Computing and Informatics, Vol. 32, 2013, 113-144

MONTERA: A FRAMEWORK FOR EFFICIENT
EXECUTION OF MONTE CARLO CODES ON GRID
INFRASTRUCTURES

Manuel RODRIGUEZ-PASCUAL, Rafael MAYO-GARCIA

CIEMAT
Avda Complutense, 22, 28040 Madrid (Spain)
e-mail: {manuel .rodriguez, rafael.mayo}@ciemat.es

Ignacio M. LLORENTE
DSA-Research.org. Universidad Complutense

C/ Prof. José Garcia Santesmases s/n, 28040 Madrid (Spain)
e-mail: 11lorente@dacya.ucm.es

Communicated by Isabel Campos Plasencia

Abstract. The objective of this work is to improve the performance of Monte
Carlo codes on Grid production infrastructures. To do so, the codes and the grid

sites are characterized with simple parameters to model their behaviors.

a new performance model for grid infrastructures is proposed, and an algorithm

that employs this information is described. This algorithm dynamically calculates

the number and size of tasks to execute on each site to maximize the performance

and reduce makespan. Finally, a newly developed framework called Montera is pre-
sented. Montera deals with the execution of Monte Carlo codes in an unattended
way, isolating the complexity of the problem from the final user. By employing

two fusion Monte Carlo codes as example cases, along with the described charac-

terizations and scheduling algorithm, a performance improvement up to 650 % over

current best results is obtained on a real production infrastructure, together with

enhanced stability and robustness.

Keywords: Scheduling, task grouping, grid computing, Monte Carlo, performance

Mathematics Subject Classification 2010: 68W15, 68W40, 65C05

114 M. Rodriguez-Pascual, R. Mayo-Garcia, I. M. Llorente

1 INTRODUCTION

Monte Carlo (MC) codes rely on the assumption that the behavior of complex phe-
nomena can often be modeled by the execution of multiple simple simulations that
employ random or pseudo-random numbers to compute their results. Thanks to this
particularity, MC codes are widely used in various fields of computing simulations,
solving problems where it is unfeasible or impossible to compute an exact result with
a deterministic algorithm. The modularity of MC codes also simplifies the execu-
tion of distributed environments, where task distribution and synchronization is not
trivial. MC codes have been successfully employed in fields as diverse as radiological
medicine [4, 36], economics [5], finances [24, 8|, environmental research [37], high
energy physics [21, 49] or aerospace engineering [46], just to mention a few.

The MC codes considered for this work are the ones consisting on sets of in-
dependent simulations, whose architecture allows a straightforward parallelization.
Other kind of codes such as Random Walks [42] or Markov’s Chains [39, 15] are
beyond the scope of this work. Thus, from now on, references to “Monte Carlo”
should be understood as references to this subset of Monte Carlo-based applica-
tions.

Because of the high demand many scientific applications place on resources —
MC codes among them — grid computing has emerged as a powerful platform for
facing new and more ambitious problems. Grid computing has enabled the scientific
community to have easier access to large computing resources beyond supercom-
puters. The nature of MC codes makes their parallelization straightforward, and
they have been successfully ported to the grid on multiple occasions. However, the
execution of MC codes still needs improvement to make the most of their flexibility
in combination with the dynamicity of grid infrastructures, the characteristics of
which have either not been taken into account or have only been dealt with in ideal
environments.

Due to the particularities of this kind of infrastructure, the efficient execution of
distributed applications is far from trivial. As detailed in the Related Works section,
enormous effort has been put into this area, with many different approaches focusing
on different concepts of “Grid Infrastructure”, the particular characteristics of the
application to be executed or the available and published information. Still, there is
no specific tool for executing MC based applications on the grid, even though MC
is one of the most widely employed paradigms. In this work, the problem is tackled
through the creation of a framework specifically designed to fit the requirements of
MC applications.

For this purpose, an innovative strategy that relies on three complementary tools
is followed. These tools are employed to gather information from different sources
and to distribute the samples to be simulated among the available resources. The
three tools are as follows:

e information about the grid infrastructure based on static and dynamic data
collected from past executions and the current status;

Montera: Ezxecution of MC Codes on the Grid 115

e an automatic analysis and characterization of the application to execute to model
its behavior; and,

e the employment of a new scheduling algorithm.

To carry on this task, a number of contributions are presented on this paper.

First, an innovative characterization of MC codes and grid infrastructures with
a small set of simple parameters is proposed. This way, the behavior of the ap-
plication and infrastructure performance on any given moment can be accurately
predicted, thus providing very valuable information to the scheduler.

The next step consisted in the design of a new scheduling algorithm called Dy-
namic Trapezoidal Self Scheduling (DyTSS). This algorithm is specially devoted
to MC applications, and employs the aforementioned characterizations to split the
samples to simulate among the available resources. Unlike previous self-scheduling
algorithms, which decide the task distribution and the chunk size at the beginning
of the execution, DyTSS creates every chunk at the moment of its execution, thus
adapting the submission of jobs to any change in the number, performance or size
of the resources being used in the dynamic environment.

As manually controlling all these tools would be difficult and tedious for the final
user, a new framework called Montera (MONTE Carlo RApido — Fast Monte Carlo,
from its Spanish acronym) is presented to overcome this issue. Montera carries out
all the steps involved on a grid execution of MC codes, from information retrieval
and site characterization to advanced scheduling via DyTSS algorithm.

These tools will be thoroughly explained together with the most significant de-
tails of the implementation. The rest of the paper is organized as follows: Section 2
is devoted to show the related work on the area; Section 3 explains the creation of
Montera from a theoretical point of view and details the most significant character-
istics of its implementation; in Section 4 the performance an the induced overhead
are analysed, showing the behavior of Montera on real production infrastructures;
Section 5 shows the conclusions and lessons learned during the development of this
work.

2 RELATED WORKS

Job scheduling on grid infrastructures is a widely studied field, and a complete
description of the research in this area falls out of the scope of this work. If a general
reference is desired, Dong and Akl [17] have performed an impressive analysis of the
state-of-the-art scheduling algorithms for grid computing, and a study on classical
self-scheduling algorithms can be found in Chronopoulos’ work [11] However, these
approaches to the problem, although positive, do not offer a solution or a significant
improvement to the execution of MC codes, as will be demonstrated in the following
analysis. This achievable and necessary improvement is the aim and justification of
the current work.

Note that the final objective is to reduce the makespan of a CPU-intensive
application. Thus, techniques like those detailed in Li’s work [32], which focus on

116 M. Rodriguez-Pascual, R. Mayo-Garcia, I. M. Llorente

QoS or Yu’s work [57] which focuses on data intensive applications, are beyond the
scope of this analysis.

It is important to regard that the definition of grid computing is far away from
being achieved among the scientific community. In this case the definition estab-
lished by Tan Foster [3] is followed. Here, a three-point checklist is proposed to
determine whether a given system can be considered a grid infrastructure or not.
Regarding this list, it is a system that:

e coordinates resources that are not subject to centralized control
e uses standard, open, general-purpose protocols and interfaces

e deliver nontrivial qualities of service.

The first point means that the resources can belong to different organizations,
each one with different software, usage and security policies. This resource sharing
must be highly controlled, so users, service providers and infrastructure administra-
tors are aware of when, to whom, for what and under which conditions a certain
resource is shared.

By requiring that the protocols and interfaces (middleware) are general-purpose
the resulting infrastructure is not oriented to solve a certain kind of problem and/or
application, but can be employed to different areas of knowledge. The employment
of standard, open protocols encourages the users to adapt the tools to their specific
needs, while avoiding fragmentation.

In addition, the resulting infrastructure must be reliable and stable enough to
constitute a valid alternative to the users, so they can carry on their experiments.

Of course, the existence of Montera as an specific tool to execute MC codes
does not collide with the second point of the list: that definition is devoted to the
middleware, and allows building more sophisticated layers on top of it.

2.1 Task Replication

Given that each simulation by an MC code is fully independent, and all of them
are equally valid for obtaining the final result, task replication represents a powerful
tool for reducing execution time. With this approach, the code starts the execution
of more tasks than would be strictly necessary. Then, when the desired number of
simulations has been executed, the remaining tasks are aborted. With this approach,
it is possible to avoid bottlenecks resulting from performance loss or the failure of
a particular resource, thus minimizing makespan.

This technique has been previously studied within the framework of grid com-
puting [33, 38, 48, 53]. The results provided by the authors of each approach are
highly variable, and they depend on the size of the problem, the number of tasks
to execute and the status of the grid infrastructure employed to make the mea-
surements. It is important to bear in mind that Poletti’s work [53] is the only one
performed in a real grid infrastructure, whereas the rest only provide the results of
a simulation.

Montera: Ezxecution of MC Codes on the Grid 117

2.2 Task Grouping

As previously mentioned, MC codes are constituted by fixed sections executed at
the beginning and end of the execution and the simulation of an arbitrary number
of samples. If the aforementioned grid overheads are taken into account, and given
that they are independent of the problem size, it makes sense to perform more than
one simulation on each instance of the application.

Task grouping is a technique that has been widely applied in grid scheduling [56,
19, 55, 28, 16, 22]. Here, several tasks are grouped into a single job called a chunk.
This technique minimizes some of the overheads produced by the grid execution
model. The executable task is sent to the remote site only once, thus reducing
transmission time, and the queue time has to be waited on only once per chunk
instead of once per task. This approach is an adaptation of a technique for loop
scheduling in distributed heterogeneous environments called “loop self-scheduling”.
Task grouping can be directly extrapolated to MC codes, considering that the chunk
size corresponds to the number of samples executed in one task.

Nevertheless, in most of the current bibliography, key aspects related to a real
dynamic grid production infrastructure — dynamicity of computing resources, per-
formance variations and high fault rate — have not been taken into account or the
performed tests have been made in simulated, controlled environments.

3 MONTERA

In this section, the components and functionalities of Montera, the proposed frame-
work for the efficient execution of MC codes on grid infrastructures, will be de-
scribed.

3.1 Characterization of Monte Carlo Codes

To improve the execution of MC codes on the grid, the first step of this work is to
characterize them. The existence of a valid model allows the encapsulation of the
application to be executed and its isolation from Montera, which can then seamlessly
execute different codes.

Monte Carlo method obtains its name from the Principality of Monaco, “the
gambling capital” [40]. It is based on the fact that the behavior of complex phe-
nomena can be modeled by performing multiple independent, simple simulations,
employing random or pseudo-random numbers to compute partial results and statis-
tics to join them and obtain the problem solution [18].

MC applications — this is, applications based on MC method — are based on the
simulation of an arbitrary number of independent samples, grouping them in one
or more tasks. A typical MC code is divided into three different sections. The first
section performs the common operations at the beginning of the execution, such
as checking input data and initializing data structures. The second section is the

118 M. Rodriguez-Pascual, R. Mayo-Garcia, I. M. Llorente

simulation of the desired number of samples. The third section joins the results of
the previous simulations and analyzes them to obtain the final result. The execution
time of each section depends on the number of samples to simulate, and the time of
the first and last may also incorporate a constant time. Thus, the execution time of
the entire code depends on the number of samples plus a constant time.

In this proposal, the MC codes are represented by two parameters: constant_ef-
fort and sample_effort. constant_effort represents the effort necessary to execute the
constant part of the application, and sample_effort is the effort necessary to simulate
a single sample.

MC codes are CPU-intensive [9, 30] and in many cases are devoted to floating-
point operations. Therefore, the chosen unit for the proposed parameters is seconds-
whetstone.

The whetstone benchmark [12] is widely employed to estimate the speed of
a computational resource when working with floating points. The unit in which
the result is described is Millions of Whetstone Instructions per Second (MWIPS),
which, for the sake of simplicity, will hereafter be shortened to whetstones. The
whetstones of a site and the two mentioned parameters provide enough informa-
tion to accurately estimate the execution time of a given instance of the code on
a particular resource.

To obtain these values, a code profiling mechanism has been implemented in
Montera. This mechanism submits to one or several sites a script that:

e executes the whetstone benchmark in the remote site to measure its performance

e cxecutes the application to be profiled with an increasing number of samples,
so constant_effort and sample_effort can be determined. This execution can last
for a predetermined period or for the time the user considers necessary.

By repeating this process at different sites, the influence of exogenous factors,
such as performance variations or benchmark imprecision, is minimized.
Finally, an analysis of the results based on the following equation is carried out:

Ezecution Time N Samples = Ce+ N - Se (1)

where C, corresponds to constant_effort, Se to sample_effort and N is the number of
simulated samples in a given execution. As can be seen, obtaining C, and S, after
two executions of the code with different number of samples is straightforward.
However, to improve the accuracy of the results, this analysis is performed several
times with an increasing value of NV, and the parameters are obtained with a weighted
average of the partial results. Finally, these values are normalized with the result of
the benchmark execution.

3.2 Characterization of Grid Sites

When dealing with task scheduling on grid infrastructures, there are — as explained
in Section 2 — two different approaches. The grid infrastructure can be considered

Montera: Ezxecution of MC Codes on the Grid 119

either a black box or a set of known resources. Here, the latter is employed, so
a strong effort has been put toward gathering as much information as possible about
the composition of the infrastructure.

To accomplish this task, the sites have been characterized according to the
following parameters:

e whetstones: efficiency when working with floating points

e queue time: average queue time for a task before being executed
e bandwidth

e number of successful and failed tasks in past executions

e available slots in past executions

e number of failed attempts to profile the site and when the last one occurred.

In the case of the first two parameters, both the average value and the typical
deviations are stored.

With these parameters, Montera relies on more information about each site
than previous tools, mainly based on its public information (e.g., architecture, CPU
MHz). This approach represents a clear advantage for the task scheduling process,
as a deeper knowledge of the grid infrastructure leads to more accurate decisions.

Montera is able to profile the sites of the grid infrastructure and to automatically
obtain this information. When a new site is detected or a known one has been
modified (e.g., different CPU or memory), Montera is capable of benchmarking it to
obtain the previously detailed parameters. Although the employment of benchmarks
to profile the sites and distribute tasks is not new [30], the incorporation of a tool
to dynamically perform this action represents an improvement over previous works.

This benchmarking is fundamental to understand the performance of the in-
frastructure. Although the first time Montera is executed it presents significant
overhead, the information is stored and recovered when needed, so it does not sig-
nify a drawback in a long-term approach. Montera also updates the information
about the resources after each execution, thus increasing the knowledge about the
infrastructure and improving the application performance in real time, all with a neg-
ligible computational cost. The bandwidth and whetstones are calculated based on
the knowledge about the application, such as the size, model (constant_effort and
sample_effort) and number of samples simulated, and the transmission and execution
time of each chunk.

The result of the benchmark is also employed to control the availability of the
site. After three failed benchmarking attempts, the site is removed for a fixed period
of time from the list of resources to employ. Note that a benchmarking attempt is
considered as failed if the expected result — an XML file containing whetstone results
and several timestamps — is not provided, thus being able to detect both hardware
and software failures. This way, Montera ensures that every task will be submitted
to a valid resource, thus maximizing the probability of a successful execution.

The number of slots that were available in past is read at the initiation of
Montera to decide the number and size of each task. After it has started and

120 M. Rodriguez-Pascual, R. Mayo-Garcia, I. M. Llorente

there are chunks running in different sites, this value is updated in real time. This
approach is based on the idea that the number of slots will not vary much with
time, so it is a good way of initiating Montera with no overhead and with acceptable
precision.

The combination of the proposed characterization and Globus MDS (Monitor-
ing and Discovery System) [47] — employed by GridWay and read by Montera — to
gather information about the infrastructure resources is simple yet powerful. Com-
pared with standard monitoring tools such as Nagios [2] or Ganglia [1] it is obviously
much simpler and has little capabilities, but fits the purpose it was designed for on
a perfect manner. The employment of whetstone benchmark leads to a precise esti-
mation of the resource’s capabilities, and storing the resources available on a given
moment overcomes the problem of getting trustful information from a user’s point
of view: for example, knowing that a certain site has one thousand CPUs can lead
to errors if it has a limit of twenty processes per user, and the existence of hyper-
threading on a CPU will result in proving less performance than expected based on
its chacrateristics. The proposed approach has also the advantage of not being inva-
sive — not needing to install any software on the remote resource — and distributed,
not employing a centralized resource to gather information.

It is noteworthy that Biessel’s proposal [7] has been employed to calculate the
average and typical deviation of an increasing number of values without the need
to store all of them. Given the average and typical deviation of a set of N elements
and a new element n, the authors propose an algorithm to obtain the average and
typical deviation of the set composed by the N + 1 elements. This way, there is no
need to store the entire set of values, and less computational resources are needed to
calculate these parameters. It is also remarkable that this approach obtains the mean
and typical deviation on a constant time, while traditional formulae scale linearly
with the number of elements. Thus, Biessel’s proposal represents both performance
and storage gains, fully justifying its inclusion in Montera.

3.3 Characterization of the Grid Infrastructure

It has been demonstrated that the performance of a grid infrastructure can be
modeled with only two parameters: asymptotic performance and half performance
length [25, 41]. For the sake of completion, this model will be briefly described
here.

From a computational point of view, a grid infrastructure can be seen as a col-
lection of heterogeneous processors. Therefore, the number of tasks completed in
a given moment can be described as

) = L Nl @

where N; is the number of processors in the grid infrastructure G that can compute
a given task in T; seconds.

Montera: Ezxecution of MC Codes on the Grid 121

The average behavior of the system can then be represented as the evolution
of n(t). If done, a graph similar to Figure 1 [41] is obtained. Thus, a first-order
description of a grid infrastructure can be made by

n(t) =mt+b=ret —ni (3)

Slope = re s

Fig. 1. Number of finished tasks as a function of time on an heterogeneous grid
infrastructure

With ro, and n,/, being the asymptotic performance and half performance length
as defined in [25]:

o Asymptotic performance 1o maximum rate of performance in tasks executed
per second.

e Half-performance length n,/,: number of tasks required to obtain the half of the
asymptotic performance.

The problem with this approach is that it is based on the execution time of
constant size tasks, and this work is focused on varying the task size. Thus, modi-
fication was necessary to represent the grid infrastructure behavior when executing
MC codes. This adaptation is proposed here, together with an algorithm to calculate
these parameters.

As explained in Section 3.1, MC codes have been modeled according to two
parameters, constant_effort and sample_effort. Depending on the number of samples
to simulate, the total computational effort needed to execute the task will vary. Also,
the transmission time of the input/output data and queue time must be evaluated,

122 M. Rodriguez-Pascual, R. Mayo-Garcia, I. M. Llorente

because they represent a different overhead depending on the chunk size. All this
information must be taken into account when calculating the performance.

Equations (2) and (3) show that it is necessary to know the execution time of
each task to calculate the infrastructure performance, and “tasks per second” is
employed as measuring unit. The problem with this approach is that Montera is
focused on varying the task size, so this cannot be considered static and varies in
execution time. Instead, it is now measured in samples/second simulated on the
infrastructure. This unit embraces all the aforementioned overheads and accurately
models the infrastructure behavior.

This new proposal makes the calculation of the performance significantly more
complex. With the Montera approach, it is necessary to know the task distribution
in order to calculate the infrastructure performance. However, when employing
the DyTSS scheduling algorithm — which will be described in Section 3.4.3 — it is
necessary to have information about the infrastructure performance to divide the
simulation into different chunks. To avoid this deadlock, it is necessary to follow
Algorithm 1.

Algorithm 1 Description of create_task_list() function
Require: samples > 0
siteStatus = read_sites_status()
taskLlist = create_simple_task_list(siteStatus)
gridPerformance = calculate_performance(taskList)
for ¢ = 0 to 100 do
oldTaskList = taskList
taskList = DTSS_selfscheduling_algorithm(
gridPerformance, siteStatus)
gridPerformance =
calculate_performance(taskList)
if taskList = oldTaskList then
Break
end if
end for
return taskList

This algorithm first reads the site status (obtained from past executions and the
current status obtained with GridWay), calculates a naive task distribution and the
infrastructure performance, this is, the ratio of simulated tasks per second.

After that, DyTSS algorithm is employed to calculate a better task distribution.
Then again, this task distribution is employed to calculate the site performance.
This loop is repeated until an optimum situation without changes between iterations
is reached.

Montera: Ezxecution of MC Codes on the Grid 123
3.4 Scheduling Algorithms with Montera

In this work, a new scheduling algorithm called DyTSS (Dynamic Trapezoid Self-
Scheduling) is proposed. DyTSS is based on the GTSS (Grid Trapezoid Self-Sche-
duling) algorithm and is adapted to focus on the execution of MC codes in extremely
dynamic infrastructures.

3.4.1 GTSS Algorithm

The so-called Grid Trapezoid Self-Scheduler [22] algorithm is a modification of the
Trapezoid Self-Scheduler (TSS) algorithm [51], being adapted to a grid environment.
GTSS is based on three main elements: a grid benchmark model; the relationship
factor R™®; and the TSS dynamic algorithm.

GTSS employs the aforementioned grid benchmark model, using ro, and 7,/ to
adjust the chunk size. The heterogeneity factor, RI™", is a coefficient that relates
the execution times of every node in a grid infrastructure. This factor is defined as
follows:

) T .
R1I_n1n [mln‘ 4
) Twall(z) ()

with T\, being the minimum of all the execution times.
The behavior of GTSS for a given node j is then defined:

CJQ =[Fx* Rl | being F=1/4n1;,L=1 (5)

Ci=Ci'—D being D=|(F-L)/(N-1)],N=[2[/(F+L)]. (6)

Here, F is the size of the first chunk, L is the size of the last chunk, N is the
number of steps, I is the number of tasks to be executed and is the resulting chunk
size for each site j on the " iteration. F and I can be set statically or can employ
the values proposed in Equation (5).

Beyond the mathematical definition, the idea that lies beyond this algorithm is
to employ a decreasing number of tasks, balanced depending on the capabilities of
each site.

The coefficient R™® represents the relationship between the execution time on
the fastest resource and the resource i. Thus, employing it on Equation (5) ensures
that the workload of each site will be directly related to its performance.

The existence of parameter D to reduce the number of chunks along the exe-
cutions is proven to reduce makespan. As has been demonstrated [22], trapezoidal
distributions outperform constant ones when dealing with heterogeneous systems.

3.4.2 Problems with Pure Self-Scheduling Algorithms in the Grid

During the development of this work, the execution of self-scheduling algorithms on
the grid was intensively studied. In this analysis, a number of significant problems
arose.

124 M. Rodriguez-Pascual, R. Mayo-Garcia, I. M. Llorente

First, with this type of algorithm, the division of the tasks on different chunks
is performed at the beginning of the execution. Although this approach is correct in
static environments, it is unfeasible in grid infrastructures, which are, by definition,
dynamic [3]. The status of every site is regarded as constant along the execution
of the simulation, thus obviating an important characteristic of the grid. More-
over, the relationship between sites and chunks is not dynamic, so the failure or
outage of a single resource results in an unfinished simulation. It can then be con-
cluded that although self-scheduling algorithms perform extremely well in controlled
environments, this lack of adaptability makes them sub-optimal in production in-
frastructures.

To overcome these problems, a new scheduling algorithm, DyTSS, has been cre-
ated. The technique and parameters employed to divide the simulation into chunks
is similar to that of GTSS. However, this division is not performed at the beginning
of the execution, but every time a new chunk is desired. In this way, DyTSS is able
to overcome the aforementioned issues, whereas at the same time profiting from the
irregular chunk distribution of traditional self-scheduling algorithms to make the
most of heterogeneous resources.

3.4.3 DyTSS Algorithm

As a particularity of this scheduling approach, the stages of grid characterization
and scheduling must be performed simultaneously because of the strong relationship
between them. Algorithm 2 shows a high level description of the necessary steps.

Algorithm 2 Description of DyTSS scheduling algorithm
Require: desiredSamples > 0
remainingSampeles = desiredSamples
taskList = create_task_list(remainingSamples)
submit(taskList)
while remainingSamples > 0 do
for task in taskList do
if task finished ezecution then
remainingSamples = remainingSamples — task.get_number_of_samples()
auzTaskList = create_task_list(remainingSamples)
newTask = auxTaskList.pinck_first_task(task. getResource())
submit(newTask)
lastList.add(newTask)
end if
end for
end while

First, the information regarding the infrastructure is obtained, as has been al-
ready described. With this information, the simulation is divided among all the
resources, assigning the same number of samples to each one.

Montera: Ezxecution of MC Codes on the Grid 125
Then, a loop is employed to adjust this initial distribution as follows:

e (Calculate infrastructure performance with the current task distribution.

e Apply the GTSS scheduling policy to re-distribute the workload for each re-
source.

The complexity of this loop is linear on the number of resources. Anyway,
given that it is only composed by several basic arithmetic operations per resource,
its execution time remains negligible with the size of current grid infrastructures.
Also, a limit of 100 iterations has been established based on the results of several
experiments performed during the development of the algorithm: in the case of
livelocks, they usually start before the tenth iteration, so the limit was set on the
next order of magnitude. Even a finer tune could be performed, the authors consider
that the cost/benefit proportion was favorable to a high limit, ensuring that the loop
was not stopped before reaching an equilibrium or livelock.

Note that in this algorithm GTSS is always applied as for C§ in Equation (5).
The task size decreases because [is reduced any time a previous task has ended, so
the steps described in Equation (6) are not necessary.

There is still another innovative approach in the proposed scheduling process.
The application of the scheduling algorithm is not employed to obtain the distri-
bution of all the simulations to be performed, but only for a single task for each
available slot. Then, when any task ends or a new resource is discovered, the algo-
rithm is applied again, employing real-time information about the sites to obtain the
size of the next task to be submitted. In this way, the task size is always calculated
with the latest information, thus improving the effectiveness of the algorithm. Also,
the failure or performance slowdown of any resource does not represent a bottleneck,
as happens with the traditional self-scheduling algorithms.

Finally, a technical decision must be noted. The number of tasks submitted to
any site is not the number of available slots but a 20 % greater. This increase is due
to two complementary factors.

First, there is a reduction in the execution walltime. If a task is submitted only
after the previous one has finished, an overhead is produced due to the result copied
back to the local site, the current status checked and so. However, if the second
task is already queued on the remote site, it starts its execution just after the first
one ends, thus reducing makespan.

It is important to note that task grouping techniques (as described in the previ-
ous section) could be used instead of the dynamic creation of jobs in the execution
time. The drawback is that, although this approach would reduce the aforemen-
tioned overheads, it would represent a flexibility loss. With this approach, the size
of the task is dynamically determined by the status and performance of the entire
grid infrastructure, which could not be done if all the tasks submitted to a single
site were created at the same time and submitted all together.

The second reason is that the number of available slots in a given site can vary
during the execution of the application. With this scheduling decision it is ensured

126 M. Rodriguez-Pascual, R. Mayo-Garcia, I. M. Llorente

that an optimal number of tasks will be created for each resource, while keeping
the number of replicas low: if the number of slots is reduced, Montera will detect it
and will reduce the number of submitted tasks, cancelling those still waiting so that
no CPU time is lost; if it is increased, some of the 20 % spare tasks will start their
executions, and Montera will detect it and will create more tasks until reaching
the 20 % excess again. This functionality will be further analyzed in the Results
section.

Note that the difference between the proposed scheduling and pure replication
algorithms is subtle, but highly relevant. In both approaches, the number of tasks
submitted is greater than what is needed, but their behavior is different. In the case
of replication, the spare tasks are cancelled, thus losing the computational effort put
into their execution. However, in the case of DyTSS — given that in MC codes all
results are equally valid — all the results are employed in the simulation, and the
only non-useful tasks are those being executed when the desired number of samples
is reached. In this way, DyTSS obtains the advantages of replication, such as higher
throughput and avoidance of bottlenecks, without suffering the overhead and abuse
of the infrastructure inherent to replication algorithms.

3.4.4 Two-Level Scheduling

As described in Section 2, previous schedulers perform the task scheduling locally
and decide the size of the chunk to submit to each remote resource prior to the proper
execution. In Montera, a new approach is followed, allowing the performance of this
scheduling on both the local and remote resources. The objective is to allow the
chunk to dynamically adjust its size depending on the status of the remote resource
and the user needs. To do this, Montera not only submits the desired task, but also
includes all the available information about the site, the application to be executed,
and several scripts in charge of adapting the chunk size, depending on the user
requirements.

3.5 Montera Architecture

Figure 2 shows a high-level description of the Montera architecture. As can be seen,
the architecture is divided into two different sections: Local Montera and Remote
Montera. Local Montera is executed in the local resource, and Remote Montera is
executed in the remote resources.

3.5.1 Local Montera

Local Montera is the core of the developed framework. Its purpose is to receive the
job specifications and requirements from the user and execute them as efficiently as
possible.

To obtain the information about the available grid resources, the Information
Manager employs two tools: GridWay [26] and Remote Montera. GridWay is em-

Montera: Ezxecution of MC Codes on the Grid 127

User Interface

Local Montera

-
L Remote Mortera

3rd party
application

Chosen
Polic

Performance
Analysis

Fig. 2. High level description of Montera architecture

ployed to gather the static information the sites publish about themselves and the
number of tasks being executed at a given moment. Remote Montera provides infor-
mation about the efficiency of the sites after the execution of each task as well as the
results of the benchmark executed — if needed — to calculate their real performance.

With this information, the Scheduler decides the ideal size and number of chunks
to execute on each site. Finally, the Execution Manager carries out these executions.
It employs DRMAA [50] to perform the job submission and control.

Distributed Resource Management Application APT, DRMAA [50] is a high-level
API specification for the submission and control of jobs to one or more sites within
a grid infrastructure. It defines operations covering all the steps of a grid execution:
submission, monitoring and retrieval of the jobs.

The usage of DRMAA to implement our application allows controlling all the
steps involved on the execution of tasks in an unattended way: automatically creat-
ing an arbitrary number of tasks, executing them remotely and bringing the results

128 M. Rodriguez-Pascual, R. Mayo-Garcia, I. M. Llorente

back. To carry this out, only a metascheduling implementing DRMAA API is
needed, allowing Montera to delegate these tasks on GridWay.

Montera allows the employment of different scheduling policies. To do this, the
Scheduler defines an interface that covers the steps of chunk creation and control.
Thus, defining a new policy only requires implementing the interface with the desired
functionality.

At this point, it is important to point out that Montera does not strictly depend
on GridWay metascheduler but could rely on any other metascheduler implementing
DRMAA with slight modifications to the code. Nevertheless, GridWay provides
an interesting set of tools that makes it particularly suitable for this work. Also,
studies like Poletti’s [52] suggest that, in addition to GridWays’ capabilities for job
management and control, its performance is clearly superior to other widely used
tools such as WMS.

An important architectural decision when designing Montera was determining
which of the two grid submission paradigms was more convenient, schedulers or pilot
jobs. The problem with pilot jobs is that they currently run only on systems where
Network Address Translation (NAT) capabilities are available, preventing the use
of software in infrastructures not based on the grid middleware developed inside
the EGEE gLite projects. In addition, since pilot-jobs systems basically act as
wrappers for retrieving tasks, they could be also implemented in other way within
any scheduler in order to improve the performance efficiency and, at the same time,
profit from the migration possibilities, i.e. when adapting Montera to any scheduler
it is possible to profit from the pilot-jobs advantages in a future.

3.5.2 Remote Montera

The second part of the proposed framework, Remote Montera, optimizes the exe-
cution of the application on the remote sites. Remote Montera is copied to the site
together with the application to execute, and it decides the exact number of samples
that will be simulated in that chunk.

Due to the heterogeneity of the remote sites and the available tools for each,
Remote Montera has been implemented as a set of shell scripts to make it as portable
as possible. Its size is greatly reduced, so the overhead induced by its copy to each
resource is negligible.

The first script, Main Script, reads the input data, user requirements and in-
formation stored regarding the performance of the site. Then, the second script,
Chosen Policy, calculates the exact number of samples to be simulated and performs
the execution. Finally, the Performance Analysis is carried out, and the results are
returned to Local Montera.

Montera includes a Chosen Policy set to decide the size of each task on each
site. When the user submits a job to Montera, the user chooses which one to
employ, and it will be submitted to the remote site. Depending on the desired
functionality, the behavior of this script can be completely different. For example,
Deadline calculates how many samples to execute before a given moment regarding

Montera: Ezxecution of MC Codes on the Grid 129

the job submission date, the queue time and the bandwidth. In Flezible, Local
Montera provides a maximum and minimum number of samples to simulate, and
the remote script decides the exact number regarding the site performance and its
current status. Note that the possibility of combining different local and remote
policies allows the application of widely differing scheduling algorithms, so the user
can adapt it to the size and characteristics of the experiment to be simulated.

As in Local Montera, Remote Montera also allows the user’s own scheduler to be
employed instead of the default schedulers. Creating a new scheduler only requires
programming a shell script with the desired behavior. Montera provides information
that can be used for this purpose (e.g., submission time, status of the resource) and,
if something else is required, it can be provided via the job template.

3.5.3 User Interface

During the development of Montera, much effort was invested in creating an easy-
to-use application while at the same time providing the user the necessary tools to
implement different policies.

Any scheduling policy must implement an interface with just two methods:
create_chunk_list and control_execution. First, the user defines the number
and size of chunks to simulate in the first place. Then, the user specifies how the
execution will be controlled. The user can check whether the execution of any chunk
was successful, can create and submit new ones or can cancel the desired ones.

A typical Montera execution is determined by the input file being employed.
This file indicates the application to execute, number of samples to simulate, input
and output files and the chosen scheduling policy. This is probably the most simple
command line-based interface possible, and ensures that any user will be able to
perform the desired simulations in a very short amount of time.

3.5.4 Integration of a New Application

Given that Montera is designed to execute different applications, the integration of
a new one is expected to be seamlessly performed.

Montera expects that the application has a determinate number of parameters,
and that they are always located in the same position:
<application name> <number of tasks to simulate> <input parameters>

If this would not happen the user had to write a wrapper, a task that can be
seamlessly performed with a simple shell script.

3.6 Limitations of the Montera Approach

As stated in the Introduction section, it is important to bear in mind that the
proposed code characterization and scheduling algorithm can only be applied to
a subset of Monte Carlo codes, the stateless ones. On stateful Monte Carlo codes
the problem cannot always be divided on independent executions of arbitrary size,

130 M. Rodriguez-Pascual, R. Mayo-Garcia, I. M. Llorente

as the result of a given simulation depends on the previous ones. Random Walks,
for example, employ random numbers to determine the route of a particle through
a user-defined space, and the result of each sample — i.e. one step — depends on its
position prior to the advance.

This restriction makes the study of some areas of knowledge beyond the scope
of Montera: on protein folding problems, algorithms based on Monte Carlo replica
sampling [54], Metropolis Monte Carlo [39] or random walks [42] are employed [44,
13, 58, 6]; lattice QCD [31] employs random walks to determine the position of parti-
cles in the space-time; in lattice simulations, Monte Carlo is used for a generation of
a probability distribution [35]; in computational chemistry, Metropolis Monte Carlo
is widely employed to generate different configurations of the system [29], together
with more advanced algorithms [20].

Anyway, performing a deep analysis on the usage of different Monte Carlo-
based algorithms on scientific applications is beyond the scope of this work. If more
information is desired, the proposed references provide a gentle introduction on the
area.

4 RESULTS

Here, the results of the Montera scalability and performance analysis will be detailed.
To conduct the analysis, a grid simulator was built to compare the theoretical and
practical aspects of the work. Then, several experiments were performed with differ-
ent scheduling policies and application requirements to demonstrate the feasibility
of the proposed approach on a production grid infrastructure.

4.1 Testbed

The performance analysis of Montera was performed on two virtual organizations,
namely fusion and prod.vo.eu-eela.eu. The fusion virtual organization, deployed
by the EGI grid infrastructure (see http://www.egi.eu), counted on 25 sites that
executed more than 325000 jobs in 2010 only taking into account European sites,
which was equivalent to 2708319 KSI2K (Kilo SpecInt2000 [43]) hours. Of course,
not all of these CPUs can be employed by a single user at the same time because
strict usage policies are implemented to prevent abuses. This is a real production
environment with diversity of resources (cores from 1 GHz to 3.2, for example), the
status of which can be monitored in real time at http://www3.egee.cesga.es. On
the other side, GISELA (Grid Initiative for e-Science virtual communities in Europe
and Latin America) project deployed an infrastructure oriented to the collaboration
between Europe and Latin America research centres, the general purpose VO of
which is prod.vo.eu-eela.eu. This VO is currently deployed by the Latin Ameri-
can and Caribbean Grid Initiative IGALC (see http://www.igalc.org), which was
established also in 2010. Even when there are still not yearly usage statistics, pre-
liminary results [14] show that around 500000 KSI2K hours were accounted on the
first 6 months of existence.

Montera: Ezxecution of MC Codes on the Grid 131

In order to perform the necessary experiments two different MC codes have been
employed, namely FANFER2 [49] in its grid version [45] and ISDEP [10]. They have
been chosen because of their deep differences on their behavior. FAFNER2 simulates
many particles on a fast manner, employing several seconds on each one. On the
other side, ISDEP needs about one hour on a standard PC to simulate a single
trajectory. This way they represent both extremes. If Montera is able to speed both
up, it will be proven to be effective on a wide range of applications.

FAFNER2 is a 3D code that simulates the neutral beam injection (NBI) techno-
logy on fusion devices. FAFNER2 models the injection of fast neutral particles into
toroidal plasmas and the orbits of the resulting ions [34]. Thus, the global efficiency,
the losses (i.e., shine-through, charge exchange and orbit losses, including those to
limiters), the birth profile and the heating profile can be calculated for different
discharges. Because of the design of the code, a single instance of FAFNER2 can
only simulate up to 8000 samples, which establishes an upper bound to the size of
each chunk.

ISDEP (Integrator of Stochastic Differential Equations for Plasmas) [10] is a MC
code that solves the plasma dynamics in fusion devices. It is based on the equivalence
between the Fokker-Planck and the Langevin equations. Basically, it simulates the
trajectory of fast ions inside the plasma. The MC nature of ISDEP makes it suitable
for being executed by means of independent tasks. Therefore, it has been employed
in several BOINC initiatives such as Zivis and its followed-up phase Ibercivis, in
desktop computing projects such as EDGES and on grid projects too, for example
the EGEE series or EUFORIA.

The local resource on which Montera was executed consisted of a virtual machine
running Scientific Linux 4, with GridWay 5.4.0 and Java Virtual Machine 1.5.0.09.
This resource was in production status -being employed by different users to per-
form their daily tasks with a quite restrictive configuration: a scheduling interval of
30 seconds, a dispatch chunk of 15 tasks per scheduling interval, and a maximum
number of simultaneous jobs per user of 100.

These restrictions do, in fact, limit the scalability of the proposed solution, add
overhead and hinder the obtainment of a greater degree of parallelism. The decision
not to modify the configuration (i.e., tuning the GridWay configuration to obtain
the best possible results) was part of the determination to create an application
and scheduling algorithm that outperforms the existing tools in production environ-
ments. This particular configuration was established by the system administrators
of the local resource as being the most convenient regarding the available hardware
and computational demands. Also, this GridWay instance was being employed by
several users while the experiment was being conducted. Thus, the possibility of
adjusting the system was completely eliminated.

4.2 Simulation of the DyTSS Algorithm

Montera includes a simple yet effective grid simulator. Coupled with the rest of the
code, it models the execution of the simulation on a grid.

132 M. Rodriguez-Pascual, R. Mayo-Garcia, I. M. Llorente

This simulator uses the information about the application and the sites’ per-
formance obtained in past executions of the code, thus being able to accurately
calculate the execution time as well as the expected queue time and how long the
data transmission will take. The simulator also employs the number of available re-
sources in the previous executions — which were obtained as explained in the previous
section — to calculate the number and size of the chunks.

Although the simulator obviates some important characteristics of the nature
of the grid (dynamism, heterogeneity and fault rate), it is still useful for providing
an estimation of the performance of any scheduling and as first approach for the
initial submission of jobs.

Figures 3 and 4 show the simulation of two different scheduling policies, namely,
EqualChunkSize and DyTSS. It can be seen that in these simulations the employ-
ment of the DyTSS algorithm does not represent a significant improvement over
a simple scheduling policy because of the partition of the samples to be simulated
in chunks of equal size. This is due to the simplicity of the simulation, which was
done in a controlled environment: there are no performance losses, new resources or
any other issues, so the employed algorithm does not need to adapt the number or
size of the chunks. As has been explained, one of the advantages of DyTSS over the
rest of the scheduling algorithms is its robustness, which is not visible here.

5000 samples

1500
W

9 1125
5]
5]
(1]
o
o

_E 750
=
@
£

% 375
ot

0

1 25 50 75 100 125 150 175 200 225 250
Task number

— 50tasks - 100 tasks 250 tasks — DyTSS

Fig. 3. Simulation of a 5000-sample FAFNER2 execution divided into a different number
of equally sized tasks and with the DyTSS algorithm

As can be seen, with the FqualChunkSize policy the results vary depending on
the chunk size. This is due to the status of the grid, with about 90 available slots
for a single user with the previously described GridWay configuration. In the first
case, all 50 tasks start their execution immediately, so there is no queue overhead,

Montera: Ezecution of MC Codes on the Grid 133

500.000 samples
90.000

75.000

60.000

45.000

30.000

Task finish time (seconds)

15.000

25 50 75 100 125 150 175 200 250
— 50 tasks — 100 tasks 250 tasks — DyTSS

Fig. 4. Simulation of a 500 000-sample FAFNER2 execution. Conditions are the same as
in Figure 3.

and the walltime corresponds to the slowest resource. In the 250-task case, there
is a significant queue time in two-thirds of the tasks, but having a larger number
allows for better scheduling, sending more tasks to the fastest processors. Finally,
the 100-task division presents the inconveniences of the two others, but none of their
advantages: there are 10 tasks that have a significant waiting time, but they are
not enough to perform any kind of useful scheduling. This fact is depicted in the
slope of the growing curves. A high or even infinite value indicates that the tasks
are waiting for their execution, and low or even null value indicates an immediate
execution of the tasks. DyTSS (Montera) grows with a constant value, so the tasks
are progressively executed and, at the same time, the whole calculation lasts for the
least possible amount of time.

In other words, in the case of DyTSS, the number and size of tasks has been
adapted to the grid infrastructure, so the execution is always efficient. It is also
noteworthy that the DyTSS result graph is nearly a straight line (constant slope)
with no vertical steps, as with the others. These steps appear at the point where,
for a long time, no tasks have finished, which usually indicates a bottleneck or
performance loss.

4.3 Grid Executions

After performing the previous simulations of DyTSS in a controlled environment,
different experiments were performed to check the feasibility of Montera in a real
grid environment.

134 M. Rodriguez-Pascual, R. Mayo-Garcia, I. M. Llorente

Two different experiments were performed: Deadline Policy, where all the differ-
ent components of Montera were employed to simulate as many samples as possible
before a given deadline; and DyTSS Policy, where the proposed algorithm is com-
pared with others to demonstrate its superiority.

4.3.1 Deadline Policy

As has been explained, many different scheduling policies can be employed with
Montera. In this case, a Deadline Policy is proposed, where Montera submits a task
to each free slot and executes as many simulations as possible before a given deadline.

This is an interesting policy because it offers a new possibility that, to the au-
thors’ knowledge, was impossible to efficiently perform with the previous scheduling
algorithms and tools. This policy is divided into two sections, one in Local Montera
and another in Remote Montera.

In Local Montera, a new policy was created. This policy creates one task for
each free slot and includes the submission time as an environment variable, which is
available in the remote script. In Remote Montera, the remote script that determines
the number of samples to simulate reads this environment variable, the local system
date, the site performance and the application profiling, and it calculates the number
of samples that could be simulated before the desired threshold. In this way, the
queue time, task cancellation or any other grid-related issue will have no influence on
the accomplishment of the deadline. If a task starts its execution, a certain number
of samples will be immediately sampled, and if it stays in the queue for a long time,
it will simulate less.

Execution Time

3000
B
e
c
(o]
3
k3 2000
[0}
£
c
S 1000
=5
[
2
AT}
0

Task

Fig. 5. Deadline policy. Task finalization is represented in blue, and the desired ending
time (2000 seconds) is in green

The results of this policy can be seen in Figure 5, which shows the ending time of
every task after requiring Montera to simulate as many samples as possible before
a given deadline (2000 seconds). To provide realistic results, only an execution

Montera: Ezecution of MC Codes on the Grid 135

was performed. Thus, certain tasks failed and most of the others did not perfectly
accomplish the deadline requirements. Aside from this small lack of precision —
inherent to any grid execution — it is clear that the proposed characterization of
MC codes and grid sites is accurate enough to be used for significant simulations
on production infrastructures.

4.3.2 DyTSS Scheduling Policy

Here, the feasibility of the DyTSS scheduling algorithm is proved against two differ-
ent policies, an Equal Size distribution and GTSS. These policies have been chosen
because they are among the most representative ones: Equal Size is a basic policy
that is widely employed for these kinds of problems; and GTSS has been demon-
strated — as explained in Section 2 — to be the most efficient self-scheduling algorithm
on controlled grid infrastructures.

In the case of the Equal Size policy tests, some adjustments were made to max-
imize their performance. A rescheduling threshold of 300 seconds and a maximum
queue time of 600 seconds were established to avoid saturated resources and to start
their execution as soon as possible. Also, the GridWay default scheduling policy —
the efficiency of which has been demonstrated [27] — was employed to choose the
site at which each task is executed. These optimizations were performed to en-
sure that any improvement obtained with Montera and DyTSS was only due to
the application and its scheduling algorithm, not to exogenous factors such as re-
lying on the capability of GridWay to submit and manage the remote execution of
tasks.

Some statements about the GTSS tests must also be made. As noted in Sec-
tion 3.4.2, the information about the infrastructure must be obtained prior to the
execution of any self-scheduling algorithm. In this case, the information was ob-
tained with Montera, employing the previously described tools. The alternative
option of using public information about the site leads to incorrect results and er-
rors. For example, in the local site at CIEMAT (ce01-tic.ciemat.es), 208 nodes
have been published, but only 20 can be employed by a single user at the same time.
If this information alone was employed, the number of submitted tasks would be
extremely large, thus affecting the performance negatively.

With FAFNER2 three experiments with increasing task size were performed.
The number of samples was 5000, 25000, 50000, 200000 and 400000 (from 8
to 180 CPU hours), which can be considered as short, medium and long simula-
tions. As can be seen from Figure 6, different policies lead to different results in
terms of makespan, and some are more suitable than others, depending on the num-
ber of simulations to perform.

In the case of Fqual Size, results are consistent with those obtained with the
simulator (see Figures 3 and 4 for details). With a small number of particles, the
grid execution tends to benefit from a small number of tasks because the overheads
are significant and represent a high proportion of the total execution time. However,
when the size of the problem grows, the overhead is not as important. An accurate

136 M. Rodriguez-Pascual, R. Mayo-Garcia, I. M. Llorente

scheduling is now of vital importance, and it is better performed with a greater
number of tasks to distribute.

Grid Execution Results

Execution Time, normalized to DyTSS results

0
5000 25000 50000 200000 400000

Number of Particles
#r 50 tasks < 100 tasks 250tasks © DTSS ©O GTSS

Fig. 6. Execution of FAFNER2 with different policies and an increasing number of parti-
cles. Results are normalized to DyTSS makespan.

The results obtained with GTSS were not as good in the real environment as in
the simulations. As previously explained, GTSS creates a fixed relationship between
tasks and resources. Thus, the failure or performance loss of a single site can slow
down the entire simulation and increase makespan. Although the information ob-
tained with Montera was employed to minimize these issues, the result of employing
the algorithm on dynamic infrastructures proved to be suboptimal.

Finally, DyTSS obtained the best results in every single case. From over 650 %
in the best case to 3 % in the worst one, its dynamic task distribution and adaptation
to unstable resources resulted in the best alternative among those chosen.

In this experiment, the limit of 400000 particles is forced by the application
design. As it has been stated, FAFNER2 forces an upper limit of 8 000 particles per
task, and the smallest distribution with Equal Size has 50 tasks, so the 400 000 parti-
cles limit arises. Anyway, a typical FAFNER2 experiment employs about 4 000 par-
ticles on a serial execution and 8 000 to 80 000 for parallel ones. Thus, demonstrating
that DyTSS outperforms all the other algorithms with up to 400000 particles can
be considered significant.

In the case of ISDEP, a minimum and valuable physical research requires of fifty
thousand trajectories (50000). In this paper, results related to 5000 trajectories are
presented; such a number has been selected since it clearly represents the benefits
for using ISDEP with Montera as a proof of concept without performing the whole

Montera: Ezecution of MC Codes on the Grid 137
research, the results and analysis of which are out of the scope of this paper. The
way that such a whole physical research works, which is explained here for the
readers’ convenience, is that thousands of identical jobs are submitted only differing
on a random seed.

The execution of ISDEP presents a particularity that has to be pointed out, also
helping understand the behavior of Montera: depending on some input parameters
related to the precision and size of the time steps, the execution time of ISDEP
is highly variable, so making no distinction among the different executions would
lead to erroneous profiling and scheduling. Luckily, Montera stores each application
profiling employing a user-defined string name as key. Thus, determining a name like
ISDEP_WITH_X_PRECISION to store the application would be enough to ensure
that the different ISDEP instances are clustered into groups of similar behavior.

Table 2 shows the results of this execution. Likely to FAFNER?2, algorithms
GTSS and Fqual Size with 250 and 500 tasks have been compared with DyTSS.

It is important to notice why in the case of ISDEP the Equal Size task distri-
bution employed have been only those with 250 and 500 tasks. The experiment was
designed to be identical as the one with FAFNER2, but a problem arose: most of
the grid sites have a limitation on the task execution time, which usually varies be-
tween 24 and 48h. Given that each simulation on ISDEP takes about one CPU hour,
tasks with more than 20 simulations have high probabilities of being cancelled (and
even this phenomenon actually happened in the preliminary tests performed in this
work). Thus, the chosen distributions have been 250 and 500 tasks, simulating 20
and 10 particles per task.

For the sake of completion, Table 2 also includes the execution time normalized
to DyTSS (as in Figure 1) and the standard deviation.

Samples | 50 tasks | 100 tasks | 250 tasks GTSS DyTSS
(seconds) | (seconds) | (seconds) | (seconds) | (seconds)
5000 1331 1307 5649 6892 1059
+85.56 % | £55.77% | +65.96% | +49.11% | +48.91%
25000 5553 5304 5568 8038 2301
+58.79% | £62.06% | £53.77% | £50.03% | +43.34%
50000 5857 6131 6496 7681 3385
+61.37% | +£44.06% | +9.88% | +£15.45% | +£23.82%
200000 15665 6587 10701 10456 5200
+12.12% | +£9.07% +29.42% +5.56% | £11.57%
400000 16 647 14963 11568 27284 11192
+15.17% | £25.03% | £10.63% | +£21.98% | +£12.03%

Table 1. Execution time and standard deviation of the values shown in Figure 6. Deeper
explanation through the text

Tables 1 and 2 show the 5-averaged execution time and standard deviation for
all the experiments performed with FAFNER2 and ISDEP, respectively. As can be
seen, DyTSS always offers the best execution times and usually the most precise

138 M. Rodriguez-Pascual, R. Mayo-Garcia, I. M. Llorente

results in terms of the execution time. The dynamicity of the grid infrastructures
and variety of resources ensure that the execution time will hardly be the same
among different executions, but this standard deviation can give a estimation of
how the different algorithms work anyway. A reduced deviation means that the
scheduling algorithm is able to overcome small differences on the infrastructure
between different executions, and a high deviation means that the result are highly
dependent on the specific site executing each task.

It is easy to see why the standard deviation is usually higher when the number
of tasks on which the simulation has been splitted is smaller: the number of samples
to simulate on each task is bigger and so is the computational effort, so the perfor-
mance of the site executing that task becomes more important. Also, as has been
previously described, a smaller number of tasks limits the scheduling possibilities
and the obtention of a satisfactory execution time becomes a matter of luck.

parameter 250 tasks | 500 tasks | GTSS | DyTSS
Execution 253812 222061 | 249331 | 183956
time [s]
Makespan 1.35 1.21 1.33 1
normalizad to DyTSS
Standard 7.04 32.30 29.68 6.96
Deviation [%)

Table 2. Results of the simulation of 5000 particles with ISDEP with different scheduling
policies. Deeper explanation through the text.

There is still an additional advantage of employing Montera instead of a tra-
ditional scheduler. As all the decisions about task distribution and scheduling are
managed by the application itself, the final user does not need to be aware or spend
any time on performing these operations. This represents a significant improvement
for final users, who can now focus on their research area and delegate non-essential
issues to his specific piece of software.

4.3.3 Dynamic Adaptation to Free Slots with DyTSS Scheduling Policy

As already noted, with DyTSS Montera is able to detect the number of free slots
in any resource and dynamically adapt the number of tasks to be executed. In
Figure 7, a proof of this functionality in a production site is graphically detailed.
This experiment consisted on the execution of DyTSS on a single grid site,
ce0l-tic.ciemat.es. After the benchmarking of the site, the execution started
with just one task. Montera submitted its 20 % more tasks, which was one more in
this initial case because Montera adjusted this calculation (number of tasks by 1.2)
to the lowest integer. As there are free slots, this second task starts its execution
immediately. When Montera detects it, it creates another task to accomplish the
20 % margin again, and so on. This process is then repeated until 20 tasks are
executed simultaneously, thus reaching the number of free slots that can be employed

Montera: Ezecution of MC Codes on the Grid 139

by a single user on this site. Afterwards, the tasks were only created and executed
after the ending of the previous ones as no free slots were detected.

Adaptation to avaliable slots
70

Time (minutes)
N W Py W [}
o o o o o

e
o

1 3 5 7 9 11 13 15 17 19 21 23 25
Task Number

— Creation — Execution Start

Fig. 7. Adaptation to the number of available slots on a site with 20 free slots

When this simulation was finished, the information about the number of free
slots was stored. In the future, this information will be employed to determine the
number of tasks to be created at the beginning of the execution.

5 CONCLUSIONS

In this work, the need for improvement in the efficiency of MC codes on the grid
has been demonstrated.

After presenting the problem, a newly created algorithm called DyTSS is pro-
posed to solve it. This algorithm has the advantage of being focused on a specific
kind of application and infrastructure, thus being able to employ a wider set of
tools and techniques than general purpose algorithms, such as characterizations of
infrastructures, sites and applications.

A scheduling application called Montera was then presented. Montera imple-
ments mechanisms to collect the aforementioned characterizations, and it provides
the user with the ability to perform a two-level scheduling. This approach allows
the user to modify the execution depending on his/her needs and the requirements
of the experiment.

As has been shown in the Results section, the executions of FAFNER2 with
Montera clearly overcome the rest of the alternatives in terms of makespan. Thus,

140 M. Rodriguez-Pascual, R. Mayo-Garcia, I. M. Llorente

it is proven that the employment of Montera is justified for Monte Carlo-based grid
executions.

With MC codes being widely employed in many different areas of knowledge,
it is expected that a new tool that simplifies its grid execution while boosting its
performance will be well received in the scientific community. Also, because it is
being developed with real world applications in collaboration with users, its correct
behavior and usability is guaranteed thanks to the direct feedback between the
development team and the final users.

Acknowledgments

The authors would like to thank Mr. Antonio J. Rubio-Montero for the valuable
discussions during the development of this work.

REFERENCES

[1] GANGLIA WEB: http://ganglia.sourceforge.net.

[2] NacIiOos WEB: http://www.nagios.org.

[3] FOSTER, I.: What is the Grid? A Three Point Checklist. Grid Today, 1, 22/07/2002.

[4] ANDREO, P.: Monte Carlo Techniques in Medical Radiation Physics. Physics in
medicine and biology, 36:861, 1991.

[5] ARELLANO, M.—BOND, S.: Some Tests of Specification for Panel Data: Monte Carlo
Evidence and an Application to Employment Equations. The Review of Economic
Studies, Vol. 58, 1991, No. 2, pp. 277-297.

[6] BasToLLA, U.—FRAUENKRON, H.—GERSTNER, E.—GRASSBERGER, P.—
NADLER, W.: Testing a New Monte Carlo Algorithm for Protein Folding Proteins.
Vol. 32, 1998, No. 1, pp. 52-66.

[7] BIESEL, H.: Recursive Calculation of the Standard Deviation with Increased Accu-
racy. Chromatographia 1977.

[8] BoYLE, P.P.: Options: A Monte Carlo Approach. Journal of Financial Economics,
Vol. 4, 1977, No. 3, pp. 323-338.

[9] BrOOKS, S.: Markov Chain Monte Carlo Method and Its Application. Journal of the
Royal Statistical Society: Series D (The Statistician), Vol. 47, 1998, No. 1, pp. 69-100.

[10] CASTEJION, F. et al.: Ton Kinetic Transport in the Presence of Collisions and Electric
Field in TJ-II ECRH Plasmas. Plasma Physics Controlled Fusion, Vol. 49, 2007,
pp. 753-776.

[11] CHrRONOPOULOS, A.T.—BENCHE, M.—GROSU, D.—ANDONIE, R.: A Class of
Loop Self-Scheduling for Heterogeneous Clusters. Proceedings of the 3'4 IEEE Inter-
national Conference on Cluster Computing 2001, pp. 282-291.

[12] CurNOow, H.J.—WICHMANN, B. A.: A Syntetic Benchmark. Computer Journal,
Vol. 19, 1976, No. 1, pp. 43-49.

Montera: Ezxecution of MC Codes on the Grid 141

[13]

[14]
[15]

[16]

[17]
[18]

[19]

[20]
[21]
[22]

23]

[24]
[25]

[26]

[27]

(28]

[29]

CziBuLA, C.—BocCICOR, M.—CzIiBULA, 1.-G.: Solving the Protein Folding Prob-
lem Using a Distributed Q-Learning Approach. International Journal of Computers,
Vol. 5, 2011, No. 3, pp. 404-413.

Diacovo, R.: Gisela Infrastructure Status Report. EU Deliverable: D4.1. Universi-
dade Federal do Rio de Janeiro, pp. 1-14, 2010.

Diaconis, P.: The Markov Chain Monte Carlo Revolution. American Mathematical
Society, Vol. 46, 2009, pp. 179-205.

Diaz, J.—REYES, S.—NINO, A.—MUuN0z-CARO, C.: Derivation of Self-Scheduling
Algorithms for Heterogeneous Distributed Computer Systems: Application to
Internet-Based Grids of Computers. Future Generation Computer Systems, Vol. 25,
2009, No. 6, pp. 617-626.

Dong, F.—AKL, S. G.: Scheduling Algorithms for Grid Computing: State of the
art and Open Problems. School of Computing 2006.

EckHARD, R.: Stan Ulam, John Von Neumann and the Monte Carlo Method. Los
Alamos Science, Special Issue 1987.

FANN, Y.-W.—YANG, C.-T.—TSENG, S.-S.—TsAy, C.-J.: An Intelligent Paral-
lel Loop Scheduling for Parallelizing Compilers. Journal of Information Science and
Engineering, Vol. 16, 2000, pp. 169—-200.

FERGUSON, D.—SIEPMANN, J.: Monte Carlo Methods in Chemical Physics. Kluwer
Academic Publishers 1999, p. 467.

HERNANDEZ, J. et al.: CMS Monte Carlo Production in the WLCG Computing Grid.
Journal of Physics: Conference Series, 119:052019-052028, 2008.

HERREA SANZ, J.: Programming Model for Grid Computing Infrastructures. Ph. D.
thesis, Universidad Complutense de Madrid, Madrid 2009 (in Spanish).

HERRERA, J.—HUEDO, E.—MONTERO, R.—LLORENTE, I. M.: Loosely-Coupled
Loop Scheduling in Computational Grids. 20" International Parallel and Distributed
Processing Symposium (IPDPS) 2006, p. 6.

HerTz, D. B.: Risk Analysis in Capital Investment. Boston, MA: Harvard Business
Review 1964.

HockNEY, R. W.—JESSHOPE, C. R.: Parallel Computers Two: Architecture, Pro-
gramming and Algorithms. 1988.

Huepo, E.—MONTERO, R.—LLORENTE, I.M.: The GridWay Framework for
Adaptive Scheduling and Execution on Grids. Scalable Computing: Practice and
Experience, Vol. 6, 2005, No. 8.

HuEDO, E.—MONTERO, R.—LLORENTE, I. M.: Evaluating the Reliability of Com-
putational Grids from the end User’s Point of View. Journal of Systems Architecture,
Vol. 52, 2006, No. 12, pp. 727-736.

JANG, S. H.-Wu, X.—TAYLOR, V.: Using Performance Prediction to Allocate Grid
Resources. Technical report 2004.

JORGENSEN, W.L.—TIRADO RIVES, J.: Molecular Modeling of Organic and
Biomolecular Systems Using BOSS and MCPRO. Journal of Computational Chem-
istry, Vol. 26, 2005, No. 16, pp. 1689-1700.

142

[30]

[31]

[32]

[33]
[34]
[35]

[36]

[37]

[38]

[39]

[40]
[41]
[42]
[43]
[44]

[45]

[46]

M. Rodriguez-Pascual, R. Mayo-Garcia, I. M. Llorente

Kitacawa, G.: Monte Carlo Filter and Smoother for non-Gaussian Nonlinear State
Space Models. Journal of Computational and Graphical Statistics, Vol. 5, 1996, No. 1,
pp. 1-25.

LEPAGE, G.P.: Lattice QCD for Novices. ArXiv High Energy Physics — Lattice
e-prints 2005.

L1, C.—Li, L.: Utility-Based QoS Optimisation Strategy for Multi-Criteria Schedul-
ing on the Grid. Journal of Parallel and Distributed Computing, Vol. 67, 2007, No. 2,
pp. 142-153.

L1, Y.—MascaGNI, M.: Grid-Based Monte Carlo Application. Grid Computing —
GRID 2002, pp. 13-24.

LisTER, G.: FAFNER: A Fully 3-D Neutral Beam Injection Code Using Monte Carlo
Methods, 1985.

LUKKARINEN, J.: Lattice Simulations of the Quantum Microcanonical Ensemble.
ArXiv High Energy Physics — Theory e-prints 1997.

MaigNgE, L.—HmL, D.—CarLvatr, P.—BRETON, V.—REUILLON, R.—
LEGRE, Y.—DONNARIEIX, Y.: Parallelization of Monte Carlo Simulations and Sub-
mission to a Grid Environment. Parallel Processing Letters, Vol. 14, 2004, No. 2,
pp. 177-196.

MALcOLM, L.—SPAULDING, L.—ANDERSON, E.—TATsu, I.—EoIN, H.: Simula-
tion of the Oil Trajectory and Fate in the Arabian Gulf from the Mina al Ahmadi
Spil. Marine Environmental Research, Vol. 36, 1993, No. 2, pp. 79-115.

MascAaGgNI, M.—Li1, Y.: Computational Infrastructure for Parallel, Distributed,
and Grid-Based Monte Carlo Computations. Lecture Notes in Computer Sciences,
Vol. 2907, 2003, pp. 39-52.

METROPOLIS, N.—ROSENBLUTH, A.: Equation of State Calculations by Fast
Computing Machines. The Journal of Chemical Physics, Vol. 6, 1953, No. 21,
pp- 1087-1092.

METROPOLIS, N.: The Beginning of the Monte Carlo Method. Los Alamos Science,
Special Issue 1987.

MONTERO, R.—HUEDO, E.—LLORENTE, I. M.: Benchmarking of High Through-
put Computing Applications on Grids. Parallel Computing, Vol. 32, 2006, No. 4,
pp- 267-279.

PEARSON, K.: The Problem of the Random Walk. Nature, 72:294, 1905.
RENSHALL, H.: New Time Units simplify procedures. CERN Computer Newsletter
2004.

RocHA, L. F. O.—TARRAGO PINTO, M. E.—CALIRI, A.: The Water Factor in the
Protein-Folding Problem. Brazilian Journal of Physics, Vol. 34, 2004, pp. 90-101.
RODRIGUEZ-PASCUAL, M.—GUAsP, J.—CASTEJON MAGANA, P.—RUBIO-
MONTERO, A.J.—LLORENTE, I. M.—MAYO GARCIA, R.: Improvements on the
Fusion Code FAFNER2. IEEE Transactions on Plasma Science, Vol. 38, 2010,
pp. 2102-2110.

ROVEDA, R.—GOLDSTEIN, D. B.—VARGHESE, P.L.: Hybrid Euler/Direct Simu-
lation Monte Carlo Calculation of Unsteady Slit Flow. Journal of Spacecraft and
Rockets, Vol. 37, 2000, No. 6.

Montera: Ezxecution of MC Codes on the Grid 143

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Scaopr, J.M.—DARcY, M.—MILLER, N.—PEARLMAN, L.—FOSTER, I.—
KEsSELMAN, C.: Monitoring and Discovery in GT4: Functionality and Performance.
Technical report 2005.

Sitva, D.—CiRNE, W.—BRASILEIRO, F.: Trading Cycles for Information: Using
Replication to Schedule Bag-of-Tasks Applications on Computational Grids. Euro-
Par 2003 Parallel Processing, pp. 169-180.

TEUBEL, A.—GuAsP, J.—LINIERS, M.: Monte Carlo Simulations of NBI into the
TJ-II Helical Axis Stellarator. Technical Report 4 1994.

TROGER, P.—DOMAGALSKI, P.: Standardization of an API for Distributed Re-
source Management System. Proceedings of the Seventh IEEE International Sympo-
sium on Cluster Computing and the Grid (CCGrid 2007), pp. 619-626.

TzeN, T. H.—Ni1, L. M.: Trapezoid Self-Scheduling: A Practical Scheduling Scheme
for Parallel Compilers. IEEE Transactions on Parallel and Distributed Systems,
Vol. 4, 1993, pp. 87-98.

VAzQuez-PoLETTi, J.L.—HUEDO, E.—MONTERO, R.—LLORENTE, I.M.:
A Comparison Between two Grid Scheduling Philosophies: EGEE WMS and Grid
Way. Multiagent and Grid Systems, Vol. 3, 2007, No. 4, pp. 429-439.
VazQuez-PoLeTTI, J. L.—HUEDO, E.—MONTERO, R.—LLORENTE, I. M.: CD-
HIT Workow Execution on Grids Using Replication Heuristics. Cluster Computing
and the Grid 2008, 8" IEEE International Symposium on CCGRID 08, pp. 735-740,
2008.

SWENDSEN, R.H.—WANG, J.S.: Replica Monte Carlo Simulation of Spin Glasses.
Physical Review Letters, Vol. 57, 1986, No. 2, pp. 2607-2609.

Wu, M.—Sun, X.: Grid Harvest Service: A Performance System of Grid Com-
puting. Journal of Parallel and Distributed Computing, Vol. 66, 2006, No. 10,
pp- 1322-1337.

YANG, C.-T.—CHANG, S.-C.: A Parallel Loop Self-Scheduling on Extremely Hete-
rogeneous PC Clusters. Proceedings of International Conference on Computer Science
2003, pp. 1079-1088.

Yu, C.—MARINESCU, D.C.: Algorithms for Divisible Load Scheduling of Data-
Intensive Applications. Journal of Grid Computing, Vol. 8, 2010, No. 1, pp. 133-155.
ZHANG, Y.—KIHARA, D.—SKOLNICK, J.: Local Energy Landscape Flattening:
Parallel Hyperbolic Monte Carlo Sampling of Protein Folding. Proteins, Vol. 48, 2002,
No. 2, pp. 192-201.

Manuel RODRIGUEZ-PASCUAL has a Master Degree in com-
puting sciences from the Universidad Complutense de Madrid.
Presently he is a Ph.D. candidate at CIEMAT, where he is
involved in several international R & D projects. His interests
are in the areas of application optimization for grid computing,
scheduling and middleware development.

144 M. Rodriguez-Pascual, R. Mayo-Garcia, I. M. Llorente

Ignacio M. LLORENTE has a graduate degree in physics (B. Sc.
in physics and M. Sc. in computer science), a Ph.D. in physics
(Program in computer Science) and an Executive Master in busi-
ness administration. He has about 15 years of research experi-
ence in the field of high-performance parallel and distributed
computing, grid computing and virtualization. Currently, he is
a Full Professor in computer architecture and technology at Uni-
versidad Complutense de Madrid, where he leads the Distributed
Systems Architecture Group.

Rafael MAYOo-GARciA is Ph.D. in physics by the Universi-
dad Complutense de Madrid-UCM, Madrid (Spain) since 2004
and has obtained several postdoctoral fellowships such as Marie
Curie and Juan de la Cierva Grants. He has been working as
Researcher at UCM in experimental and Computational Plasma
Physics. Since 2005 he works at CIEMAT (Madrid) in the ICT
Division on Supercomputing and Grid developments. He belongs
to the Spanish Royal Society of Physics and the Latin American
Bioinformatics Society. He is the author of more than 60 pub-
lications and conference presentations and has been involved in
20 international and national R & D projects where he has also held managerial and coor-
dinating activities.

