Operatori Selekcije i Migracije i Web Servisi Kod Paralelnih Evo-
lutivnih Algoritama. Ph.D. thesis, University of Belgrade, Faculty of Mathematics,

2006.

[7] Gilmour, S.—Dras, M.: Kernelization as Heuristic Structure for the Vertex Cover
Problem. Lecture Notes in Computer Science, Vol. 4150, 2006, pp. 452–459.

[8] Guo, J.—Niedermeier, R.—Wernicke, S.: Parameterized Complexity of Gene-
ralized Vertex Cover Problems. Lecture Notes In Computer Science, Vol. 3608, 2005,

pp. 36–48.

[9] Hassin, R.—Levin, A.: The Minimum Generalized Vertex Cover Problem. ACM

Transactions on Algorithms, Vol. 2, 2006, pp. 66–78.

[10] Karp, R.M.: Reducibility Among Combinatorial Problems. Complexity of Com-
puter Computations, Plenum Press, 1972, pp. 85–103.

[11] Khamis, A.M.—Girgis, M. R.—Ghiduk, A. S.: Automatic Software Test Data
Generation for Spanning Sets Coverage Using Genetic Algorithms. Computing and

Informatics, Vol. 26, 2007, No. 4, pp. 383–401.

[12] Kotecha, K.—Gambhava, N.: A Hybrid Genetic Algorithm for Minimum Vertex
Cover Problem. Proceedings of the First Indian International Conference on Artificial

Intelligence, 2003, pp. 904–913.

[13] Kovačević, J.: Hybrid Genetic Algorithm for Solving the Low-Autocorrelation Bi-

nary Sequence Problem. Yugoslav Journal of Operations Research (to appear).

[14] Kratica, J.: Improvement of Simple Genetic Algorithm for Solving the Uncapaci-
tated Warehouse Location Problem. Advances in Soft Computing – Engineering De-

sign and Manufacturing, R. Roy, T. Furuhashi and P.K. Chawdhry (Eds.), Springer-
Verlag London Limited, 1998, pp. 390–402.

[15] Kratica, J.: Improving Performances of the Genetic Algorithm by Caching. Com-
puters and Artificial Intelligence, Vol. 18, 1999, pp. 271–283.

[16] Kratica, J.—Tošić, D.—Filipović, V.—Ljubić, I.: Solving the Simple Plant
Location Problem by Genetic Algorithms. RAIRO – Operations Research, Vol. 35,
2001, pp. 127–142.

[17] Kratica, J.—Ljubić, I.—Tošić, D.: A Genetic Algorithm for the Index Selection
Problem. Lecture Notes in Computer Science, Vol. 2611, 2003, pp. 281–291.

[18] Kratica, J.—Stanimirović, Z.—Tošić, D., Filipović, V.: Genetic Algorithm
for Solving Uncapacitated Multiple Allocation Hub Location Problem. Computing
and Informatics, Vol. 24, 2005, pp. 415–426.

[19] Kratica J.—Stanimirović, Z.: Solving the Uncapacitated Multiple Allocation
P-Hub Center Problem by Genetic Algorithm. Asia-Pacific Journal of Operational
Research, Vol. 24, 2006, No. 4, pp. 425–437.

[20] Kratica, J.—Stanimirović, Z.—Tošić, D.—Filipović, V.: Two Genetic Al-
gorithms for Solving the Uncapacitated Single Allocation P-Hub Median Problem.
European Journal of Operational Research, Vol. 182, 2007, No. 1, pp. 15–28.

1264 M. Milanović

[21] Kratica, J.—Kovačević-Vujčić, V.—Čangalović, M.: Computing the Met-

ric Dimension of Graphs by Genetic Algorithms. Computational Optimization and
Applications, DOI 10.1007/s10589-007-9154-5 (to appear).

[22] Kratica, J.—Kovačević-Vujčić, V.—Čangalović, M.: Computing Strong

Metric Dimension of Some Special Classes of Graphs by Genetic Algorithms. Yu-
goslav Journal of Operations Research, Vol. 18, 2008, No. 2, pp. 143–151.

[23] Krumke, S.O.—Marathe, M.V.—Noltemeier, H.—Ravi, R.— Ravi, S. S.—

Sundaram, R.—Wirth, H.C.: Improving Minimum Cost Spanning Trees by Up-
grading Nodes. Journal of Algorithms, Vol. 33, 1999, pp. 92–111.

[24] Ljubić, I.—Raidl, G.R.—Kratica, J.: A Hybrid GA for the Edge-Biconnectivity
Augmentation Problem. Lecture Notes in Computer Science, Vol. 1917, 2000,

pp. 641–650.

[25] Ljubić, I.—Raidl, G. R.: A Memetic Algorithm for Minimum-Cost Vertex-
Biconnectivity Augmentation of Graphs. Journal of Heuristics, Vol. 9, 2003,

pp. 401–427.

[26] Ljubić, I.: Exact and Memetic Algorithms for Two Network Design Problems. Ph.D.
thesis, Institute of Computer Graphics, Vienna University of Technology, 2004.

[27] Marić, M.: An Efficient Genetic Algorithm for Solving the Multi-Level Uncapaci-
tated Facility Location Problem. Computing and Informatics, Vol. 29, 2010, No. 2,
pp. 183–201.

[28] Mitchell, M.: Introduction to Genetic Algorithms. MIT Press, Cambridge, Mas-
sachusetts, 1999.

[29] Moser, H.: Exact Algorithms for Generalizations of Vertex Cover. M. Sc. thesis,
Friedrich-Schiller-University Jena, Faculty of Mathematics and Informatics, 2005.

[30] Pelikan, M.—Kalapala, R.—Hartmann, A.K.: Hybrid Evolutionary Algo-
rithms on Minimum Vertex Cover for Random Graphs. Proceedings of the Genetic
and Evolutionary Computation Conference – GECCO 2007, pp. 547–554.

[31] Richter, S.—Helmert, M.—Gretton, C.: A Stochastic Local Search Approach
to Vertex Cover. Lecture Notes in Computer Science, Vol. 4667, 2007, pp. 412–426.

[32] Savić, A.: An Genetic Algorithm Approach for Solving the Machine-Job Assignment
With Controllable Processing Times. Computing and Informatics (to appear).

[33] Stanimirović, Z.—Kratica, J.—Dugošija, Dj.: Genetic Algorithms for Solving
the Discrete Ordered Median Problem. European Journal of Operational Research,
Vol. 182, 2007, No. 3, pp. 983–1001.

[34] Stanimirović, Z.: Genetic Algorithms for Solving Some NP-Hard Hub Location
Problems. Ph.D. thesis, University of Belgrade, Faculty of Mathematics, 2007.

[35] Stanimirović, Z.: A Genetic Algorithm Approach for the Capacitated Single Al-
location P-Hub Median Problem. Computing and Informatics, Vol. 29, 2010, No. 1,
pp. 117–132.

Solving the GVCP by Genetic Algorithm 1265

Marija Milanovi�
 received her B. Sc. degree in mathemat-

ics (2007) from University of Belgrade, Faculty of Mathematics.
Since 2007 she works as a teaching assistant and since 2008 she
is a Ph.D. student at the Faculty of Mathematics. Her research
interests include genetic algorithms, combinatorial optimization
and algorithms on graphs.

