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Abstract. This paper explores the application of structured learning methods
(SLMs) to word sense disambiguation (WSD). On one hand, the semantic depen-
dencies between polysemous words in the sentence can be encoded in SLMs. On the
other hand, SLMs obtained significant achievements in natural language processing,
and so it is a natural idea to apply them to WSD. However, there are many theoret-
ical and practical problems when SLMs are applied to WSD, due to characteristics
of WSD. Beginning with the method based on hidden Markov model, this paper
proposes for the first time a comprehensive and unified solution for WSD based
on maximum entropy Markov model, conditional random field and tree-structured
conditional random field, and reduces the time complexity and running time of
the proposed methods to a reasonable level by beam search, approximate train-
ing, and parallel training. The update of models brings performance improvement,
the introduction of one step dependency improves performance by 1–5 percent, the
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adoption of non-independent features improves performance by 2–3 percent, and
the extension of underlying structure to dependency parsing tree improves perfor-
mance by about 1 percent. On the English all-words WSD dataset of Senseval-2004,
the method based on tree-structured conditional random field outperforms the best
attendee system significantly. Nevertheless, almost all machine learning methods
suffer from data sparseness due to the scarcity of sense tagged data, and so do SLMs.
Besides improving structured learning methods according to the characteristics of
WSD, another approach to improve disambiguation performance is to mine disam-
biguation knowledge from all kinds of sources, such as Wikipedia, parallel corpus,
and to alleviate knowledge acquisition bottleneck of WSD.

Keywords: Word sense disambiguation, structured learning, hidden Markov mo-
del, conditional random field, parallelization, approximate training
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1 INTRODUCTION

Word sense disambiguation (WSD) is to determine the sense of polysemous words
given in the context. WSD is regarded as the intermediate task of natural language
processing (NLP), and plays a very important role in many applications, such as
information retrieval, machine translation, semantic web and bioinformatics, cf. [1,
2]. For example, given query “bar”, should the search engine return results about
barroom, a piece of material, barrier, or anything else? It depends on the sense of
“bar”, and actually there are 13 senses for noun “bar” in WordNet1. In general,
humans can easily recognize the sense of polysemous words in the context, but the
difficulty of automatic word sense disambiguation is far beyond the estimation of
people, even at present.

Polysemy is universal in natural language. For example, the noun “bar” may
appear in “at the bar”, “iron bar”, “hit the bar”, and so on, where the first refers to
a room where alcoholic drinks are served, the second refers to a rigid piece of metal
or wood, and the third refers to obstruction of the goal. The lemmas of polysemous
words2 account for 17.7 % of all lemmas in WordNet [3], while the occurrences of
polysemous words accounts for 72.8 % of all occurrences in Brown Corpus [4]. It
means that the more polysemous the word is, the more frequently it occurs in the
real corpus, and over 70 % words need to be disambiguated [5].

At present, WSD systems usually label words independently in the sentence,
without regard to the dependency among labels of different words. Given a sentence,

The man saw me looking at the iron bars.

1 We use WordNet 1.7.1 in the paper.
2 Refer to content words, i.e. noun, verb, adjective and adverb.
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There are five content words, i.e. “man”, “see”, “look”, “iron”, “bar”, to be
disambiguated. Since the above five words have different label spaces, the state-of-
the-art WSD systems usually build a classifier for each word. From the perspective
of point-wise classifier, the sentence is divided into words.

The | man | see | me | look | at | the | iron | bar |.
As usual, all inflections of words are removed to relieve sparseness. The words

in the sentence are disambiguated independently. If we want to disambiguate all the
words in arbitrary text, thousands of classifiers are needed. Due to the computing
power of modern computers, the number of classifiers does not constitute a challenge
for computation. However, this point-wise paradigm does not take into account the
label3 dependency between words. For the example sentence, when point-wise WSD
system disambiguates the word “iron”, it cannot deal with the label of word “bar”
simultaneously, while it is closely related to that of “iron”. Similarly, the label of
word “man” is also related to the label of word “see”. In addition, the words that are
not adjacent may also have label dependency, such as the word “look” and “bar”,
since “bar” is the object of “look”.

In order to encode the label dependency between words, we resort to the struc-
tured learning methods (SLMs) [6] in this paper. SLMs are machine learning
methods to predict structure consisting of multiple variables, such as sequence,
tree or general graph. Meanwhile, the ordinary machine learning methods, such
as näıve Bayes, support vector machine, and logistic regression, predict only one
variable, called point-wise learning methods in this paper. SLMs obtained signifi-
cant achievements in most subfields of NLP, such as Chinese word segmentation [7],
POS tagging [8, 9], morphosyntactic tagging [10], chunking [11, 12], named entity
recognition [13, 14], semantic role labeling [15], parsing [16] and dialogue act recog-
nition [17]. However, SLMs seldom show their power in WSD, due to theoretical
and practical obstacles when SLMs are applied to WSD.

The main idea of this paper is as follows. We first construct a graph for the
sentence, where the vertex is the word in the sentence, and the edge represents
the label dependency between words. The graph can be a simple one, such as the
natural sequence of the sentence, or a more complicated one, such as the dependency
parsing tree of the sentence. Then, we learn the model on the graph using various
SLMs. We develop the models as well as features in an incremental fashion to better
reflect the label dependency among words. The main contributions of this paper
lie in:

1. Proposing a comprehensive and unified solution for WSD based on SLMs, includ-
ing hidden Markov model (HMM), maximum entropy Markov model (MEMM),
conditional random field (CRF) and tree-structured conditional random field
(TCRF).

2. Applying a beam search to the methods based on HMM and MEMM, which
reduces the time complexity of prediction from O(TN2) to O(TR2), where N is

3 In the context of WSD, the label of the word refers to the sense of the word.
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the number of different senses in the dictionary, at least tens of thousands, and
R is the maximum number of senses of a word, about dozens.

3. Proposing a smoothing strategy to alleviate data sparseness in HMM and
MEMM.

4. Proposing approximate training for CRF, which reduces the time complexity of
training of CRF from O(mLTN2) to O(mLTR2).

5. Parallelizing training of CRF to reduce actual running time.

6. Generalizing disambiguation structure from line chain to dependency parsing
tree.

2 WORD SENSE DISAMBIGUATION

The history of automatic WSD is almost as long as that of the computer. After over
60 years of research, WSD is still an open problem [1, 2].

2.1 Basics of Word Sense Disambiguation

The aim of automatic WSD is to enable computers, instead of humans, to dis-
ambiguate word sense automatically. The formal definition of WSD is, given dic-
tionary D and a text T consisting of some words (w1, w2, . . . , wn), WSD system
determines senses of all words or some words in the text T , i.e. determines a map-
ping A from word to sense satisfying A(i) ⊆ SenseD(wi), where SenseD(wi) is the
set consisting of all senses of word wi in dictionary D, and A(i) is the set consisting
of proper senses of word wi in given context. Mapping A can assign more than one
sense for word wi, although typically only one sense is assigned. This definition does
not mention the part-of-speech (POS) of the target word, but the POS is usually
provided before WSD. POS tagging is closely related to WSD, and POS tagging is
a well-studied problem with accuracy over 95 %, thus the separation of POS tagging
from WSD can fully expose the hardest core of WSD.

Evaluation is an important part of WSD research. Senseval/Semeval [18], start-
ing from 1998, is the de facto standard evaluation in WSD field, which provides
consistent dataset, dictionary and evaluation measure for comparing different WSD
systems. Senseval/Semeval includes two types of WSD evaluation. One is lexi-
cal sample WSD, in which the system is required to disambiguate some words in
a given text, and typically one sentence only contains one target word. The other is
all-words WSD, in which the system is required to disambiguate all open words, i.e.
noun, verb, adjective and adverb, in the text. The evaluation measures include cov-
erage C, precision P , recall R and F1 value, in which the most important measures
are recall R and F1 value.

Dictionary is the basis of WSD, and Senseval/Semeval adopts WordNet [3] in
usual. In WSD, the candidate sense sets of different target words are usually dif-
ferent, and WordNet is often criticized to be too fine-grained for WSD, so it is very
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difficult to label the corpus, even by humans. Inter-annotator agreement (IAA) is
the measure to evaluate the quality of sense labeled corpus. For sense-labeled corpus
with WordNet as the dictionary, IAA is usually between 0.67 and 0.80 [19, 20, 21].
Since the level of automatic WSD is much lower than human, IAA is usually re-
garded as the upper bound of WSD system, while the simplest methods, such as
most frequent sense (MFS), are usually regarded as lower bound of WSD system.

2.2 Problem in Word Sense Disambiguation

WSD can be transformed to the classification problem in machine learning. In
general classification problem, the candidate label sets of different targets are the
same. However, the candidate sense set changes with target word in WSD, which
results in specific difficulties. For example, according WordNet, the word “man” has
two POSs, i.e. noun and verb. The noun “man” has 11 senses, and the verb “man”
has 2 senses, as shown in Table 1. The senses of word “see” are shown in Table 2.

Man

Noun
1. an adult male person
2. a member of a military force
3. the generic use of the word to refer to any human being
. . .

Verb
1. take charge of a certain job
2. provide with men

Table 1. Senses of word “Man”

See

Noun
1. the seat within a bishop’s diocese where his cathedral is located

Verb
1. perceive by sight or have the power to perceive by sight
2. perceive mentally, as of an idea
3. perceive or be contemporaneous with
. . .

Adverb
1. compare, used in texts to point the reader to another location

Table 2. Senses of word “See”

There are totally 111 2234 senses5 in WordNet. If viewed as a classification
problem, WSD is to the determine the right sense for each word from 111 223 senses,

4 WordNet 1.7.1.
5 WordNet is organized by synonym set, synset for short, which is equivalent to sense.
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which constitutes a challenge for any classifier. Thus, the mainstream WSD systems
have to divide the sense space, and disambiguate each word independently. For the
sentence “The man saw me looking at the iron bars .”, we should build five classifiers
for “man”, “see”, “look”, “iron” and “bar”, respectively, as shown in Figure 1.

the man see me look at the iron bar .

Figure 1. Point-wise classification

Figure 1 applies to any point-wise labeling problem in natural language, of course
including WSD. The square represents observation, such as word in the sentence, and
the circle represents label, such as sense, POS or anything else. The sense dictionary,
such as WordNet, usually does not contain non-content words, but we also assign
a pseudo sense to every non-content word for the sake of unified representation.
Although the division of sense space results in feasibility of point-wise classification
methods, it sacrifices the label dependency among words, which embodies the fluency
of semantic expression and helps disambiguation.

For general NLP tasks other than WSD, researchers usually employ SLMs to en-
code the label dependency. Now we consider to POS tag words in the above sentence.
The candidate POS set of “The” is {pronoun}, the set of “man” is {noun, verb},
the set of “see” is {noun, verb, adverb}, and so on. Although the candidate POS set
also changes with target word, the universal POS set is not large, typically including
tens of POSs. Therefore, we can take universal POS set as the candidate label set
of all words in the sentence to maintain the homogeneity of label space, which is
required by most unified statistical learning methods, such as HMM and CRF. The
sequence classification are shown in Figure 2.

In Figure 2, the label dependencies are encoded directly in the model, which
makes SLMs the state-of-the-art in many NLP tasks, such as POS tagging, named
entity recognition and chunking. The success of SLMs is partly due to the relatively
small number of labels in the domain. For example, POS tagging has dozens of
labels, the named entity recognition has at most dozens of labels, and the BIO-
fashioned chunking has only three labels.

Unfortunately, WSD has a large number of labels. As mentioned before, Word-
Net contains 111 223 senses, and even in SemCor [22] there are 25 846 different
senses. Thus, the universal label set in Figure 2 contains at least tens of thou-
sands elements. The large universal set results in extremely high complexity both
in time and space, which is far beyond the capacity of modern computers. In ad-
dition, the large universal set causes serious data sparseness, which is not wanted
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the man see me look at the iron bar .

Universal

label set

Figure 2. Sequence classification

in machine learning. Thus, SLMs are not directly available for WSD, and this pa-
per explores the WSD methods based on SLMs, especially probabilistic graphical
models.

3 RELATED WORK

Until now, there is little research on semantic disambiguation involving SLMs. Be-
fore the emergence of Senseval/Semeval, several scholars used HMM to disambiguate
words. For example, Segond et al. [23] uses HMM to disambiguate semantic tags
of WordNet, while WSD traditionally adopts senses, instead of semantics tags, as
inventory, and thus [23] is not WSD in a usual sense. In addition, there are only
45 semantic tags, which are several orders of magnitude less than senses. Loupy
et al. [24] disambiguates word sense using the linear combination of näıve Bayes
model and first order HMM. Training dataset and test dataset are 95 % and 5 % of
SemCor, respectively. Because above mentioned researches do not employ standard
settings of WSD, their results are not comparable.

The system LIA-Sinequa-AllWords developed by Crestan et al. [25] attends the
EAW of Senseval-2001, with recall 0.618 (ranked No. 3/22). This work continues
the research of Loupy et al. [24], and method is divided into two steps. The first
step labels words with semantic tags in WordNet according to lemma, using first
order HMM and second order HMM, and the second step labels words with synsets
in WordNet according to lemma and semantic tag obtained in first step, using näıve
bayes model (zero order HMM). The experimental results show that the labeling
with two steps does not improve the WSD performance compared with our directly
modeled HMM, cf. Section 5 for the model and Section 9.2 for the experimental
results.

Molina et al. [26, 27] proposes another method based on HMM to disambiguate
word sense, the system [26] is evaluated on the data of EAW of Senseval-2001, with
recall 0.602, and the system [27] attends EAW of Senseval-2004, with recall 0.609
(ranked No. 7/26). Molina first uses lex sense as label to reduce the search space, and
then maps the lex sense to synset to accomplish WSD. In WordNet, there is one-to-
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one correspondence between synset and sense key, whose form is lemma%lex sense,
such as interest%1:09:00, where lex sense is composed of several numbers separated
by colons. Every sense of lemma corresponds to a lex sense, but lex sense of different
words can be identical. The number of lex sense is much smaller than synset, and
thus the search space is reduced significantly. Lex sense of word is obtained by
prediction of HMM, then lemma and lex sense is concatenated to get sense key, and
finally sense key is mapped to synset. However, the commonness between same
lex sense of different lemmas is rather coincidental, without any linguistic support,
and thus the performance of this method is only comparable with baseline system
MFS.

Deschacht and Moens [28] exploits hypernym hierarchy in WordNet to disam-
biguate word sense using CRF. Since there are only several labels in each level, the
label space is reduced efficiently. But this method is only applicable to noun and
verb, because adjective and adverb have no hypernym. Duan et al. [29] labels word
with two sememes in HowNet [30] using two-layered CRF, and two sememes are
concatenated to get sense of the word. There are about 1 500 sememes in HowNet,
which is much fewer than number of senses in HowNet, tens of thousands, and so la-
bel space is reduced. But, this method exploits the particular structure of HowNet,
which is only applicable to Chinese, and thus this method cannot be generalized to
other languages. Reichartz and Paass [31] labels noun and verb with 45 semantic
tags in WordNet using CRF. Similar to [23], this method is not WSD in usual sense.
Hatori et al. [32] builds the feature-forest model, which they claim to have the same
power as CRF, for WSD, and the model is trained by a maximum entropy estima-
tor [33, 34]. This method is evaluated on the data of EAW of Senseval-2004, with
recall 0.655.

In a word, SLMs are not fully explored for WSD, and this paper tries to make
some useful attempts in this field.

4 STRUCTURED LEARNING METHODS

Machine learning methods, referring to classification methods exclusively in this
paper, are methods to learn a function f : X → Y , which maps the element x of do-
main X to the element y of codomain Y . Codomain of point-wise learning methods
can be −1, 1 (binary classification), multinomial value (multinomial classification)
or real value (regression). Meanwhile, for SLMs, the element y in codomain Y has
internal structure, such as linear chain, tree or general graph. SLMs can be divided
into three kinds, the first kind of SLMs includes those based on probabilistic graphi-
cal models, such as Hidden Markov Model (HMM) [35], Maximum Entropy Markov
Model (MEMM) [36], and Conditional Random Field (CRF) [8]; the second includes
methods based on maximum margin, such as Maximum Margin Markov Network
(M3N) [37] and Support Vector Machine for Interdependent and Structured Out-
put Spaces (SVMStruct) [16]; the third includes other methods, such as Structured
Perceptron (SP) [11] and Search-Based Structured Prediction (SEARN) [13].
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Natural language is structured, while SLMs can reflect the structure in lan-
guage directly by graph. Thus, there is a large number of works on NLP tasks
using SLMs, and new developments in specific domains arise frequently, therefore
an exhaustive survey is unlikely to be presented in this paper. Besides the classic
works on NLP tasks using SLMs, we present some recent advances on this regard
from two aspects.

The former line of research focuses on the improvement of the model while
validating on NLP tasks. Gimpel and Smith [38] proposes softmax-margin CRF
by incorporating a task specific cost function into CRF, which highlights the con-
nections between CRF and max-margin learning, and their results are validated
on named entity recognition. Berg-Kirkpatrick et al. [39] add features to gener-
ative model by turning the component multinomial into a miniature logistic re-
gression model, which overcomes the shortcoming that generative SLMs can only
exploit multinomial observations, and the results show that the proposed model
outperforms significantly its basic counterparts in POS tagging, grammar induc-
tion, word alignment and word segmentation. Gimpel et al. [40] combines dis-
tributed computing and rapidly converging online algorithm to speedup SMLs for
NLP, which is promising in large-scale NLP tasks. The latter line of research fo-
cuses on the application of structured learning methods to emerging NLP tasks,
especially in social media. Social media and user-created web content are pro-
ducing enormous quantities of text in electronic form. SLMs are widely used in
NLP tasks related to social media, such as Twitter retrieval [41], POS tagging in
Twitter [42], user profiling [43] and name disambiguation [44]. For the most re-
cent literature on NLP tasks using structured learning, interested readers can refer
to [45, 46].

4.1 Basics of Probabilistic Graphical Models

This paper focuses on application of SLMs to WSD. Specifically, they are HMM,
MEMM, CRF and TCRF, and these models belong to the first category of SLMs,
so we quickly go through the basics of probabilistic graphical models.

Probabilistic graphical models combine graph theory with probability theory,
describe the dependency among variables, and define the decomposition of the joint
probability of multiple variables in the graph. Probabilistic graphical model can be
represented by G = (V,E), where V is the set of all vertices in the graph, E ⊆ V ×V
is the set of all edges in the graph. Every vertex i in V is a random variable vi, and
every edge j in E represents the dependency between the two vertices connected by
that edge. Probabilistic graphical model is typically divided into directed graphical
model and undirected graphical model. Directed graphical model decomposes the
joint probability of all variables into product of local conditional probabilities.

p(v) =
∏
i∈V

p(vi|vπ(i)), (1)
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where v represents all variables in V, π(i) is the set consisting of parent nodes of i.
Undirected graphical model decomposes the joint probability of all variables into
product of potential functions on cliques.

p(v) =
1

Z

∏
k

ψk[Ck(v)], (2)

where Ck(v) is the clique in the undirected graphical model, ψk is the potential func-
tion on clique Ck(v), Z is the normalization factor. Clique is the fully connected
subgraph in the undirected graph model, and is typically maximal in the sense that
there are no other variables whose inclusion preserves its fully connected property.
Potential function is a non-negative real value function on the clique. HMM and
MEMM belong to directed graphical model, while CRF and TCRF belong to undi-
rected graphical model, and these models will be tailored for WSD in the following
paper.

5 DISAMBIGUATION METHOD BASED
ON HIDDEN MARKOV MODEL

5.1 Model

HMM [35] is a directed graphical model, as shown in Figure 3.

y1

xTx2x1

yTy2

Figure 3. Directed graphical model for hidden Markov model

In directed graphical model, circle represents random variable, where circle with-
out shadow is unobservable random variable, and circle with shadow is observable
random variable. Edge represents the dependency between two random variables.
According to Equation (1), joint probability of HMM can be decomposed as

p(x1, . . . , xT , y1, . . . , yT ) = p(y1)p(x1|y1)p(y2|y1)p(x2|y2) . . . p(yT |yT−1)p(xT |yT ), (3)

where xt represents the observation of tth word, and yt represents the label of tth

word in the sentence. Usually, HMM can only employ multinomial observation, and
there are several options, such as lemma, POS or the concatenation of lemma and
POS. By preliminary experiments, we adopt the concatenation of lemma and POS,
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since lemma and POS are the two most important features for WSD. There are
also options for the label of word, such as semantic tags in the WordNet [23, 31],
lex sense [26, 27]. However, semantic tags is too coarse for WSD, and modern WSD
systems are usually evaluated with WordNet, so we do not adopt semantic tags as
the label. As mentioned in Section 3, the commonness between same lex sense of
different lemmas is rather coincidental, without any linguistic support, and so we do
not adopt lex sense either. Finally, we use sense(synset) in WordNet as the label of
word. We train the HMM by supervised learning, i.e. calculating the probabilities
in HMM by maximum likelihood estimation from the training corpus.

In general, the label spaces of different variables in HMM should be identical,
so we have to merge all senses of all words into a universal sense set. Unfortunately,
the universal sense set contains at least tens of thousands elements, which results in
extremely high time complexity in prediction of HMM. The prediction of HMM is
usually done with Viterbi algorithm, whose time complexity is O(TN2), where T is
the length of the sentence, and N is the number of labels. Now N is at least tens of
thousands, so the time complexity is far beyond the capacity of modern computers.
We exploit the sparseness of the label space to reduce the time complexity as follows.

5.2 Beam Search

The prediction of HMM can be formulated as

ŷ1, . . . , ŷT = argmax
y1,...,yT

p(y1, . . . , yT |x1, . . . , xT ) = argmax
y1,...,yT

p(x1, . . . , xT , y1, . . . , yT ).

(4)
The idea of Viterbi algorithm is to find the most probable path in the label

space, and the example label space is shown in Figure 2. The high time complexity
comes from the large universal sense set. However, the label space is sparse, since
a word has at most tens of senses, we can only search those actual senses of the
word, without regard to the unrelated ones, which results in beam search Viterbi
algorithm. We redraw the label space of beam search in Figure 4.

In Figure 4, the black block represents the actual senses of corresponding word,
and we assign a pseudo sense to each non-content word to maintain the homogeneity
of the label space, which is denoted by a black line. The beam search Viterbi
algorithm is shown in Table 3.

The input of the algorithm contains two parts, one is the observation sequence,
and the other is the parameters of HMM, i.e. S, V,A,B,Π, where

• S = {s1, . . . , sN} is the universal sense set,

• V = {v1, . . . , vM} is the set consisting of all lemma+POS in the training corpus,

• A = {aij}, aij = p(yt+1 = sj|yt = si), 1 ≤ i, j ≤ N is the matrix of sense
transition probability,

• B = {bj(k)}, bj(k) = p(xt = vk|yt = sj), 1 ≤ j ≤ N , 1 ≤ k ≤ M is the matrix
of sense-lemma+POS emission probability, and
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the man see me look at the iron bar .

Universal 

label set

Figure 4. Beam search

Input:
Observation sequence x1, . . . , xT
Parameters S, V,A,B,Π

Output:
Optimal label sequence ŷ1, . . . , ŷT

Algorithm:
01: FOR i FROM 1 TO N that satisfies si ∈ S(x1)
02: δ1(i) = πibi(x1)
03: ψ1(i) = 0
04: FOR t FROM 2 TO T
05: FOR j FROM 1 TO N that satisfies sj ∈ S(xt)
06: δt(j) = max1≤i≤N,si∈S(xt−1)[δt−1(i)aij ]bj(xt)

07: ψt(j) = argmax1≤i≤N,si∈S(xt−1)[δt−1(i)aij ]

08: ŷT = argmax1≤i≤N,si∈S(xT )[δT (i)]

09: FOR t FROM T − 1 TO 1
10: ŷt = ψt+1(ŷt+1)
11: RETURN ŷ1, . . . , ŷT

Table 3. Beam search Viterbi algorithm for word sense disambiguation

• Π = {πi}, πi = p(y1 = si), 1 ≤ i ≤ N is the vector of initial sense probability.
The output of the algorithm is the optimal sense sequence.

δt(i) is the forward local optimal value for label i at step t, ψt(i) is backtracking
pointer for label i at step t, and S(xt) represents the set of actual senses of observa-
tion xt. Lines 01–03 initialize the forward local optimal value δ1(i) and backtracking
pointer ψ1(i). Lines 04–07 calculate δt(i) recursively from beginning to end, and the
search space is restricted in the possible senses of the corresponding word. Line 08
gets the optimal sense of last word. Lines 09–10 get all other optimal senses by back-
tracking. The time complexity of Viterbi algorithm is dominated by Lines 04–07,
and it is O(TN2) in general. After adopting beam search, it bcecomes O(TR2),
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where R = maxxt∈V |S(xt)|, the number of senses of the most polysemous word, is
about dozens, while N is at least tens of thousands.

In speech recognition field, similar techniques [47, 48] have been used to keep only
a subset of promising candidates at every step, instead of retaining all candidates.
However, this is the first time that beam search is applied in WSD explicitly.

5.3 Smoothing Strategy

In the HMM for WSD, the matrix of sense transition probability and the matrix
of sense-word emission probability are both sparse. Viterbi algorithm calculates
recursively local optimal value δt(j) according to Line 06 in Table 3, and δt(j) is the
product of a number of transition probabilities and emission probabilities. If any of
these probabilities is zero, then δt(i) is zero, which makes the path impossible.

After beam search is applied, emission probability is not zero any more, but
transition probability still could be zero. That is to say, beam search reduces the
search space to a denser one, but the “beam” itself is still sparse. Now, we smooth
the reduced search space – beam, instead of reducing it further. If the bisense sisj
does not occur in training set, due to data sparseness of training data, i.e. aij = 0
by maximum likelihood estimation, then we assign aij a very small value using
smoothing strategy as follows.

a∗ij =


γ

C(sisj)∑
s:s∈S(xt),C(sis)>0 C(sis)

if si ∈ S(xt−1), sj ∈ S(xt) and C(sisj) > 0,

(1− γ)
F (sj)∑

s:s∈S(xt),C(sis)=0 F (s)
if si ∈ S(xt−1), sj ∈ S(xt) and C(sisj) = 0,

0 if si /∈ S(xt−1) or sj /∈ S(xt),

(5)
where C(sisj) represents the number of occurrences of sisj in the training set, and
F (sj) represents the frequency of sense in dictionary, such as WordNet. This smooth-
ing strategy is a kind of back-off smoothing, which is similar to Katz’s back-off [49].
When the bisense does not occur in the training corpus, we resort to the unisense
model. However, rather than using the unigram model from original corpus as in
Katz’s back-off, we use the statistics in the dictionary, such as WordNet, to better
reflect the distribution of senses.

When si /∈ S(xt−1) or sj /∈ S(xt), the transition probability a∗ij is not used by
beam search, and so it is set to be zero. When si ∈ S(xt−1) and sj ∈ S(xt), there
are two cases, one is that sisj does occur in the training corpus, i.e. C(sisj) > 0,
and the other is that sisj does not occur in the training corpus, i.e. C(sisj) = 0. We
normalize C(sisj) with statistics from train corpus for the former case, and F (sj)
with frequency in WordNet for the latter case. All a∗ij should sum up to one, and
so we introduce an empirical parameter γ to balance the importance of the model
from training corpus and the back-off model from WordNet. The former reflects
the real sense transition, so γ should be a real number close to 1. In preliminary
experiments, we try 0.9, 0.95, 0.99, 0.999 and find that the final result is not sensitive
to γ. Finally, we set γ = 0.999 in the experiments.
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6 DISAMBIGUATION METHOD BASED ON MAXIMUM ENTROPY
MARKOV MODEL

The disambiguation method based on HMM embodies the one step dependency
between senses of consecutive words, but the observation of HMM can only be
multinomial value, for the example sentence, its observation sequence is

the DT man NN see VB me PRP look VB at IN the DT iron NN
bar NN . PUNC

However, overlapping non-independent observations (features), such as local col-
location and bag-of-words, are very important for WSD [50, 51, 52]. MEMM [36]
compensates the disadvantage of HMM in this regard, and so we propose the dis-
ambiguation method based on MEMM.

6.1 Model and Solution

HMM embodies dependency between labels, maximum entropy model (ME) [53] can
exploit non-independent features, while MEMM combines the merits of HMM and
ME. MEMM employs ME to represent the conditional probability of current label
given current observation and previous label, i.e. pyt−1(yt|xt), where observation xt
is the feature vector, which can include non-independent features. MEMM can be
treated as directed graphical model, as shown in Figure 5.

y1

xTx2x1

yTy2

Figure 5. Directed graphical model for maximum entropy Markov model

According to Equation (1), the joint probability of MEMM can be decomposed
into

p(x1, . . . , xT , y1, . . . , yT ) = p(x1)p(y1|x1)p(x2)p(y2|x2, y1) . . . p(xT )p(yT |xT , yT−1). (6)

MEMM for WSD includes four parameters S, V,M,Π, where

• S = {s1, . . . , sN} is the value set of label yt, i.e. universal sense set in WSD,

• V is the vector space of observation (feature vector) xt, and the features are
defined in Section 6.2,
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• M = {pyt−1(yt|xt) : yt−1 ∈ S} is the set of ME models, and

• Π = pBegin(y1|x1) is the initial ME model.

ME model is formalized as

pyt−1(yt|xt) =
1

Z(xt)
exp

{∑
i

θifi(yt, xt)

}
, (7)

where Z(xt) is the local normalization factor for step t, and fi(yt, xt) is the local
feature, and θi is the weight of fi(yt, xt). Different from HMM, MEMM is a sort
of machine learning framework, instead of a unified model. The joint probabil-
ity is the product of multiple separate ME models, and each ME model is trained
independently. ME model pyt−1(yt|xt) is obtained by first collecting all yt, xt (label-
observation pairs) immediately after label yt−1 and then training with learning al-
gorithm of ME, such general iterative scaling [54]. The prediction of MEMM is
formalized as

ŷ1, . . . , ŷT = argmax
y1,...,yT

p(y1, . . . , yT |x1, . . . , xT ) = argmax
y1,...,yT

p(x1, . . . , xT , y1, . . . , yT )

= argmax
y1,...,yT

p(y1|x1)p(y2|x2, y1) . . . p(yT |xT , yT−1) = argmax
y1,...,yT

∏
t

pyt−1(yt|xt)

= argmax
y1,...,yT

∏
t

1

Z(xt)
exp

{∑
i

θifi(yt, xt)

}
. (8)

The prediction of MEMM can be solved by Viterbi algorithm, so the search
space of MEMM is similar to that of HMM, cf. Figure 2, which also results in high
time complexity. This is again solved by beam search, which is similar to that of
HMM, cf. Section 5.2. The details are omitted here. Moreover, data sparseness
also exists in disambiguation method based on MEMM, since the ME model cannot
calculate pyt−1(yt|xt) if yt has never occurred immediately after yt−1 in the training
corpus. This problem is also solved by smoothing strategy similar to HMM, and its
equation is presented as follows.

p∗si(sj |xt) =


γ

psi (sj |xt)∑
s:s∈S(xt),C(sis)>0 ps(sj |xt)

if si ∈ S(xt−1), sj ∈ S(xt) and C(sisj) > 0,

(1− γ)
F (sj)∑

s:s∈S(xt),C(sis)=0 F (s) if si ∈ S(xt−1), sj ∈ S(xt) and C(sisj) = 0,

0 if si /∈ S(xt−1) or sj /∈ S(xt).
(9)

6.2 Features

The main advantage of MEMM over HMM is the introduction of overlapping non-
independent features, which reflect our prior knowledge about WSD and play a very
important role in WSD. We design six types of features based on [52, 55].
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1. POSs of neighbor words. Pi (P−i) represents the POS of ith word to the right
(left) of the target word w. The employed features include P−3, P−2, P−1, P0,
P1, P2, P3. For example, in the lemmatized and POS tagged sentence “the/DT
man/NN see/VB me/PRP look/VB at/IN the/DT iron/NN bar/NN ./PUNC”,
the target word is “bar”, and the features are 〈IN,DT,NN,NN, ., ε, ε〉, where
ε indicates that the position is out of the sentence.

2. Local collocation. Cij represents the concatenation of lemmas of ith word to jth

word, and the employed features include C−1,−1, C1,1, C−2,−2, C2,2, C−2,−1, C−1,1,
C1,2, C−3,−1, C−2,1, C−1,2, C1,3. For the example sentence, the C−2,1 feature of
target word “bar” is the iron bar.

3. Hypernym links of neighbor words. y is the hypernym of x, means that x is a kind
of y. For example, fruit is the hypernym of banana. Moreover, the hypernym
may also have its hypernym, and thus a hypernym link can be constructed. We
take the hypernym links of the most frequent sense of three neighbors before and
after the target word as features, so as to generalize lemma and alleviate data
sparseness. For the example sentence, the words having hypernym in neighbors
of target word “look” are “man”, “see” and “iron”, and their hypernym links are
〈man, male, person, organism, living thing, object, entity, causal agent, entity〉,
〈see, perceive〉 and 〈iron,metallic element, chemical element, substance, entity〉,
respectively.

4. Semantic tags of neighbor words. Open words, i.e. adjective, adverb, noun and
verb, are divided into more refined categories in WordNet. These categories are
usually called semantic tags, and there are totally 45 semantic tags in WordNet,
including 26 semantic tags for noun, 15 for verb, 3 for adjective, and 1 for
adverb. We take the semantic tags of the most frequent sense of three neighbors
before and after target word as features, also to alleviate data sparseness. For
the example sentence, the words having hypernym in neighbors of target word
“look” are “man”, “see” and “iron”, and their semantic tags are 〈noun.person〉,
〈verb.perception〉 and 〈noun.substance〉, respectively.

5. Verb frames of neighbor words. Verb frame is the type of sentence in which the
word can be used, and we take the verb frames of the most frequent sense of
verb in three neighbors before and after target word as features. For the example
sentence, the verbs in neighbors of target word “look” are “saw”, and its verb
frames are 〈2, 8, 9〉, where 2nd verb frame is “Somebody –s”, 8th verb frame is
“Somebody –s something”, and 9th verb frame is “Somebody –s somebody”.

6. Bag of words. We take all words in the sentence as features.

7 DISAMBIGUATION METHOD BASED
ON CONDITIONAL RANDOM FIELD

Compared with HMM, MEMM can integrate overlapping non-independent features,
which contributes to performance improvement of WSD, as shown in experiments



Word Sense Disambiguation: A Structured Learning Perspective 1273

(cf. Section 9.2). However, MEMM normalizes the probabilities locally, which incurs
“label bias” [56]. Label bias makes the state with low entropy tend to ignore context,
which is in conflict with WSD that relies on the context, and limits the performance
of WSD system. CRF [8] overcomes label bias by global normalization, but with
very high time complexity. After adopting universal sense set, the training of CRF
cannot be accomplished on standalone workstation. We reduce time complexity of
CRF by approximate training, and further reduce actual running time from 145 days
to 8 days by parallelizing CRF training algorithm.

7.1 Label Bias in the Disambiguation Method Based on MEMM

Many probabilistic models with independently trained classifiers suffer from label
bias, such as classical probabilistic automata [57], discriminative Markov model [56],
and MEMM. We explain label bias problem with the example sentence in the dis-
ambiguation method based on MEMM, as shown in Figure 6.

me look at

look

#1

me

look

#2

at

Figure 6. Label bias in disambiguation method based on maximum entropy Markov model

For simplicity, we only show the reduced label space of an excerpt from the
example sentence. Suppose the verb “look” has only two senses6, represented by
look#1 and look#2 in the circle, respectively. Look#1 means perceiving with at-
tention, for example, “Look at your child”. Look#2 means having a certain outward
aspect, for example, “The kids make me look happy.”. Obviously, look#1 is the cor-
rect sense for the target word “look” in the example sentence. The “me” and “at”
in the circle are the pseudo senses of words “me” and “at”.

When sense “me” receives the word “me”, there are two outgoing probabilities
from sense “me”, which embody the sense transition me–look#1 and me–look#2,
respectively, and we denote them by p1 and p2. When sense look#1 and sense look#2
receives the word “look”, both of them have only one outgoing transition, so sense
look#1 and sense look#2 have no choice but to pass all their probability mass to next
sense. This is because the discriminative model, such as MEMM, is conditioned on
the observation, instead of generating it. It means that the transition probabilities
look#1–at and look#2–at are always 1.0, without regard to next word “at”, i.e. the

6 Actually, the verb “look” has 10 senses in WordNet.
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senses with a single outgoing transition effectively ignore their observation. However,
sense look#1 has seen sense “at” often in the training corpus, while sense look#2
has almost never seen sense “at”. The probability of upper path is p1 ∗ 1.0 = p1,
and the lower is p2 ∗ 1.0 = p2. Therefore, the disambiguation result totally depends
on the number of occurrences of sense transitions me–look#1 and me–look#2, and
the sense transitions look#1–at and look#2–at are totally discarded, but it is not
reasonable. In addition, the number of occurrences of me-look#1 may be smaller
than that of me–look#2, since there are a lot of sentences like “. . . make me look
. . . ” in English. So look#2 is likely to be chosen in the example sentence when
MEMM is applied, but it is wrong.

Generally speaking, label bias makes the state with low entropy tend to ignore
observation due to local normalization, and CRF overcomes this shortcoming by
global normalization.

7.2 Model

CRF is a typical undirected graphical model, which is usually represented by factor
graph, as shown in Figure 7.

y1

xTx2x1

yTy2

x3

y3

Figure 7. Factor graph of conditional random field

In factor graph, circle represents random variable, where circle without shadow
is unobservable variable, and circle with shadow is observable variable. Black square
represents factor, i.e. potential function. According to Equation (2), joint probability
over labels given observations of CRF can be decomposed into

p(y1, . . . , yT |x1, . . . , xT ) =
1

Z(x1, . . . , xT )
exp

{∑
i

θiFi(y1, . . . , yT , x1, . . . , xT )

}
, (10)

where Z(x1, . . . , xT ) is global normalization factor, Fi(y1, . . . , yT , x1, . . . , xT ) is global
feature, and θi is weight of Fi(y1, . . . , yT , x1, . . . , xT ). Compared with local normal-
ization of MEMM, cf. Equation (8), CRF alleviates label bias by global normal-
ization. Training of CRF is to learn parameter θ1, . . . , θK . Given training data
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x
(i)
1 , . . . , x

(i)
T , y

(i)
1 , . . . , y

(i)
T

}
, solve

θ̂1, . . . , θ̂K = argmax
θ1,...,θK

∏
i

pθ1,...,θK

(
y
(i)
1 , . . . , y

(i)
T |x

(i)
1 , . . . , x

(i)
T

)
= argmax

θ1,...,θK

∑
i

{∑
j

θjFj

(
y
(i)
1 , . . . , y

(i)
T |x

(i)
1 , . . . , x

(i)
T

)
− logZ

(
x
(i)
1 , . . . x

(i)
T

)}
. (11)

We denote the objective function, i.e. the right part of Equation (11), by L(θ1,
. . . , θK). This is an unconstrained optimization problem, which can be solved by
L-BGFS algorithm [58], one kind of quasi-Newton method, while L-BGFS requires
the partial derivative of target function, and it is

∂L(θ1, . . . , θK)

∂θj
=
∑
i

∑
t

∑
yt−1,yt∈S

pθ1,...,θK

(
yt−1, yt|x(i)1 , . . . , x

(i)
T

)
fj

(
yt−1, yt, x

(i)
t

)
−
∑
i

∑
t

fj

(
y
(i)
t−1, y

(i)
t , x

(i)
t

)
. (12)

Equation (12) determines time complexity of CRF training O(mLTN2), where
m is the number of iterations of L-BGFS, L is the number of training samples, T is
the average length of training samples. Actually, L, T,N correspond to the three
sums in the right hand of Equation (12). For WSD, N is the number of elements
in the universal sense set, at least tens of thousands, thus the training complexity
is by far out of the capacity of the standalone workstation.

7.3 Solution for High Complexity Training

The traversal in the square of label space results in high complexity, which corre-
sponds to the third sum in the right hand of Equation (12).

7.3.1 Approximate Training

The solution in CRF is inspired by beam search for Viterbi algorithm, cf. Section 5.2.
The pruning of search space is in the training phase of CRF, while that is in the
prediction phase of HMM. The word only has a few number of senses, denoted by

S(xt). When yt−1 /∈ S(x
(i)
t−1) or yt /∈ S(x

(i)
t ), the occurrence probability of observation
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pair yt−1yt is almost zero, i.e. pθ1,...,θK (yt−1, yt|x(i)1 , . . . , x
(i)
T ) ≈ 0, and so we obtain

∂L(θ1, . . . , θK)

∂θj
≈
∑
i

∑
t

∑
yt−1∈S(xit−1)

yt∈S(x(i)t )

pθ1,...,θK

(
yt−1, yt|x(i)1 , . . . , x

(i)
T

)
fj

(
yt−1, yt, x

(i)
t

)

−
∑
i

∑
t

fj

(
y
(i)
t−1, y

(i)
t , x

(i)
t

)
. (13)

Thus, the time complexity of CRF training is reduced from O(mLTN2) to
O(mLTR2), where R = maxxt∈V |S(xt)|, the number of most polysemous word.
R is about tens, while N is at least tens of thousands.

7.3.2 Parallel Training

Although approximate training reduces time complexity of CRF significantly, it is
still out of capacity of a standalone workstation when there is a large number of
samples. In experiments, one iteration of L-BGFS for CRF approximate training on
one CPU core costs 34.7 hours, and 100 iterations should cost about 145 days by esti-
mation. The objective function of CRF training, i.e. the right part of Equation (11),
is the sum over index of samples 1 ≤ i ≤ L. Thus, we can split the training set into
multiple subsets, calculate the objective function of subset on each CPU core, and
then calculate the sum of target function of subsets to get that of whole training
set [59]. The calculation of partial derivative of objective function can also be par-
allelized. The non-parallelizable part of the algorithm is only the optimization part
of L-BGFS, and so the training of CRF has a high degree of parallelization, which is
expected to obtain approximately linear speedup. The algorithm of parallel training
of CRF is shown in Table 4. The time complexity of prediction in CRF can also be
reduced from O(TN2) to O(TR2), which is similar to HMM and MEMM.

8 DISAMBIGUATION METHOD BASED ON TREE-STRUCTURED
CONDITIONAL RANDOM FIELD

Given the example sentence, disambiguation method based on vanilla CRF treats
the sentence as a linear chain, as shown in Figure 8.

However, the vanilla (linear-chain) CRF can only encode the dependency be-
tween adjacent words, which results in limitations. On one hand, the “content
word – non-content word” pair or even the “non-content word – non-content word”,
such as the look–at or at–the pair, is less important for CRF, since the non-content
word has only one pseudo sense. On the other hand, some long-distance depen-
dencies between content words, such as the look–bar pair, are not reflected in the
linear-chain CRF, since there is no direct relation between these two words in linear
word sequence, as shown in Figure 8. However, the word “bar” is the object of the
word “look”, so their disambiguation results should be related.
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Input:

Training data D =
{
x
(i)
1 , . . . , x

(i)
T , y

(i)
1 , . . . , y

(i)
T

}
Number of CPU cores P , number of iterations m

Output:

Optimized parameters θ̂1, . . . , θ̂K
Algorithm:

01: Generate initial parameter θ
(0)
1 , . . . , θ

(0)
K , and let l = 0

02: (Broadcast) Root process passes θ
(l)
1 , . . . , θ

(l)
K to all processes

03: Each process calculates target function Lp
(
θ
(l)
1 , . . . , θ

(l)
K

)
and

its partial derivative
∂Lp

(
θ
(l)
1 ,...,θ

(l)
K

)
∂θj

on its training subset Dp

04: (Reduction) Root process calculates the sum of Lp
(
θ
(l)
1 , . . . , θ

(l)
K

)
to get

L
(
θ
(l)
1 , . . . , θ

(l)
K

)
and the sum of

∂Lp
(
θ
(l)
1 ,...,θ

(l)
K

)
∂θj

to get
∂L
(
θ
(l)
1 ,...,θ

(l)
K

)
∂θj

05: Root process obtains θ
(l+1)
1 , . . . , θ

(l+1)
K by optimization

06: Let l = l + 1. If l = m, then terminate, else goto 02

Table 4. Parallel training of conditional random field

the            man              see              me             look             at               the              iron            bar             .                 

Figure 8. Factor graph of conditional random field with linear chain

Besides the surface linear chain structure, the sentence also has non-linear struc-
ture, which may reflect the long-distance dependency between words. In dependency
grammar [60], syntactic structure is composed of asymmetric binary relations, which
is call dependency relation. The subordinate word is call dependent, and the other
is call head. The dependency tree of the example sentence is shown in Figure 9.

s

s

punc

dep

obj

lex-mod

det

mod

the          man            see             me              look               at             the             iron             bar             .

ROOT

det

Figure 9. Dependency tree
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We replace the linear chain structure in CRF with dependency tree, and the
resulting probabilistic graphical model is call tree-structured conditional random
field (TCRF), as shown in Figure 10.

the            man               see              me             look               at             the             iron             bar             .

s

s

punc

dep

obj

lex-mod

det

mod

ROOT

det

Figure 10. Factor graph of conditional random field with tree structure

In TCRF, the labels of “look” and “bar” are connected directly, reflecting the
long-distance dependency between them. The training and prediction of TCRF is
similar to CRF, with some extensions. In addition, TCRF also employs approximate
training and parallelization for training, and beam search for prediction, which are
similar to CRF.

9 EXPERIMENTS

SLMs label all elements in the structure simultaneously, which prefers to be evalu-
ated by all-words WSD, rather than lexical sample WSD. English all-words WSD
tasks (EAW) in Senseval-2001 [61] and Semeval-2004 [20] are two fully-explored and
general-purpose evaluations with many attendees, and thus their datasets are used
in this paper, whose information is shown in Table 5.

Year Dictionary MFS Best result IAA No. words

Senseval-2001 WordNet 1.7 0.570 0.690 N/A 2 473

Senseval-2004 WordNet 1.7.1 0.609 0.651 0.725 2 037

Table 5. Test datasets of all-words WSD in Senseval/Semeval

EAW are also conducted in Semeval-2007 and Semeval-2010. There are two ver-
sions of EAW in Semeval-2007, and they are fine-grained EAW [62] (denoted by EAW
if there is no specific explanation) and coarse-grained EAW [63]. However, EAW in
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Semeval-2007 is much less influential than that of Senseval-2001 and Senseval-2004,
due to its fewer test instances (only 465 test instances), fewer attendee systems and
lower performance (recall 0.591) in similar settings. Coarse-grained EAW is inter-
esting, but this paper focuses on the fine-grained one. EAW in Semeval-2010 [64]
focuses on WSD in specific domain. So these datasets are not adopted in this paper.

EAW only provides a test dataset, but not a training dataset. At present, the
largest sense labeled corpus is SemCor [22], and we take the subsets Brown1 and
Brown2 in SemCor as the training set. These two subsets include 359 732 words,
in which all contents words (192 639) are labeled with senses in WordNet. For the
word not existing in the training set, we label it with most frequent sense (MFS)
in WordNet. The most important measures in WSD evaluation are recall R and F1

value. When coverage C = 1, recall R, precision P and F1 value are all equal. C = 1
holds in all methods proposed in this paper, and so we only take R as measure.

9.1 Experimental Settings

With the beam search, the time complexity of prediction in HMM and MEMM is
reduced significantly, and we run them on a standalone workstation. Smoothing
parameter γ is set to 0.999 in HMM and MEMM, which has been mentioned in
Section 5.3. General iterative scaling [54] is employed to train ME model in MEMM
with 100 iterations. The observation of HMM can only be multinomial value, and
lemma+POS is adopted as observation, while MEMM, CRF and TCRF can employ
overlapping non-independent features, cf. Section 6.2.

Training time complexity of CRF and TCRF is very high, which cannot be
accomplished on a standalone workstation with a general purpose training algorithm.
Even with approximate training, the training of CRF costs 145 days by estimation.
Thus, we use an enterprise-class parallel server, i.e. HP ProLiant DL 580 G7, to
train CRF, and the configuration of the server is shown in Table 6.

Hardware Software

CPU Xeron X7560 2.33 GHz Operating system Ubuntu 9.10 64-bit

No. CPU 4 Compiler GNU C++ 4.4.2

No. cores per CPU 8 Parallel MPICH2-1.3.2p1
Total No. cores 32 computing
Memory 64 GB environment

Table 6. Configuration of parallel server

20 cores are used to train CRF, and 100 iterations cost 200.7 hours (about
8 days). Meanwhile, one approximate training iteration costs 34.7 hours on one
core, and 100 iterations will cost 3 473.3 hours (about 145 days) by estimation.
Thus, the speedup is 3 473.3/200.7 = 17.3, which is approaching linear speedup. If
there are 200 cores, the training of CRF is expected to be done in one day. The
number of iterations of CRF training is an empirical parameter, which is determined
by validation set in this experiment. 10 % of Brown1 and Brown2 are selected
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randomly as validation set, and the remaining 90 % as training set. The learning
curve of CRF approximate training is shown in Figure 11.

Figure 11. Learning curve of CRF approximate training

In Figure 11, the recall rises from 0.394 to 0.620 after only one iteration, and then
enters a plateau. From 15th iteration, the recall rises slowly, it reaches maximum
0.655 at 41st iteration, and declines after 41st iteration, due to overfitting. In testing,
the number of iterations is set to be 41.

9.2 Experimental Results

The main results of our methods on EAW of Senseval-2001 and Senseval-2004 are
shown in Table 7. Performance of all methods proposed in this paper is between
baseline MFS and IAA. Baseline MFS takes the most frequent sense as label of
word, without regard to the context. Actually, MFS can be treated as näıve Bayes
model (NB) with observation being lemma + POS, and the method based on HMM
is sequential version of NB, with the same observation. Compared with NB, HMM
introduces one step label dependency, improving WSD performance by 5.2 percent
on EAW of Senseval-2001, by 1.6 percent on EAW of Senseval-2004.

The disambiguation method based on MEMM improves WSD performance fur-
ther, by 2.6 percent on EAW of Senseval-2001, by 2.9 percent on EAW of Senseval-
2004, which credits to the introduction of overlapping non-independent linguistic
features. Except the rank 1st of EAW of Senseval-2001, the method based on MEMM
outperforms all attendee systems in EAW of Senseval-2001 and Senseval-2004. The
rank 1st in EAW of Senseval-2001 is SMUaw [65], which obtains initial sense labeled
samples from SemCor and definition of WordNet, and then bootstraps on unlabeled
data on Internet, which is a sort of semi-supervised learning method. It is well
known that semi-supervised learning is an effective way to improve the performance
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Method Senseval-2001 Senseval-2004

HMM 0.622 0.625

MEMM 0.648 0.654

CRF 0.650 0.657

TCRF 0.664 0.668

Rank 1st 0.690 0.651

Rank 2nd 0.636 0.642

MFS 0.570 0.609

IAA N/A 0.725

Table 7. Recall of systems on EAW of Senseval-2001 and Senseval-2004

of machine learning methods, and it can also be applied to SLMs, but it is not the
point of this paper. Currently, the methods based on MEMM, as well as CRF and
TCRF, only employ a part of labeled samples in SemCor, and they are expected to
achieve better performance if bootstrapping on unlabeled data.

The method based on CRF is only slightly better than MEMM, reflecting that
label bias does not constitute a serious problem in WSD. After adopting dependency
tree as the underlying structure, the method based on TCRF improves performance
by 1.1 percent, due to direct embodiment of non-linear dependency between words.

Paired t-test is conducted to see if one system is significantly better than another,
and the system output of Rank 1st and Rank 2nd in EAW of Senseval-2004 are from
Rada Mihalcea’s webpage7.

MFS < HMM � Rank2 ≈ Rank1 ≈ MEMM ≈ CRF < TCRF . (14)

In the above formula, systems are sorted by recall in ascending order, “≈”
means p-value > 0.05, “<” means 0.01 < p-value ≤ 0.05, and “�” means p < 0.01.
A larger p-value indicates that the two systems are not significantly different from
each other.

Also explored is the performance of proposed methods on different POSs in EAW
of Senseval-2004, as shown in Figure 12. Adverb is the easiest to be disambiguated,
and is also the hardest to be improved. Adjective and noun have the similar perfor-
mance, and the hardest to disambiguate is verb. Except adverb, the performance
improvements of different POSs have similar trends, and the disambiguation method
based on TCRF achieves best performance on all POSs.

10 CONCLUSIONS

SLMs can encode the dependency among labels in structure, and this paper explores
application of SLMs in WSD systematically. Due to the homogeneity of label space
of SLMs, we have to take the universal sense set as label space, which results in
extremely high time complexity. It is usually impossible to solve directly the original

7 http://www.cse.unt.edu/∼rada/senseval/senseval3/data/Systems.Senseval3.tar.gz
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Figure 12. Performance on different part-of-speech in EAW of Senseval-2004

model based on SLMs on a standalone workstation, and this possibly accounts for
few researches on WSD using SLMs.

Beginning with the method based on HMM, this paper proposes for the first time
the complete solution for WSD based on MEMM, CRF and TCRF in an incremental
fashion, as sketched in Figure 13. The performance increases with the updates of
models, while the time complexity also increases dramatically. We propose beam
search, approximate training to reduce time complexity, to employ parallel training
to reduce actual running time, and to alleviate data sparseness with smoothing
strategy. After great effort, these models can be solved in reasonable time.
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Figure 13. Relation of structured learning methods for word sense disambiguation

From HMM to TCRF, the series of improvements in models contribute to an in-
crease in the performance, and three of them are significant:

1. the introduction of one step label dependency improves the performance by
1–5 percent which corresponds to extension from NB(MFS) to HMM;

2. the introduction of overlapping non-independent features improves the perfor-
mance by 2–3 percent, reflecting the importance of linguistic knowledge to WSD
which corresponds to extension from HMM to MEMM;

3. the introduction of tree structure improves the performance by about 1 per-
cent, reflecting the importance of non-linear dependency among words which
corresponds to extension from CRF to TCRF.
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Although the improvements in models bring a performance increase, the results
are not so exciting as expected. We give a possible reason for this. As stated be-
fore, point-wise learning usually disambiguates polysemous words in the sentence
independently, and SLMs aim to reflect the label dependency among words. Mean-
while, the dependency is based on statistics, whether in point-wise learning or SLMs.
Sense labeling by hand is a very hard labor, and there is no language with “ade-
quate” sense-labeled corpus. Moreover, the label space of each polysemous word is
different, and so the sense-labeled data for one word cannot be used by other words,
resulting in a serious data sparseness. In the largest sense labeled corpus SemCor,
only 83 words occur more than 100 times, and only 7 % bigram occur more than
once. In this situation, no machine learning can take a full advantage of “statistics”,
and even exhibits spurious effects [66].

In the future, we shall further explore SLMs for WSD from the following direc-
tions. The first is to apply the proposed models to coarse grained WSD. WordNet
has long been criticized for its too fine-grained senses, which is probably not required
by some practical NLP tasks. The coarse-grained inventory benefits not only prac-
tical NLP tasks, but also the SLMs, since the label space is reduced compared with
the fine-grained one. The second is to conduct detailed feature analysis. We still
need to figure out the contribution of different kinds of features in the model, and
to evaluate the proposed models and the state-of-the-art algorithms with the same
set of features, as it is done in [67], which helps to better understand the nature of
SLMs. The third is to employ other SLMs. For example, every decision in one-step
MEMM only depends on the previous label, if one of the previous labels is wrong,
then the performance of following classifiers will reduce significantly [68], even they
are nearly equal to be selected randomly, due to error accumulation. That is to
say, MEMM only exploits the optimal path, while SEArch-based structured leaRN-
ing, SEARN [13], exploits sub-optimal paths while training, which may improve the
disambiguation performance. The fourth is to solve the knowledge bottleneck of
WSD by using all possible language resources, such as Wikipedia, search engine and
parallel corpus.
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[60] Kübler, S.—McDonald, R.—Nivre, J.: Dependency Parsing. Morgan & Clay-
pool Publishers, 2009.

[61] Palmer, M.—Fellbaum, Ch.—Cotton, S.—Delfs, L.—Dang, H. T.: En-
glish Tasks: All-Words and Verb Lexical Sample. The Proceedings of the Second
International Workshop on Evaluating Word Sense Disambiguation Systems (SEN-
SEVAL ’01), 2001, pp. 21–24.

[62] Pradhan, S.—Loper, E.—Dligach, D.—Palmer, M.: SemEval-2007 Task 17:
English Lexical Sample, SRL and All Words. SEMEVAL, 2007.

[63] Navigli, R.—Litkowski, K.—Hargraves, O.: SemEval-2007 Task 07: Coarse-
Grained English All-Words Task. Proceedings of the 4th International Workshop on
Semantic Evaluations (SemEval ’07), 2007, pp. 87–92.

[64] Agirre, E.—Lopez de Lacalle, O.—Fellbaum, Ch.—Hsieh, S.-K.—
Tesconi, M.—Monachini, M.—Vossen, P.—Segers, R.: SemEval-2010
Task 17: All-Words Word Sense Disambiguation on a Specific Domain. Proceed-



1288 Y. Zhou, T. Wang, Z. Wang

ings of the 5th International Workshop on Semantic Evaluation (SemEval ’10), 2010,
pp. 75–80.

[65] Mihalcea, R. F.—Moldovan, D. I.: Pattern Learning and Active Feature Selec-
tion for Word Sense Disambiguation. The Proceedings of the Second International
Workshop on Evaluating Word Sense Disambiguation Systems (SENSEVAL ’01),
2001, pp. 127–130.

[66] Gale, W. A.—Church, K. W.: Poor Estimates of Context are Worse than None.
Proceedings of DARPA Speech and Natural Language Workshop, 1990, pp. 283–287.
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