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Abstract. Malware refers to any type of code written with the intention of harming
a computer or network. The quantity of malware being produced is increasing every
year and poses a serious global security threat. Hence, malware detection is a cri-
tical topic in computer security. Signature-based detection is the most widespread
method used in commercial antivirus solutions. However, signature-based detec-
tion can detect malware only once the malicious executable has caused damage and
has been conveniently registered and documented. Therefore, the signature-based
method fails to detect obfuscated malware variants. In this paper, a new malware
detection system is proposed based on information retrieval. For the representa-
tion of executables, the frequency of the appearance of opcode sequences is used.
Through this architecture a malware detection system prototype is developed and
evaluated in terms of performance, malware variant recall (false negative ratio) and
false positives.
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1 INTRODUCTION

Malware (or malicious software) is defined as computer software that has been ex-
plicitly designed to harm computers or networks. The number, power and variety of
malware programs increases every year, as does their ability to overcome all kinds
of security barriers?.

Current commercial anti-malware solutions rely on a signature database [1].
A signature is a sequence of bytes that is always present within a malicious exe-
cutable. To determine the signature for a new malicious executable and to counter-
act it, specialists must wait until the new malicious executable has damaged several
computers or networks. After the signatures have been determined, suspicious files
can be analyzed by comparing their bytes with the list of signatures. When a match
is found, the file being tested will be identified as a malicious executable. This
approach has proven to be effective when the threats are known beforehand.

However, malware writers use code obfuscation techniques [2] to hide the actual
behaviour of their malicious creations [3, 4, 5, 6]. Examples of these obfuscation
algorithms include garbage insertion, which consists of adding sequences that do
not modify the behaviour of the program; code reordering, which changes the order
of program instructions and variable renaming, which replaces one variable identifier
with another [7].

The research community has proposed several approaches to deal with these
obfuscation techniques. Sung et al. [8] and Xu et al. [9] introduced a method for
computing the similarity between two executables by focusing on the degree of simi-
larity within syscall? sequences. This approach offered limited performance because
of its inability to maintain a low false positive ratio. Other approaches used the
so-called Control Flow Graph (CFG) analysis. An example was introduced by Lo
et al. [10] as part of the Malicious Code Filter (MCF) project. Their method sliced
a program into blocks while looking for tell-tale signs (i.e., operations that change
the state of a program such as network access events and file operations) in order
to determine whether an executable was likely to be malicious or not. Bergeron
et al. [11] presented several methods of disassembling binary executables, helped
build a representation of the execution flow of binary executables and improved
the slicing of a program into idioms (i.e., sequences of instructions). Christodor-
escu and Jha [12] proposed a method based on CFG to handle obfuscations in
malicious software. Christodorescu et al. [13] improved on this work by including
semantic-templates of malicious specifications. However, these approaches consume
significant computational resources and the templates have to be constructed ma-
nually [14].

! Kaspersky Security Bulletin: Statistics 2008. Available online: http://www.
viruslist.com/en/analysis?pubid=204792052

2 A syscall or system call is the procedure through which an executable requests a ser-
vice from the kernel of the operating system.
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Given this background, a new system for the detection of malware variants is
proposed that uses an architecture based on information retrieval. This architecture
is composed of:

1. a malware database,
2. a framework for representing executables,

3. a component that transforms the executable to a query for the malware database
and

4. a ranking function for the detection of malware variants.

The representation is based on opcodes (i.e., operational codes in machine language)
and the frequency of appearance of opcode sequences. Bilar [15] statistically analy-
zed the ability of single opcodes to serve as the basis for malware detection and con-
firmed their high reliability in determining the maliciousness of executables. Later,
a new study proved that detecting malware family variants was feasible using opcode
sequences [16].

The following advances in the state of the art have been performed:

e An information-retrieval-based architecture for the development of a malware
variant detection system and a description of how to adapt this information-
retrieval-based approach for malware detection. How to use an opcode-sequence-
frequency representation of executables to detect and classify malware variants
is shown.

e A prototype of an information-retrieval-based malware detection system.

e An evaluation of the complete framework in terms of performance and malware
variant detection capabilities.

The rest of this paper is organized as follows. Section 2 details the design
of our information-retrieval-based malware detection system. Section 3 describes
the implementation of the different components of our malware detection system.
Section 4 describes the experiments performed and presents the results. Section 5
discusses the advantages and limitations of the proposed system. Finally, Section 6
concludes the paper and outlines avenues for future work.

2 METHOD DESCRIPTION

For the design of our information-retrieval-based malware detector, the formal defi-
nition of Information Retrieval (IR) proposed by Baeza-Yates and Ribeiro-Neto [17]
is used. Adapting this definition to the malware detection context, an IR model
is defined as a 4-tuple [€, Q, F, R(g;, ¢;)] where £ is a set of representations of ex-
ecutables, in our case, representations of known malware variants; Q is a set of
representations of user queries, in our case, representations of executable files under
inspection; F is a framework for modelling executables, queries and their relation-
ships and R(g;, ¢;) is a ranking function that associates a real number with a query ¢,
also called a similarity function.
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Fig. 1. General overview of the malware detector

Accordingly, our method is detailed in terms of these 4 components (see Fi-
gure 1). In particular, F details how our system models executables. & describes
the Malware Database that contains the representations of known malware variants.
Q determines how an executable in inspection is transformed into a query for the
system by means of the Malware Query Generator. Finally, R(g;,e;) details how
the system finds the most similar executables to a query, in other words, how the
systems detects malware through the Malware Variant Retrieval component.

The malware detection system starts with the Malware Query Generator. This
component disassembles the executable being analyzed and generates a vectorial
representation of it, posing as the query for the Malware Database. Next, through
a similarity measure, the system retrieves the executables whose representations are
selected by the Malware Variant Retrieval module. To this end, similarity threshold
is defined so as to let the system select the malicious executables whose similarity
ratio surpassed that threshold value. Finally, if no similar representation exists in
the Malware Database, the executable under inspection will be declared as legitimate
software. Otherwise, the executable is considered a variant of the malware family
to which the most similar malicious executables belong.

2.1 Framework for Modeling Executables

This component determines how binaries are modelled in the proposed information-
retrieval-based malware detector. In particular, how to mine the relevance of each
opcode to avoid any distortion produced by the most common opcodes, such as mov
or push, and how to represent executables through opcode sequences is described.

Bilar [15] investigated the ability of operational codes to detect malware. The
study concluded that opcodes are able to reveal significant statistical differences
between malware and legitimate software and that rare opcodes are better predictors
than common opcodes.

This previous study is extended by providing a method that measures the rele-
vance of individual opcodes. To this end, a methodology is employed that computes
a weight for each operational code. This weighting represents the relevance of the
opcode to discriminate between malicious and benign executables based on the fre-
quency of occurrence of opcodes in malicious and benign executables. Malware from
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the VxHeavens website® was collected to assemble a malware dataset of 13 189 mal-
ware executables. This dataset contained only Portable Ezecutable (PE)?* files, and
it was made up of different types of malicious software (e.g., computer viruses, Tro-
jan horses and spyware). For the benign software dataset, 13000 executables from
our computers were collected. This benign dataset included text processors, draw-
ing tools, Windows games, Internet browsers and PDF viewers. A confirmation of
whether the benign executables were not infected has been performed because any
infections would have distorted the results. An analysis of the benign files using
Eset Antivirus® was performed.

The method for computing the relevance of opcodes is composed of the following
steps:

Disassembling the executables: NewBasic Assembler® was used as the main
tool for obtaining the assembly files.

Generation of opcode profile file: Using the generated assembly files, opcode
profiles were built. Each file contains a list with the operational code and the
times that each opcode appears within both the benign software dataset and
the malicious software dataset.

Computation of opcode relevance: The relevance of each opcode was computed
based on the frequency with which it appears in each dataset. Mutual Informa-
tion [18] was used (shown in Equation (1)) to measure the statistical dependence
of the two variables:

I(X;Y) =3 plx,y)log (p(“/)> (1)

yeY zeX p(l‘) : p(y>

where X is the opcode frequency and Y is the class of the file (i.e., malware
or benign software), p(z,y) is the joint probability distribution function of X
and Y, and p(z) and p(y) are the marginal probability distribution functions
of X and Y. Note that this weight only measures the relevance of a single
opcode and not the relevance of an opcode sequence.

Once the mutual information between each opcode and the executable class
had been computed, an opcode relevance file is created by sorting the opcodes by
relevance. The opcode frequency file was saved so that further calculations of the
relevance of the opcodes may be calculated using other measures such as the gain
ratio [19] or chi-square [20].

This list of opcode relevance helped with more accurate malware detection be-
cause it is possible to weight the final representation of executables using the cal-

3 http://vx.netlux.org/

4 The Portable Executable (PE) format is a file format for executables, object code and
DLLs, used in Microsoft Windows operating systems.

5 http://www.eset.com/

6 http://www.frontiernet.net/~fys/newbasic.htm
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culated opcode relevances and reducing noise from irrelevant opcodes. Specifically,
the most common opcodes, such as push, mov or add, tended to be weighted low in
the results.

These weights may be considered as a replacement for the Inverse Document Fre-
quency (IDF) measure [21] used in the Vector Space Model [22, 23] for information
retrieval. IDF weighs terms within documents based on the frequency of occurrence
in the whole document set. Our method performs a similar task by using mutual
information instead of simply counting occurrences. It is also easier to update, us-
ing the total number of opcode occurrences in each dataset (both malicious and
benign).

To represent executables using opcodes, the opcode-sequences and their fre-
quency of appearance were extracted. More specifically, a program p is a set of
ordered opcodes o, p = (01,09,03,04,...,00-1,0;), where £ is the number of in-
structions I of the program p. An opcode sequence s is defined as a subgroup
of opcodes within the executable file where s C p; it is made up of opcodes o,
s = (01,02,03,...,0m_1,0m,) where m is the length of the sequence of opcodes s.

Although Bilar [15] only proved that single opcodes were good predictors for
malware detection, this approach is generalized and the use of sequences of opcodes
is proposed instead. The main assumption is that longer opcode sequences pro-
vide a lower false positive ratio (i.e., benign executables misclassified as malware)
whereas shorter opcode sequences identify more malware variants. Therefore, by
using opcode sequences instead of single opcodes, it is possible to configure the be-
haviour of the detector. However, it is difficult to establish an optimal value for the
lengths of the sequences: a small value will fail to detect complex malicious blocks
of operations whereas long sequences can easily be avoided with simple obfusca-
tion techniques. Besides, long opcode sequences will introduce a high performance
overhead.

Afterwards, the frequency of occurrence of each opcode sequence within the
file is computed by using term frequency (tf) [22] (shown in Equation (2)) that is
a weight widely used in information retrieval [24]:

Mg

ok Nk

tfij = (2)

where 7 is the index for the opcode sequence and j is the index for the executable.
n;,; is the number of times the sequence s, ; (the i sequence within the executable )
appears in an executable j, and Y7, ny; is the total number of sequences in the
executable j (in our case the total number of possible opcode sequences).

This measure is computed for every possible opcode sequence of fixed length n,
acquiring a vector v of the frequencies of opcode sequences s; ; = (01,02, 03, ..., 0n_1,
on). The frequency of occurrence of this opcode sequence is weighted using the
relevance weights.

Weighted Term Frequency (WTF) is defined as the result of weighting the rele-
vance of each opcode when calculating the term frequency. Specifically, the WTF is
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computed as the product of sequence frequency and the calculated weight of every
opcode in the sequence:

weight(o,)

wtfiy=tfi;- I1 100

0-€S

(3)

where weight(o,) is the calculated weight, by means of mutual information gain,
for the opcode o, and tf; ; is the sequence frequency measure for the given opcode
sequence.

Applying the calculated weighted sequence frequencies, a vector ¢ is obtained,
composed of weighted opcode-sequence frequencies, 7 = ((0sy, wtfi), (0se, wtfa),. ..,
(08p_1, Wt fy_1), (08, wtf,)), where os; is the opcode sequence and wtf; is the
weighted term frequency for that particular opcode sequence. Using the resultant
vector representation of the files, it is possible to compute the similarity between
two input files.

2.2 Malware Database

This component stores the representation of different variants from different mal-
ware families, as a corpus of executables £ to retrieve the most similar variants to
an executable under inspection. To this end, our approach stores the executables
and their opcode sequences. Because the system uses these representations to detect
malware variants, they can be considered as signatures.

The data model [25] of this database describes how the data is represented in
our system. Figure 2 shows the proposed data model.

The entity Opcode represents the unique opcodes of machine language. Op-
code_id is the identification for the opcode. The attribute Mnemonic is the assembly
representation of the machine operation, whereas Weight is the calculated relevance
for that particular opcode.

The entity Sequence model stores the relationships between the different op-
codes and the sequences they form. Sequence_id is the identification for the opcode
sequence, Opcode_id is the identification of the opcode and Pos is the position of
the opcode within the sequence.

The entity Opcode sequence represents the different opcode sequences. Se-
quence_id is the identification for the unique opcode sequence and Length establishes
the opcode sequence length.

Executable model is an entity that stores the number of times the sequences
within an executable appear. Ezecutable_id is the identification of the executable.
Sequence_id is the identification of the opcode sequence and Sequence frequency is
the number of times the particular sequence (identified by Sequence_id) appears
within the executable (identified by the Ezecutable_id).

The entity Malicious executable stores the information of the executables that
are malware. Name establishes the particular labelling of that executable and Fa-
mily_id is the identification of the malware family the executable belongs to.
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Opcode Sequence Model Opcode Sequence
PK |Opcode_id PK,FK1 | Sequence_id PK | Sequence_id
< PK,FK2 | Opcode_id
Mnemomic PK Pos Length
Weight 7'y
A
Malware Family
PK | Family_id
Name
Description
Executable Opcode T
Malicious Executable Executable Model
PK,FK1 | Opcode_id
PK,FK2 | Executable_id PK | Executable_id PK,FK1 | Executable_id
PK Position > < PK,FK2 | Sequence_id
Name
FK1 | Family_id

Fig. 2. Proposed data model for the malware database. PK stands for primary key whereas
FK means foreign key.

Malware family stores the different malware families. Name is the name of the
family and Description is a brief abstract of the functionality of the family.

Finally, Fzecutable opcode represent the opcodes an executable is composed of
Ezecutable_id is the identification of the executable, Opcode_id is the identification
of the opcode and Pos stores the position of the opcode within the executable.

2.3 Malware Query Generator

This component generates a query in an opcode sequence format of the binary exe-
cutable under inspection. The resultant query is the key element for the variant
malware retrieval system.

Since the original source code is not available for the executables, the first step
is to disassemble them. To this end, NewBasic Assembler was employed. However,
some executables are packed and it would not be able to extract the real assembly
code. In those cases, it would need a previous unpacking step to the proposed
framework.

Once the source code is available, the opcode sequence frequency representation
of the executable is extracted. In this step, it is required to configure the length
of the sequence or even utilize different lengths and combine them into a unique
representation of the executable, called recursive representation. For instance, a re-
cursive representation of length 3 includes the opcode sequences of length 1, 2
and 3.
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Finally, using the extracted frequencies, they are weighted with the opcode
relevances forming the WTF representation. This vector is considered the query for
the malware database.

2.4 Malware Variant Retrieval

The retrieval of the most similar malware variants to an executable under inspection
is the detection step of our system. Once the query vector composed of weighted op-
code sequence frequencies is generated, it is compared with the malicious executables
stored in the malware database.

In this way, it is possible to measure how similar the query is to the executables
within the malware database. Representing the two files as two vectors ¢ and ), it
is possible to measure their similarity by means of the cosine similarity [26]:

o ORETS
sim(U, @) = cos (0) = AT (4)

where ¥ - @ is the inner product of ¥ and @ whereas ||U]| - ||@]| is the cross product
of ¥ and 4.

This value ranges from 0 to 1, where 0 means that the two executables are
completely different (i.e., the vectors are orthogonal between them) and 1 means
that the executables are equivalent. To retrieve the most similar executables within
the malware database, a similarity threshold above which the system considers an
executable as a malware variant must be determined first.

3 IMPLEMENTATION DETAILS

In this section, the implementation of the malware scanner prototype, called N-Op-
code Analyzer (NOA), is described based on the variant analysis system described
in Section 2.

An end-host application using the Microsoft .NET platform (Microsoft .NET
Framework 3.5 and SQL Server 2008) has been developed, that allows the user to
scan directories recursively and find malware variants present in the system.

3.1 Representation Framework

The representation framework provides functionality to generate malware represen-
tations, as shown in Section 2.1, both for database population and query composi-
tion. This process consists of three steps.

Disassembly: The first step relies on an external disassembler and a module that
processes the output assembly code from the disassembler to generate the mal-
ware representation. The freeware disassembler NewBasic Assembler was em-
ployed, by launching the program from our application and setting it up to write
the results over a temporary text file that is read afterwards.
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Generation of the Term Frequency (TF): In this step, a list containing the
frequency for each possible opcode sequence is created. Note that sequences can
be of length n or 1..n if recursive option is selected. To calculate this frequency
value, sequences are generated from the previously disassembled file, counting
the number of occurrences in the full program. After that, it is necessary to
divide each counter by the total number of different sequences in the file.

Generation of the Weighted Term Frequency (W'TF): Finally, each sequen-
ce frequency is updated according to opcode relevance weight values. For this,
the frequency is multiplied by the weight value of each opcode in the sequence.
These weight values are previously calculated and stored in the database.

3.2 Data Model

To improve system efficiency, the database model has been modified. First, the
storage of the full list of opcodes associated to each malware variant saved on the
database is avoided. Instead, the representations for a sequence length from 1 to 5
are calculated and saved. Longer sequences introduce a considerable overload on
the system. Given that analyses are not going to be performed for sequences longer
than 5 opcodes, full storage for further calculations is unnecessary.

The table MaliciousEzecutable contains the list of malware executables stored
in the database, consisting of an incremental numeric key and a name to desig-
nate the variant. EzecutableModel stores the malware representations, associating
a weighted frequency value to each sequence and executable. Note that the system
does not make use of any relation between sequences and opcodes. This approach
avoids constraint checking performed by the database management system. Alter-
natively, the system generates a key for each sequence based on the keys of the op-
codes that compose it. Assuming a maximum sequence length of 5 and a maximum
number of weighted opcodes lower than 999, it can be stated that the maximum
value for this key is 15 digits long, which can be contained in an integer field of
64 bits. Opcodes with a weight value of 0 will cause a WTF of 0 for the sequences
they are part of. Subsequently, these sequences will not be stored in the database
and longer keys will not be necessary. The sequence key is calculated applying:
SequenceKey = Y1 | OpcodeKey; - 1000, where n is the chosen opcode sequence
length and OpcodeKey; is the i*" opcode key in the sequence.

TempAnalysis is used to store temporary representations of malware executables

for further comparison with the representations stored in the database. Keys for this
table are equally generated based on opcode keys.

The table Opcode holds weight values, as well as the mnemonic for each opcode
key.

Finally, Settings is used to store several parameters configurable by the end-user,
which will be applied during the analysis process.
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Settings Opcode TempAnalysis
PK | key PK | idOpcode PK | idOpcodeSequence
sequencelength mnemonic frequency
triggerValue weight
recursive
MaliciousExecutable ExecutableModel
PK | idMaliciousExecutable | ) PK | idOpcodeSequence
PK | idMaliciousExecutable
name

frequency

Fig. 3. Database diagram finally utilized in the prototype implementation. This version
is simplified with respect to the data model proposed in Section 2 due to efficiency
requirements.

3.3 Database Query

Once a representation is generated by the representation framework, it is stored in
the table TempAnalysis.

CREATE PROCEDURE
[dbo] . [analyzeExecutable]
O@triggerValue REAL,
O@sequencelength int,
Orecursive bit
)
AS
BEGIN
SELECT temp.name,
temp.similarity FROM
(SELECT name,
dbo.cosineSimilarity
(idMaliciousExecutable,
@sequencelength, Qrecursive)
AS similarity FROM
dbo.maliciousexecutable) temp
WHERE temp.similarity >=
@thresholdValue
ORDER BY temp.similarity desc;
END

Fig. 4. Stored procedure used to retrieve a list of previously stored similar malware
variants, implemented in Transact-SQL
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CREATE FUNCTION

[dbo] . [cosineSimilarity]

(
Q@idExecutable int,
O@sequencelength int,
Q@recursive bit

)

RETURNS Real

AS

BEGIN
DECLARE @Result Real
SET Q@Result =

dbo.dotProduct (@idExecutable) /
dbo.moduleProduct (@idExecutable,
@sequencelength, Qrecursive);
RETURN @Result

END

Fig. 5. Cosine similarity function implemented in Transact-SQL

Next, the stored procedure shown in Figure 4 is executed, calculating the cosine
similarity among the sequences stored on TempAnalysis and the ones stored in the
table FzecutableModel. This method returns a list of possible matches in descending
order of similarity. The stored procedure combines rows in both tables joining them
by their key value and filtering FzecutableModel by each executable key. Thereby,
it computes the cosine similarity for each executable stored in the database.

To calculate cosine similarity, this stored procedure employs the function cosi-
neSimilarity (shown in Figure 5), which calls to dotProduct (Figure 6) and module-
Product (Figure 7) functions. The dotProduct function sums up the values resulting
from multiplying the opcode sequence frequencies in each table. The module Product
function returns the product of the modules of each representation vector. In the
case of EzecutableModel, it is necessary to filter the table by idMaliciousEzxecutable
and sequence numbers. To this end, the system calculates the minimum and max-
imum possible IdOpcodeSequence values for the selected values of sequence length
and recursion parameter. If any match has a similarity rate higher than the previ-
ously specified threshold similarity value, the sample will be considered as a malware
instance, member of the family of the executable it matches with. In case there are
various matches with a similarity rate higher than the threshold value, the system
will select the family of the most similar variant.

3.4 Graphical User Interface

The Graphical User Interface (GUI) designed for this prototype allows the end-
user to make use of the described analysis system. This GUI intends to be
a complete anti-malware system. However, since it is highly experimental, it lacks
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CREATE FUNCTION [dbo]. [dotProduct]
(
@idExecutable int

)
RETURNS REAL
AS
BEGIN
DECLARE ©@Result REAL;
SELECT @Result =
SUM(a. [frequency] *b.[frequencyl])
FROM dbo.tempAnalysis AS a
INNER JOIN
dbo.executablemodel AS b
ON a.[idOpcodeSequence] =
b. [idOpcodeSequence]
WHERE b. [idMaliciousExecutable]
= @idExecutable;
RETURN G@Result;
END

Fig. 6. Dot product function implemented in Transact-SQL

some classic functionality such as automatic scan of external drives or quarantine
folder.

Figure 8 shows the implemented GUI. The first tab-page (see Figure 8a)) is used
to scan directories recursively. When the user selects a directory on the computer,
the analysis process will start. A list at the bottom of the window shows the found
variants, indicating the malware family they pertain to.

The second tab-page (refer to Figure 8b)) permits the user to update the
database with new representations of malware families. Similarly, it is necessary
to select a directory. All executables inside the folder will be represented and added
to the database as malware executables.

At last, the third tab-page (shown in Figure 8¢)) is used for setting some pa-
rameters regarding the analysis process: sequence length, recursion and threshold
value for representation matching.

4 EMPIRICAL VALIDATION

In this section, the process conducted to validate our malware variant detection
prototype (called N-Opcode Analyzer: NOA) is described. This experiment shows
that NOA can detect malware variants within a common computer environment.
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CREATE FUNCTION [dbo] . [moduleProduct]
(

Q@idExecutable int,

@sequencelength int,

@recursive bit
) RETURNS Real
AS
BEGIN

DECLARE Q@Result REAL;

DECLARE Qa REAL;

DECLARE @b REAL;

DECLARE @idMinValue bigint;

DECLARE @idMaxValue bigint;

SET @idMaxValue =
(POWER(CAST (1000 CAST bigint),
CAST(@sequenceLength CAST bigint)))
-1;

IF @recursive = 0

SET @idMinValue =

POWER(CAST (1000 AS bigint),
CAST(@sequencelength AS bigint) -
1);

ELSE

SET @idMinValue = O;

SELECT @a = SQRT(SUM(a.[frequency]
*a. [frequency]))

FROM [NOA]. [dbo]. [tempAnalysis] AS
aj;

SELECT @b = SQRT(SUM(b. [frequency]
*b. [frequency]))

FROM [NOA]. [dbo]. [executablemodel]
AS b

WHERE b. [idMaliciousExecutable] =
@idExecutable AND

b. [idOpcodeSequence] <=
@idMaxValue AND b.[idOpcodeSequence]
>= @idMinValue;

SET @Result = Qa * @b;

RETURN @Result;
END

Fig. 7. Module product function implemented in Transact-SQL
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& Variant analysis
(@) ‘Update
x Settings

Start

.- 2020000000 ]

& Variant analysis
(@) Update
ﬂ Settings
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Fig. 8. The Graphical User Interface of the implemented prototype. a) Variant analysis
tab page. This tab is used to scan recursively a directory to find if any malware
variant is present in that directory. b) Update database tab page. This tab is used to
populate the database with malware variants. c¢) Settings tab. This tab is used to set
the parameters regarding the representation framework and the confidence threshold
to determine malware variants.
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4.1 Experiment Design

To perform the experiment, a malware dataset composed of a set of malware vari-
ants from 5 well-known malware families: Antilam, Bancodor, Gruel, Hupigon and
PcClient (for further details regarding the malware dataset, refer to Tables 1, 2, 3,
4, 5) was used. These samples were downloaded from VxHeavens. As the benign
software dataset, a set of 1000 benign executables was selected from a clean Mi-
crosoft Windows XP installation (for more details for the legitimate dataset refer to
Table 6).

Samples Samples

in database to be analyzed
Backdoor.Win32.Antilam.13.b  Backdoor.Win32.Antilam.20.q
Backdoor.Win32. Antilam.14.i

Backdoor.Win32.Antilam.20.n

Backdoor.Win32.Antilam.20.p

Backdoor.Win32. Antilam.20.s

Backdoor.Win32.Antilam.gen

6 1

Table 1. Antilam family samples used for the described experiment

Samples Samples

in database to be analyzed
Backdoor.Win32.Bancodor.b  Backdoor.Win32.Bancodor.c
Backdoor.Win32.Bancodor.d  Backdoor.Win32.Bancodor.r
Backdoor.Win32.Bancodor.e

Backdoor.Win32.Bancodor.f

Backdoor.Win32.Bancodor.j

Backdoor.Win32.Bancodor.m

Backdoor.Win32.Bancodor.t

Backdoor.Win32.Bancodor.u

Backdoor.Win32.Bancodor.x

9 2

Table 2. Bancodor family samples used for the described experiment

First, the PEiD7 tool was used to check that the malware executables were not
packed since our static representation would not be able to deal with them. As it
was done when computing the relevance of opcodes, an analysis of the benign files
was performed using Eset Antivirus to check that the benign executables were not
infected and, therefore, validate the legitimacy of the benign dataset.

Hereafter, a subset of malicious samples consisting of 80% of the malicious
executables from each malware family is selected to populate the database. The

" http://www.peid.info/
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Samples
in database

Samples
to be analyzed

Email-Worm.Win32.Gruel.a
Email-Worm.Win32.Gruel.b
Email-Worm.Win32.Gruel.e

Email-Worm. Win32.Gruel.c
Email-Worm.Win32.Gruel.i
Email-Worm.Win32.Gruel.m
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Email-Worm.Win32.Gruel.f
Email-Worm.Win32.Gruel.g
Email-Worm.Win32.Gruel.h
Email-Worm.Win32.Gruel.j
Email-Worm.Win32.Gruel .k
Email-Worm.Win32.Gruel.l
Email-Worm.Win32.Gruel.n

10 3

Table 3. Gruel family samples used for the described experiment

remaining 20 % of the malicious samples of each malware family is used to analyze
them and, thus, validate NOA. Besides, the 1000 benign executables were used to
check the number of false positives (legitimate applications misclassified as malware)
raised by NOA.

In our validation, the representations with an opcode-sequence length from 1
to 3 combining Recursive (R) and Not Recursive (NR) approaches were used. A
recursive representation of n = 3 means that sequences with a length of 1, 2 and 3
are used. Since our main goal is to provide a fast malware detector, longer opcode
sequences were not used because of the performance overhead they introduce. In
fact, several preliminary tests were performed with opcode sequences of length 4
and 5 but the experimental machine could not cope with the work in a reasonable
time.

To conduct the validation, a simple routine in Microsoft .NET Framework 3.5
was implemented that calls the analysis process by using the proposed architecture
framework. In this way, a complete analysis process over the whole dataset of exe-
cutables is repeated applying different values to each parameter. In the first exper-
iment, the parameter ranges shown in Figure 7 were used. In this case, the results
obtained show that threshold values under 0.99 were not precise enough for exe-
cutable comparison, producing good detection rates but, unfortunately, also a high
false positive ratio. Therefore, a second experiment was performed with different
threshold values (see Figure 8) to determine more accurate parameter values.

As the experimental environment, two different machines were used: the machine
where the database was installed and the machine where NOA was going to run.
As the database server, an Intel Core i7 940 clocked at 2.93 GHz and 8 GB of RAM
memory was used. More accurately, the database server was a SQL Server 2008 SP1.
As the analysis platform, a VMWare® virtual machine hosted in an Intel Core i7
940 clocked at 3.07 GHz and 12 GB of RAM memory was used. The virtual machine

8 WWW.vIware.com
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Samples
in database

Samples
to be analyzed

Backdoor.Win32.Hupigon.abc
Backdoor.Win32.Hupigon.abu
Backdoor.Win32.Hupigon.aj
Backdoor.Win32.Hupigon.akx
Backdoor.Win32.Hupigon.amc
Backdoor.Win32.Hupigon.are
Backdoor.Win32.Hupigon.awl
Backdoor.Win32.Hupigon.awn
Backdoor.Win32.Hupigon.bbk
Backdoor.Win32.Hupigon.blh
Backdoor.Win32.Hupigon.bqz
Backdoor.Win32.Hupigon.bto
Backdoor.Win32.Hupigon.ccf
Backdoor.Win32.Hupigon.dh
Backdoor.Win32.Hupigon.eg
Backdoor.Win32.Hupigon.ej
Backdoor.Win32.Hupigon.fo
Backdoor.Win32.Hupigon.g
Backdoor.Win32.Hupigon.j
Backdoor.Win32.Hupigon.lp
Backdoor.Win32.Hupigon.qk
Backdoor.Win32.Hupigon.r
Backdoor.Win32.Hupigon.rc
Backdoor.Win32.Hupigon.ri
Backdoor.Win32.Hupigon.sc
Backdoor.Win32.Hupigon.ub
Backdoor.Win32.Hupigon.vh
Backdoor.Win32.Hupigon.xr
Backdoor.Win32.Hupigon.ze

Backdoor.Win32.Hupigon.ajt
Backdoor.Win32.Hupigon.axn
Backdoor.Win32.Hupigon.blb
Backdoor.Win32.Hupigon.dl
Backdoor.Win32.Hupigon.gb
Backdoor.Win32.Hupigon.up
Backdoor.Win32.Hupigon.vw

29

7

Table 4. Hupigon family samples used for the described experiment

specification is as follows: 1 processor, 1 GB of RAM memory and Windows XP
SP3 as operative system. In particular, to evaluate the performance and precision
of NOA, the following aspects were measured:

Time results: The processing overhead of NOA in 4 different aspects was mea-

Total analysis time: The total time required to analyze an executable. It
includes disassembling, representation and comparison time.

Disassembling time: The percentage of the total time employed to disas-
semble the executable under inspection. Note that this time is not de-
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Samples Samples

in database to be analyzed
Backdoor.Win32.PcClient.ah ~ Backdoor.Win32.PcClient.bn
Backdoor.Win32.PcClient.au  Backdoor.Win32.PcClient.du
Backdoor.Win32.PcClient.b Backdoor.Win32.PcClient.hw
Backdoor.Win32.PcClient.bg  Backdoor.Win32.PcClient.pj
Backdoor.Win32.PcClient.bm

Backdoor.Win32.PcClient.dq

Backdoor.Win32.PcClient.fb

Backdoor.Win32.PcClient.h

Backdoor.Win32.PcClient.ik

Backdoor.Win32.PcClient.jl

Backdoor.Win32.PcClient.m

Backdoor.Win32.PcClient.nu

Backdoor.Win32.PcClient.qe

Backdoor.Win32.PcClient.sd

Backdoor.Win32.PcClient.wj

Backdoor.Win32.PcClient.xc

16 4

Table 5. PcClient family samples used for the described experiment

Samples Samples
in database to be analyzed
0 1000

Table 6. Legitimate samples used for the described experiment

pendent on our solution because the NewBasic Assembler was used to this
end.
Representation time: The percentage of the total time utilized to represent
an executable, transforming it to the proposed representation.
Comparison time: The percentage of the total time used to compare the exe-
cutable under inspection with representations already stored in the database.
This step also ranks the possible matches and selects the most certain one.

Accuracy results: The accuracy results were evaluated by measuring False Nega-
tive Ratio (FNR) and False Positive Ratio (FPR). FNR and FPR measures are

Parameters Possible Values
Sequence Length 1,2,3
Recursion Recursive (R), Not Recursive (NR)
Threshold 0.99, 0.98, 0.97, 0.96, 0.95

Table 7. Parameters used in the first experiment. All the possible values are permuted in
30 analysis processes
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Parameters Possible Values
Sequence Length 1,2,3
Recursion Recursive (R), Not Recursive (NR)

0.999, 0.998, 0.997, 0.996, 0.995,

Threshold 0.994, 0.993, 0.992, 0.991

Table 8. Parameters used in the second experiment. All the possible values are permuted
in 54 analysis processes

a common standard to evaluate the performance of malware detection because
they are the two types of errors a malware detector can produce. All the results
refer to the ability of the proposed method not to only detect malware but to
detect the malware family of analyzed variant. In particular, FNR is defined as:

EFN

FNRB) = 5N 7P

(5)
where T'P is the number of malware cases correctly classified (true positives) and
FN is the number of malware cases misclassified as legitimate software (false
negatives).

On the other hand, FPR is defined as:

P

FPR() = p 7N

(6)
where F'P is the number of benign executables incorrectly detected as malware
while T'N is the number of legitimate executables correctly classified.

Both measures establish the cost of misclassification. Therefore, it is important
to set the cost of false negatives and false positives; in other words, to establish
whether it is better to classify a malware as legitimate or to classify a benign software
as malware. In particular, since our framework is devoted to detect malware variants,
one may think that it is more important to detect more malware than to minimize
false positives. However, commercial products tend to consider achieving a low false
positive ratio more important: users can be bothered if their legitimate applications
are constantly flagged as malware. Hence, it can be considered that the importance
of the cost must be established depending on the purposes NOA will be used with.
If it is used as a complement to standard anti-malware systems then the system
should focus on minimizing false positives. Otherwise, if the framework is used
by antivirus laboratories to decide which executables should be further analyzed
then the system should minimize false negatives (or, in other words, maximize the
detection of malware).

To this end, the system can apply (i) whitelisting and (ii) blacklisting. White
and black lists store a signature of an executable in order to be flagged either as
malware (blacklisting) or benign software (whitelisting) without a further analysis.
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4.2 Results

In this section, the obtained results are shown. In this way, Figure 9 shows the
times/opcode sequence length ratio to represent the file analysis overhead, Figure
10 shows the proportion of the three different phases of the total analysis (disassem-
bling, representation and comparison), Figure 11 shows the relation between file size
and processing time and Figure 12 shows both FNR and FPR for each parameter
set used in the experiment.

250000

200000 -

150000 A

100000 -

Time Results (ms/MB)

50000 A

N=1 N=2NR N=2R N=3NR N=3R

Representations

Fig. 9. Time results for each sequence length value, expressed in milliseconds, employed
to analyze a megabyte of executable data. It can be noticed that sequence length
exponentially increases required processing times. N R stands for not recursive rep-
resentation whereas R stands for a recursive representation.

Total analysis time depends on 3 different parameters:

1. disassembly time, which is given by the disassembler tool used by our prototype;

2. representation time, which depends on the size of the sequence length (the higher
the length, the higher the number of possible sequences in the representation)
and

3. comparison time, which depends on the size of the vector generated in the re-
presentation phase and, thus, on the sequence length.

Comparison time also depends on the number of malware samples saved on the
database. Note that this last step is completely performed by the database mana-
gement system (in our case, SQL Server 2008).

It can be noticed that total time increases with the size of the executable (refer
to Figure 11). Comparison time takes a greater portion of the analysis time (refer
to Figure 10).

Likewise, the total time increases exponentially with sequence length, as shown
in Figure 9. Although the complexity of our prototype is highly dependent on these
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100%
90% A
80% A
70% Comparison (%)

B Representation (%)
60% m Disassembly (%)

50%
40%
30%
20%
10%

0%
N=1 N=2NR N=2R N=3NR N=3R

Representations

Fig. 10. The proportion of the analysis time dedicated to each phase. The time dedi-
cated for the comparison step increases exponentially along with n whereas required
disassembly and representation proportion decreases. N R stands for Not Recursive
representation whereas R stands for Recursive representation.

three parameters, the analysis is performed relatively quickly. In particular, the ave-
rage time of the analysis per file, without taking into account its size, was 563.37 ms
for n = 1, 2106.94ms for n = 2, 2207.44ms for n = 2 recursive, 7554.83 ms for
n = 3 and 8930.07 ms for n = 3 recursive.
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45000 |
X X
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¢ %«
_ J x ¥ X
z 35000 ) Xx’f A
2 30000 - X x g
[ XK 5 X X *N=1
2 25000 - s XX X x x EN=2NR
> X X X X
g 20000 - X X N=2R
< ) X % N=3NR
15000 X o *N=3R
10000 x
e, & L]
5000 L R
Pt
0 : : . . . .
0 1000 2000 3000 4000 5000 6000
File Size (KB)

Fig. 11. Relation between file size and required time for the analysis. NR stands for Not
Recursive representation whereas R stands for Recursive representation.
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Fig. 12. FPR and FNR results. NR stands for Not Recursive representation whereas R

stands for Recursive representation.

Regarding precision results, it is straightforward that higher threshold values
will incur in a lower FPR and higher FNR (executables must be more similar to
be identified) whereas lower thresholds cause the opposite effect. Consequently,
it is mandatory to select a proper threshold value to equilibrate both rates. At
the contrary, the most appropriate sequence length and recursion parameter values
also have to be selected. Detection rates do not vary perceptively for sequence
lengths higher than 2 while detection time increases significantly (see Figure 9).
Specifically, in order to guarantee a 0.0 % of FPR, to generate the representation of
the executables in their not recursive configuration is needed, with n =2 or n = 3
and a confidence threshold of 0.999. However, this representations raised a high
FNR: 64.7% for n = 2 and 76.47% for n = 3. On the other hand, the lowest
FNR was achieved by the configuration n = 1 not recursive and 0.991 as threshold:
5.88 %. This configuration did not raise a very high amount of false positives: only
the 15.2% of the legitimate executables were misclassified as malware. Another
interesting configuration is recursive n = 2 with a confidence threshold of 0.994:
17.64% of FNR and 4.3 % of FPR.

As conclusion, in our evaluation of NOA, a higher value of n always implies
higher FNRs and a higher processing overhead on the analysis. However, it does
not imply, at least not strongly, lower FPRs. Besides, the obtained accuracy does
not show any improvement and, therefore, the system does not benefit of using
longer opcode sequences. Overall, our solution has demonstrated that, with the
proper configuration, NOA can be used to detect variants of malware and still be
fast enough to be used in an anti-malware solution.
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5 DISCUSSION

Malware detection can be categorized into static detection and dynamic detection.
Dynamic detection analyzes the behaviour of an executable monitoring its execution
in a contained environment whereas static detection analyzes it without executing
it. Our work falls in the category of static analysis of malware.

In this category, the work of Christodorescu and Jha [12] and its improved
semantic version by Christodorescu et al. [13] is very significant in this area. Their
method was able to provide a higher level of representation than signatures and
it was specific of a malicious behaviour. In this way, their method was able to
identify, for instance, whether an executable connects to the Internet or has mail
bomber capacity. However, there were several limitations. First of all, the approach
was very time consuming and the representation templates require a manual step.
Besides, the system identifies only behaviour and not malware families, complicating
the disinfection step.

Other approaches have been proposed that use byte n-grams to detect unknown
malware. Schultz et al. [27] were the first to introduce the concept of applying
machine-learning algorithms for the detection of malware based on their respective
binary codes. They applied different classifiers to three types of feature sets:

1. program headers,
2. strings and

3. byte sequences.

Later, Kolter et al. [28] improved Schulz’s results [27], by applying n-grams (i.e.,
overlapping byte sequences) instead of non-overlapping sequences. This approach
employed several algorithms, achieving the best results with a boosted? decision
tree. Substantial research has focused on n-gram distributions of byte sequences
and machine-learning algorithms [30, 31, 32]. However, the representativeness of
bytes by themselves renders these approaches easily surpassed by only changing the
compiler.

Since opcode sequences can be considered somehow as structural information,
PE-Miner [33] and PE-Probe [34] may be the closest works to this research. In both
works, structural information from PE executables was extracted, e.g. information
about how many sections of code were in the executable, the number of standard
sections and so on. However, the approach was limited because this type of structural
information can be easily changed without affecting the behaviour of the malware.

The obtained results show that building a malware variant detector based on
opcode-sequence is feasible. Our prototype NOA achieved a high performance in
classifying malware. There has been a huge amount of work for the detection of
malware variants in the last years. Besides, there are several considerations regarding
the complete viability of our method.

9 Boosting is a machine-learning technique that builds a strong classifier composed by
a high number of weak classifiers [29].
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First, the processing overhead of method is highly dependent on the length of
the opcode sequences. In our experiments, the impact that the length of opcode
sequences has in the time required by the file analysis of this framework has been
analyzed. For instance, the system was not able to build the variant malware de-
tector with sequences longer than 3 because the whole experimentation platform
could not cope with the process due to the memory requirements. Since the accu-
racy results using a length of 2 (or even 3) are relatively high, there is no benefit
of using such lengths. In addition, a long opcode sequence can be easily evaded by
a malware obfuscator through code transposition techniques whereas a short one
may be harder to evade.

Second, our representation technique only employs opcodes and discards the
operands in the machine code instructions. The work of Bilar [15] studied the
ability of single opcodes for representativeness of the legitimacy of an application
and it was proved that single opcodes are statistically dependent with regard to the
class of a software. However, our representation can be enhanced including operands
within the instruction in further work. To use these operands, a classification must
be performed first, grouping the operands that have the same meaning together.

Third, because of the static nature of the proposed method, it cannot counter
packed malware. Packed malware is the result of cyphering the payload of the
executable and deciphering it when the executable is finally loaded into memory.
Indeed, static detection methods can deal with packed malware only by using the
signatures of the packers. Accordingly, dynamic analysis seems to be a more promis-
ing solution to this problem [35]. One solution to solve this obvious limitation of our
malware detection method is the use of a generic dynamic unpacking schema such
as PolyUnpack [36], Renovo [35], OmniUnpack [37] or Eureka [38]. These methods
execute the sample in a contained environment and extract the actual payload, al-
lowing further static or dynamic analysis of the executable. Another solution is to
use concrete unpacking routines to recover the actual payload, but it requires one
routine per packing algorithm [39]. Obviously, this approach is limited to a fixed
set of known packers. Likewise, commercial antivirus software also applies “X-ray”
techniques that can defeat known compression schemes and weak encryption [40].
Still, these techniques cannot cope with the increasing use of packing techniques,
and, in our opinion, dynamic unpacking schemes to confront the problem should be
used.

Fourth, our method can be considered as a statistical representation of executa-
bles. Therefore, an attacker can surpass this method of detection by adding several
‘good’ opcode sequences. For example, in the field of spam filtering (spam is defined
as unsolicited bulk mail), Good Word Attack is a method that modifies the term
statistics by appending a set of words that are characteristic of legitimate e-mails,
thereby bypass spam filters. Nevertheless, this technique can be adapted to this
malware detector in some of the methods that have been proposed in order to im-
prove spam filtering, such as Multiple Instance Learning (MIL) [41]. MIL will divide
an executable or a vector in the traditional methods into several sub-instances and
will classify the original vector or classifier based on the sub-instances.
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Finally, it may seem that our method detects mainly the compiler used to create
executables. In fact, the use of a specific compiler inherently renders an executable
rich in several opcode sequences. Nonetheless, when selecting executables to be part
of the dataset, they were analyzed using PEiD, a tool that detects most common
packers, cryptors and compilers for Portable Executable (PE) files.

After removing the packed ones (as our method would not be able to detect
them), there was no significant difference in the compilers used for benign software
and malware. It was found that the most common known compilers in the malware
dataset were Microsoft Visual Basic, Microsoft Visual C++, Borland Delphi and
Borland C++. In the benign dataset, the most common compilers were Microsoft
Visual C++, Borland C++ and Borland Delphi. The ability to detect compilers
may be applied for our own benefit, to detect whether an executable is packed. If
the executable is packed, then the system may unpack it using a dynamic unpacking
schema capable of extracting the original payload. Afterwards or if the sample is
not packed, the system can analyze it to determine whether it is malware.

6 CONCLUDING REMARKS

In this paper, a new method for malware detection based on information retrieval is
described. Opcode sequences were used as the main features for the representation
of executables. Through this representation, complete malware detection system
was built composed of:

1. amalware database, to store the different representations of variants from several
malware families;

2. a system able to generate the representation of the executable under inspection,
in other words, a query for the database and

3. a ranking function that computes the similarity between the inspected exe-
cutable and the malware variants within the database.

This framework was validated using 5 different malware families, using several
of their variants to populate the malware database. The remaining ones were used
together with a dataset of legitimate applications to test the accuracy of the system.
This system achieved, for several experimental configurations, a high detection ratio
of malware variants while keeping a low false positive ratio. Besides, the required
analysis time was tested and the results showed that the analysis is highly dependent
on both opcode sequence length and inspected file size.

The future development of this malware detection tool will be concentrated in
three main research areas. First, our work will focus on facing packed executables.
Second, the comparison phase will be optimized, reducing the total number of com-
parisons through a hierarchical search within the database. Finally, the performance
overhead of our representation method will be reduced.
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