
Computing and Informatics, Vol. 35, 2016, 299–337

COMBINING THE CONTINUOUS INTEGRATION
PRACTICE AND THE MODEL-DRIVEN
ENGINEERING APPROACH

Vicente Garćıa-D́ıaz, Jordán Pascual Espada
Edward Rolando Núnez-Valdéz, B. Cristina Pelayo G-Bustelo
Juan Manuel Cueva Lovelle

University of Oviedo
Department of Computer Science
C/ Calvo Sotelo
Oviedo, Spain
e-mail: garciavicente@uniovi.es

Abstract. The software development approach called model-driven engineering
has become increasingly widespread. The continuous integration practice has also
been gaining the importance. Some works have shown that both can improve the
software development process. The problem is that the model-driven engineering is
still a very active research topic lacking its maturity, what translates into difficulties
in optimal incorporation of the continuous integration practice in the process. We
present an experience report in which we show the problems we have detected in
a real project and how we have solved them. Thus, we increase the productivity
of development and the non-technical people are able to modify already deployed
applications. Finally, we incorporate an evaluation that shows the benefits of the
proposed union.

Keywords: Model-driven engineering, continuous integration, business users, do-
main-specific language, experience report

Mathematics Subject Classification 2010: 68U01, 68N01

300 V. Garćıa-Dı́az, J. Pascual Espada, E. R. Núnez-Valdéz et al.

1 INTRODUCTION

A common problem in computer science is the growth of software development
complexity due to customer demand for more features and fewer errors [26]. Fur-
thermore, due to continuous advancements in the technology, it has become nec-
essary to utilize software in multiple domains and professional areas. This leads
to problems such as development teams becoming experts in one particular area,
necessitating an adjustment period as the team tackles new challenges in other pro-
fessional areas. Additionally, there are also many technology platforms indicating
that development could be greatly optimized if we could reuse not only part of the
source code that is generated every day for different platforms, but also the exper-
tise acquired by ourselves or others in a specific domain [11]. Thus, to perform
the increasingly complex software development we consider hiring more staff. How-
ever, increasing our production capacity through the industrialization of software,
as seen in many other sectors, may be a better solution than increasing the volume
of developers [40].

Nevertheless, software engineering continually offers new tools that, when prop-
erly used, can help in the difficult task of developing software complying with the
triple constraint of a project management (scope, time and cost) that is cited in nu-
merous sources such as Frame [20] or the Project Management Institute (PMI) [51].
Thus, a relatively new software development approach called Model-Driven Engi-
neering (MDE) [33] (a.k.a. Model-Driven Development or Model-Driven Software
Development) has appeared.

MDE raises the level of abstraction of the traditional languages (e.g., C++ and
Java), allowing the use of concepts close to the domains of the problems. The
practice of Continuous Integration (CI) [3], which enables greater control of the
project status and identifies problems and errors early in the development cycle, is
also on the rise. Works such as Volter and Stahl [73] or Duvall et al. [18] have shown
that both tools improve the productivity of software development and the quality
of the final products, although a lack of research still remains.

The motivation for this work has its origin in a previous application of MDE [22],
which minimized the development time of food traceability systems tailored to the
specific needs of each customer. However, during the completion of that work we
noted the absence of tools for using CI in the development process through model-
driven initiatives. This observation prompted us to propose the following two tasks
that could have been helpful for both the development team and the customer:

• Integrate model-driven projects: the development team has been unable to suc-
cessfully carry out the practice of CI because the work was a model-driven
development rather than a code-driven one.

• Allow domain experts to modify software systems: changes in models represent-
ing the domain of the problem required the regeneration of all the artifacts and
the redeployment of the application; therefore, it was impossible for customers
to modify software systems by themselves without any help from technical staff.

Combining CI and MDE 301

However, these tasks were not completed successfully. The overall aim of this
work is to present a relation that combines CI and MDE, which is called Model-
Driven Continuous Integration (MDCI). To achieve MDCI, we created a prototype
for quantitatively evaluating the benefits of the approach. Thus, the two main
sub-objectives of this work are as follows:

• Integrate model-driven projects: the goal is for different members of the devel-
opment team to be able to properly integrate model-driven projects in a dis-
tributed and continuous way, as they do for traditional developments. This
objective would have many benefits, including risk reduction, bug fixes, better
relationships with customers, higher morale for the development team, improved
estimations, immediate availability of the latest version of code, improved col-
laborative capabilities of the team, and cost reduction1.

• Allow domain experts to modify software systems: the goal is for different ex-
perts in a domain to be able to change software models created for that domain in
a distributed way, causing applications to change dynamically and transparently
to the users of modeling tools. Thus, experts in the knowledge domain would be
allowed to modify the deployed applications themselves to meet customer needs.
This need has already been explored in works such as Volter [72]:

You want to develop application logic at a higher level of abstraction than
the level provided by the programming language use, for example because
you want domain experts to program.

Due to the use of CI, the present study goes a step further; allowing actions, such
as deploying the system, managing the version history of system models, gener-
ating change reports, notifying third parties, or creating tests, to be performed
in a manner that is transparent to domain experts.

The remainder of this paper is structured as follows: Section 2 presents an over-
view of MDE and CI concepts; Section 3 discusses some problems found in achieving
our objectives; Section 4 shows the proposed solution that led to the MDCI proto-
type; Section 5 offers a quantitative evaluation through three case studies; finally,
Section 6 indicates our conclusions and outlines the future work to be done.

2 STATE OF THE ART

2.1 Model-Driven Engineering

The history of software development is inevitably related to different generations of
programming languages, for instance, machine language, assembly language, proce-
dural languages, object-oriented languages and, according to some authors, aspect-
oriented languages, the latest generation of languages until the appearance of MDE.

1 Fowler, Martin. Continuous Integration http://martinfowler.com/articles/

continuousIntegration.html (February 10, 2012)

302 V. Garćıa-Dı́az, J. Pascual Espada, E. R. Núnez-Valdéz et al.

Each new generation of languages increases the level of abstraction of their concepts,
thereby increasing the productivity of development. This is because, in addition to
using terms closer to the way humans communicate, one can use more sophisticated
instructions. The last great leap for increasing productivity and quality of software
development via increases in the level of abstraction was the occurrence of MDE.

MDE is a paradigm that elevates models to first-class citizens in the field of
Software Engineering [37]. It is based on the separation of the functionality of the
system and the development of such a system for a specific platform, that is, it seeks
to clearly separate the analysis and design of the programming. Models are used to
achieve this goal [58]. A model is a set of formal elements that describes something
that is being developed for a specific purpose; these elements can be analyzed using
several methods [41]. From these models, transformations are typically performed
to automatically generate artifacts in a lower level of abstraction (e.g., source code
of a programming language such as Java or C#, documentation, tests, etc. [73]).

According to Selic [59], there are two types of complexities in the software de-
velopment. First, essential complexity is inevitable and is directly related to the
problem to be solved. Second, arbitrary complexity is due to the tools and methods
used during development. MDE serves to decrease the arbitrary complexity, raising
the level of abstraction and avoiding lexical, syntactic and semantic problems with
different programming languages that exist and will exist in the future.

The use of MDE also has a cost. It is not always profitable for a company to
make the extra effort required to use models, generally through the use of a textual or
graphical Domain-Specific Language (DSL) [5]. Thus, some authors recommend the
use of MDE in the so-called software product lines [71] and give, as a reference point,
three developments (or even less) [57] to obtain a positive Return On Investment
(ROI). Some works indicate that the reason why there is still a lack of adoption by
industry is a poor tool support. However, other works say that problems have to do
with social and organizational factors [75] to achieve greater adoption and there is
a need for a progressive change to adopt MDE successfully [29].

2.2 Continuous Integration

CI is a software development practice by which different members of a development
team integrate their work frequently to get a full or partially full work, usually once
per day [28]. Each integration is performed with an automatic build of software,
generally accompanied by unit, quality, accessibility or coverage tests, to detect
errors as quickly as possible. It also can generate reports to show the results of each
integration.

The main advantage of this practice is the reduction of integration problems
and greater cohesion in software development, thus increasing software quality and
reducing risks [18]. Authors such as McConnell [39], Olsson [49] or Ebert et al. [19]
have also noted many advantages. With regard to costs, there are many economic
data justifying the use of CI. Thus, Boehm said that the cost of removing a software
defect grows exponentially at each stage in which it was not detected [7]. In addi-

Combining CI and MDE 303

tion, other studies have confirmed this theory. In Sharpe [60], it was explained how
the cost of repairing a bug is a dollar when the software is being developed. After
integration with the rest of code, its correction will cost more than a hundred dollars
and when the software has already been distributed, the correction will cost thou-
sands of dollars. Meanwhile, a study by the National Institute of Standards and
Technology (NIST) has shown that software bugs make the United States spend
$ 60 million each year [66]. NIST also has discovered that almost 80 % of the total
projects cost is intended to correct their faults.

CI is a practice recommended by many software methodologies. For example, it
was picked as one of the 12 original practices of Extreme Programming (XP) [3] and
is part of the Unified Process (UP) recommendations [30]. It is like a member of
the development team that is responsible for monitoring the source code, compiling
each change, testing the code and notifying the team of any problems that occurred
during the process [53]. In the absence of real case studies validating the benefits
offered by CI, works like St̊ahl and Bosch [64] have appeared exploring the benefits
from projects in a large company.

Finally, it is important to note that some authors such as Olsson [49] have
also mentioned the disadvantages of CI, though they are almost negligible in rela-
tion to the benefits offered. These disadvantages are mainly the possible need for
a CI-specific server or the need to train developers to upload the code correctly. In
addition, it is difficult to adopt CI with legacy systems since those systems usually
are not properly designed to be integrated with some tools on which continuous inte-
gration relies (e.g. unit or integration tests) to provide feedback on the construction
of the system. However, this would not be a problem in this work because when
a system is developed using an MDE approach it is usually re-engineered [54] or
started from scratch [21].

Figure 1 shows an overview of how CI is carried out:

1. The idea is that different members of a development team work against a repos-
itory managed by a Version Control System (VCS) [62] which facilitates collab-
orative and distributed works.

2. The CI tool is waiting for changes in the application repository.

3. There can be different types of triggers that make the CI tool check the state of
the repository (e.g. a time interval, an exact date, the success of a compilation
of another program).

4. When changes in the repository are detected, various tasks are undertaken to
build artifacts through automated scripts by using tools such as Ant2:

• During the compilation phase libraries or applications are generated.

• During the testing phase tests on the source code or on the application are
conducted.

2 The Apache Software Foundation. The Apache Ant Project http://ant.apache.

org/ (December 19, 2012)

304 V. Garćıa-Dı́az, J. Pascual Espada, E. R. Núnez-Valdéz et al.

WEB, EMAIL, LOGGING, RSS, FTP, TWITTER, ...

Application

repository

-Application

source code

SOFTWARE

SYSTEM

SOURCES

CONTINUOUS

INTEGRATION

SYSTEM

Continuous

Integration

Tool

Engineering and

development

Feedback

BUILD

Compilation Tests

Reports

&

metrics

Documentation

ANT, NANT, MSBUILD, MAVEN, MAKE, ...

JAVAC, CSC, ...

NUNIT, XUNIT, FITNESSE ,...

FXCOP, NCOVER, NDEPEND,

SANDCASTLE, NDOC,

SUBVERSION, CVS, MKS, ...

CRUISE CONTROL, ANTHILL, HUDSON, ...

ECLIPSE, VISUAL STUDIO, ...

Management Support

Deployed

application

(customer)

APPLICATION

Delivered

product

Deployed

application

(developer)

Other tests

(e.g., user)

Others

INSTALL SHIELD, ...

Figure 1. Continuous Integration

• During the reporting and metrics phase studies are tracked. For example,
the percentage of code coverage is monitored.

• During the documentation phase help files and documentation from the com-
ments made in the code are created.

• There may be other steps such as the construction of an installer for the
application.

5. If there is any mistake or problem during artifact generation, the tool would
report to the CI responsible using some system (e.g. Web, email, RSS). This
mistake or problem would be corrected as soon as possible, thus re-launching
the CI process.

6. If generation of the artifacts works properly, the output of the reports and
metrics phase could be sent to the management team and the output of the
documentation phase could be sent to a hypothetical support team.

7. Assuming that the construction has been successful, the software is deployed
in a computer where even more tests could be run since not all tests can be
automated (e.g. some usability tests).

Combining CI and MDE 305

SOFTWARE

SYSTEM

SOURCES

Deployed

application

(customer)

APPLICATION

Delivered

product

Deployed

application

(developer)

Other tests

(e.g. user)

-Platform

architecture
-Transformations

-Metamodels

-Specific source
code

-Models

Modeling
Engineering and

development

Domain

repository

Application

repository

Models

repository

Complete

image

repository

Incremental

model-driven

generator

CONTINUOUS

INTEGRATION

SYSTEM

Continuous

Integration ToolFeedback

BUILD

Figure 2. Model-Driven Continuous Integration

3 PROBLEMS IN ACHIEVING THE OBJECTIVES

On the one hand, CI tools are becoming increasingly popular as companies become
more aware of the many benefits of successfully integrating code, such as risk and
cost reduction [18].

On the other hand, companies want to reduce costs and create quality products;
they do not want to reinvent the wheel during every development. For this reason,
the model-driven development approach is gaining popularity [23].

In this paper, we create an association between MDE and CI that allows for
study of the direct relationship between the two concepts. Figure 2 shows an over-
view of how MDCI is carried out. Two differences from a traditional case could be
as follows:

• Although CI tools often provide support for multiple repositories, usually only
one is used or needed. We use three repositories, one of them specific for models,
since MDE is usually performed using a distinction between the following three
types of artifacts [68]:

1. artifacts common to the entire product family [14] that can use a shared
repository for all the products from the same family,

306 V. Garćıa-Dı́az, J. Pascual Espada, E. R. Núnez-Valdéz et al.

2. artifacts that are specific to a particular product and therefore use their own
repository, and

3. artifacts that are models used to generate other artifacts and therefore also
use their own model-oriented repository [48].

• An incremental model-driven generator will be used. It will be integrated with
the CI tool to generate artifacts when necessary. This will be done using exten-
sion points of a large number of CI tools.

Current MDE technologies are not fully capable of allowing CI tools to function
efficiently in conjunction with model-driven development. The difficulties are mainly
due to the fact that MDE is still under assessment and its maturity has still to be
achieved. In the following section, we outline some of the problems encountered
and the necessary changes that were necessary to develop an integrated approach.
The work is divided into partial objectives to facilitate tracking of progress and
identification of benefits. There are still few studies that relate MDE to CI. For
example Szabo and Chen [65] mention the need for them to use a CI server in
future versions of their model-driven approach. Rumpe [55] explains that we should
be able to organize our model-driven project in a way that the components can
be developed independently, but ideally with a CI tool. However, we have not
found practical works with a proposal to make a real integration between MDE and
CI.

3.1 Selection of an MDE Initiative

It is possible to develop software systems using the MDE paradigm through the
use of similar, yet technologically different, initiatives. For example, Model-Driven
Architecture (MDA) [43] is based on the use of standards. Other initiatives, such
as Software Factories (SFs) [24], are more productive due to the benefit of a greater
integration with the target platform and the possibility of using a higher level of
abstraction [68], but generally do not use standards.

The first issue we found was that version control systems intended for models and
generators of MDE artifacts, which can be used in a CI process, use many different
technologies. Thus, we wanted to use standards to promote portability, reusability
and interoperability, yet we also wanted to benefit from using other approaches.
Therefore, we need to reach a compromise that favors the use of standards while
allowing the use of DSLs that are not based on standards. It is important because
even when MDE is becoming increasingly important, immaturity in MDE due to for
example lack of quality and integrated toolsets [69] makes the way to be followed in
the future unclear.

Through the use of this strategy most available model-related tools, both stan-
dard and non-standard based, could be used.

Combining CI and MDE 307

3.2 Version Control Systems for Models

As software is developed, it is very common that different versions of software are
deployed on different computers while developers are working simultaneously on fur-
ther improvements, updates or corrections of errors. Therefore, it is very important
to have a fully localized version history so that the contents of each version are
clear. Moreover, for large software developments, teamwork is essential and requires
a system capable of managing the changes made by different members of the devel-
opment team in a transparent manner; keeping a record of who made each change.
VCSs [62] have evolved greatly over the years to meet this need.

It is difficult to apply VCSs to models because there are still some unsolved
problems [2, 44, 52]. For example, current VCSs do not properly detect when there
is a new version of a model due to its internal graph structure [34]. In fact, there is
no approach to compute the differences between graph-like models yet. As a result,
no general model version control system exists today [42]. Thus, CI tools working
with current VCSs are not suitable for working with models. It is necessary to use
a specific tool for models; that is a Model Version Control System (MVCS) to make
working with CI tools more efficient. Some other problems related to MVCS (e.g.,
unsupportive conflict resolution or inflexible VCS), although very important and
interesting, are out of the scope of this work.

A MVCS would reduce the number of times the CI tool identifies false changes
or no changes in input models manipulated by users of modeling tools. This feature
would allow the CI tool to run scripts only when necessary.

3.3 User-Friendly and Uniform Interface

User interfaces are very important in today’s software and are the focus of numerous
research studies. The goal of these studies is to find a way to display information
in an effective and user-friendly way [61]. Similarly, CI tools typically incorporate
a module or dashboard that provides the user with feedback regarding the ongoing
background integration activities.

By default, CI tools are not designed to work with model-driven artifact gen-
erators. However, most CI tools can run command-line applications, allowing the
use of generators with command-line support to easily obtain artifacts. In this way,
we could not directly interpret the generated output in a user-friendly and homo-
geneous manner. Also, feedback from generations could not be distributed by the
CI tool in an appropriate manner. To achieve a good user experience, we need to
integrate the model-driven generator and the CI tool using extension points.

The benefit of this approach would be that feedback from the execution of the
generator would be attainable in a user-friendly manner. Thus, we may distinguish,
in a user-friendly and uniform interface (CI tool), whether or not the operation
has been successful, what artifacts have been generated, and whether the generator
provided any relevant information. The CI tool could then display information using
graphical interfaces or notify those responsible for incidents.

308 V. Garćıa-Dı́az, J. Pascual Espada, E. R. Núnez-Valdéz et al.

3.4 Incremental Generation of Artifacts

Traditional incremental compilers, such as the incremental Java compiler that is
built into the Eclipse Platform3, provide the following benefits that could be extrap-
olated to MDE:

• Avoid having to rebuild the whole application with each change, which prevents
lost time and increases efficiency.

• Allow almost instantaneous re-compiling when code changes are small.

• Reduce the granularity of compilation units while keeping the semantics of the
language.

• Avoid complete recompiles guided by the developer, which leads to a more in-
teractive development environment because the developer can learn from errors
almost instantaneously.

However, current model-driven generators require that each artifact is always
regenerated, except for very limited cases with specific tools, such as OptimalJ [15].
To combat this issue, we need to make the generators work incrementally, generating
only the minimum artifacts necessary for each use.

The benefit of using this incremental system in a model-driven way is a reduction
in the number of artifacts that are regenerated after modifications in the models.
It is important to note that the higher the number of artifacts regenerated, the
greater the probability of having to recompile code, redo tests, or re-analyze the
output. In other words, the higher the number of artifacts regenerated the greater
the impact on the deployed system. Some works such as Schaefer [56] talk about
the importance of incremental model-driven developments, although this issue is
currently being investigated and there is still a clear lack of final tools.

4 PROPOSED SOLUTION

We encountered several difficulties implementing the proposed architecture mainly
due to the lack of appropriate MDE tools. The work completed to carry out the
objectives is discussed below. This work is divided into four partial goals that will
allow a clearer overview of the work.

4.1 Selection of an MDE Initiative

Works like Kelly and Tolvanen [32] or Cook [16] have shown that using only MDA it
is difficult to build complete software solutions for problems beyond a certain level of
complexity. However, although other initiatives such as SFs try to create complete
solutions, they pay the price of having to focus on a specific architecture, losing the
portability and interoperability offered by MDA [73].

3 The Eclipse Foundation. http://www.eclipse.org/ (January 14, 2013)

Combining CI and MDE 309

To solve this problem, we draw upon our previous work. In that study, we pro-
posed TALISMAN MDE (TMDE), which is novel in its use of a mixture of principles
to achieve maximum productivity with maximum possible interoperability, porta-
bility and reusability. For current problems, we believed that the most reasonable
approach was a mix of the two main existing proposals, MDA and SFs, in which
we could generate a fixed part of the system using best practices for one specific
platform and generate other parts of the system through the four-layer MDA ar-
chitecture [43] from a DSL, perhaps of a higher level of abstraction. This mix was
viewed as the way to achieve the best possible features using the minimum amount
of source code. To achieve this hybrid system, we used bridges between metamodels,
as evaluated in Tolosa [67]. In Bezivin et al. [9, 10], further details and examples of
bridges between metamodels can be seen. These bridges were used so that in the fu-
ture someone could easily migrate the system to another platform. See Garćıa-Dı́az
et al. [21] for further information.

The proposed solution can be seen as a way to avoid having to restrict the use
of certain tools. For example, if the development team designs a DSL using the DSL
Tools [17], then the system would make a transformation from the metamodel used
by the tool to the standard metamodel, that is, the Meta-Object Facility (MOF) [50],
leaving the rest of the prototype intact.

4.2 Version Control Systems for Models

Although there are several proposals that address the need for version control sys-
tems for models, such as Murta et al. [44] or Altmanninger [1], there is no complete
software that can implement these proposals. To adapt CI systems to MVCS, there
are two main issues that must be addressed. First, there is no complete implemen-
tation of a functional MVCS, and second, there is obviously no CI tool that offers
support for MVCSs.

To achieve the aims of this work, it was necessary to have a MVCS. This need
led to the use of a prototype or to the development of a tool that simulates the
behavior of the proposals made by the most relevant authors in this area. The idea,
based on the problems cited in Oliveira et al. [48], was to decide in each commitment
of the sources the unit of versioning (UV)4 that would yield the maximum flexibility
in testing. According to Oliveira et al., choosing the UV in each case is very inter-
esting from a semantic point of view because for every problem in each particular
application domain we may be interested in increasing or decreasing the granularity
with which it is decided whether a change in a model can be seen as a new version of
that model. The importance here is to make testing and code generation only when
strictly necessary for each case, thus reducing the impact of changes. Of course, the
granularity with which it performs depends on many factors such as the ability of
the developers or the time available to adjust the settings, but the idea would still
be trying not to redo things if they are not strictly necessary. Models are stored in

4 The UV is the smallest unit used to consider that there is a new version in the model

310 V. Garćıa-Dı́az, J. Pascual Espada, E. R. Núnez-Valdéz et al.

G
ra

n
u

la
ri
ty

Coarse

Fine

Adopted solution

Model

Package

Class

Operation

Traditional problem

Model

Package

Class

Operation

UV

UC

UV

Figure 3. Unit of versioning and unit comparison for models

Help

No Version Change

Version Change

Figure 4. Version control system for models (prototype)

Combining CI and MDE 311

a repository that is checked by the CI tool. Thus, when the tool detects a new ver-
sion of the model, it launches the build step. Figure 3, based mainly on the ideas of
Oliveira et al. [48], shows that with the developed prototype we can freely configure
the UV for each case. Thus maximum interaction with CI tools is achieved. That
way we take the control of exactly when a new version of a model is introduced in
the repository, being essential to perform comparable experiments. The proposed
software meets only the minimum requirements for building and testing the final
prototype and should not be used for other purposes. In addition, there are many
open research lines related to version control systems that are outside the scope of
our work. For example, we did not consider the unit of comparison (UC)5, which is
treated in Reiter et al. [52], because it is oriented on collaborative work when using
optimistic source management. With the optimistic approach the MVCS does not
lock the files when a user is making changes on them. For this reason those sys-
tems are more complex, since they need to compare files and perform merges when
necessary to prevent inconsistencies. That speeds up the development process and
encourages developers to take greater responsibility for the source code. Figure 4
shows examples of how the developed prototype works.

The MVCS prototype of this study correctly identifies new versions of a model,
avoiding both false positives and false negatives. Thus, this MVCS provides a total
control when changes to a model will cause the CI tool to start a new software
construction phase. To allow the CI tool to work with the developed prototype, we
have also developed a plug-in called ModelVersionControl.

To achieve the goals of the prototype, it was necessary to integrate the CI
practice and the MDE development approach. This required two types of tools;
a CI tool and a model-driven generator. Although there are many other tools that
could have been used, we decided to use CruiseControl6 for CI because it is a widely
used tool with great support from the Open Source community. We also decided
to use the Eclipse Modeling Project (EMP)7 [25] for the MDE generator because
it is the set of utilities that is closest to the Object Management Group (OMG)8

standards.

4.3 User-Friendly and Uniform Interface

There is great interest in achieving uniform and easy to understand user interfaces.
For example Neron et al. [46] emphasized achieving homogeneous user interfaces for
heterogeneous programs to minimize syntactic complexity for bioinformatics appli-
cations. In addition, there is a great deal of scientific work that aims to show how to

5 The UC is the smallest unit used to consider that there is a conflict between different
changes in the model

6 ThoughtWorks. http://ccnet.thoughtworks.com/ (November 19, 2012)
7 Specifically, we have relied on the tools that formerly gave rise to the openArchitec-

tureWare (oAW) tool, now part of EMP
8 Object Management Group. http://www.omg.org/ (January 13, 2013)

312 V. Garćıa-Dı́az, J. Pascual Espada, E. R. Núnez-Valdéz et al.

Figure 5. Feedback obtained in the generation of artifacts

build user-friendly interfaces or how to create a user-friendly interface for a specific
knowledge domain (e.g., [47, 63, 74]).

Figure 5 shows how the CI tool displays feedback obtained from the artifact
generator in our prototype. In this case, the feedback taken from the generator
shows different types of messages: 1) information, 2) warning and 3) errors pro-
duced during generation. All the messages have a text, the name of the component
that produces the message and the timespan in which the message was produced.
On the left side it is possible to see all the other tools that are integrated with
the CI tool and therefore can display information in addition to the results of the
latest integrations made. The main idea is to use the CI tool interface to provide
feedback evenly, as it would with any other feature already integrated by default.
For example, the CruiseControl version we used (CruiseControl .NET or CCNET)
offers native support for utilities such as NCover9 or FxCop10. In this case, it is
easy to provide uniform feedback because it only requires the use of the extension

9 Gnoso. NCover http://www.ncover.com/ (January 6, 2012)
10 Microsoft Corporation. FxCop http://msdn.microsoft.com/en-us/library/

bb429476(VS.80).aspx (November 6, 2012)

Combining CI and MDE 313

capabilities of CCNET to read and interpret the output provided by the genera-
tor.

In other words, it was almost only necessary to create a style sheet that processed
the contents to be shown from the output format of the generator.

4.4 Incremental Generation of Artifacts

There are many model-driven generators of artifacts. Some of them are commercial
and others are distributed freely; however, we found deficiencies in all of them.

• Tools with incremental generation features are integrated and very specific.
An example is objectiF11, a tool that only regenerates parts that are directly
modified in the model. The shortcomings of objectiF are that it only supports
changes in design time and does not take into account how a change in one part
of the model could affect other parts.

• Other tools generate artifacts according to a predetermined input pattern. That
means that they do not take into account the evolution of the models. For
example, that is how the oAW tools work, by default.

• No tools were found to be capable of processing two input models that con-
form to the same metamodel, calculating the differences between the models,
representing the differences in a suitable way, and generating artifacts based on
their differences. For example, the proposal of Cicchetti et al. [13] is intended to
represent changes, and the EMF Compare [70] is intended to compare models.

To incrementally build artifacts, it is essential to know the differences between
two versions of the same model to generate the corresponding artifacts based on
these differences. The problem of determining the differences, and indirectly the
correlation between models, is inherently complex and involves three main steps [8]:

1. calculate differences between the models,

2. represent these differences in a format that is easy to manipulate by computer
systems, and

3. visualize the differences in a human-friendly format.

The first and most crucial step, that is, calculating the differences between models,
is a difficult task that has no single-best solution because it depends on the specifics
of each particular problem [35]. There have been many studies related to this task.
A powerful tool, called EMF Compare [70], is already included in EMP for these
purposes. EMF Compare is specifically designed to compare models within the
EMP, using four generic heuristics (Name, Type, Relation and Content) that provide
solutions with high reliability.

11 microTOOL. objectiF http://www.microtool.de/objectiF/ (August 25, 2012)

314 V. Garćıa-Dı́az, J. Pascual Espada, E. R. Núnez-Valdéz et al.

The visualization of differences is not important with respect to incremental
generation because this type of task does not require human intervention. How-
ever, the representation of differences is an important step. To avoid losing the
essence of the models, our proposal is based on common features that any repre-
sentation of differences between models should have [12] and is based on the tech-
nique proposed in Cicchetti et al. [13]. Given two models that conform to the same
metamodel, the difference between them generates another model that conforms to
another metamodel that was derived from the first metamodel. The upper right
part of Figure 6 reflects this idea whose explanation can be seen in detail in Sec-
tion 3 of Cicchetti et al. [12]. Thus, in Cicchetti et al. [13], the aim was to reflect
three possible types of differences between a model and a previous version of that
model. These differences were the possible deletion, addition, or modification of
an element.

For the purposes of completing the proposed work, we developed several plug-
ins, such as MetamodelExt, that can create an extended metamodel from a given
metamodel in which there are new metaclasses from each original metaclass. These
metaclasses are inherited from the originals and can represent the changes between
two models. ModelDiff can represent the changes between two models that conform
to the same metamodel, thus creating another model that conforms to the extended
metamodel created by MetamodelExt. The models arising from the changes will be
the first-class artifacts in the build process allowing all the elements that have been
updated to be captured in a single file.

4.5 Prototype Overview

Figure 6 shows the main work that was completed in this study. The work is
divided into four sections, one for each issue we addressed. To begin, we use models
created with any modeling tool that could undergo a transformation if necessary.
Next, the version control system for models manages the input models and detects
whether there is a new version of models. Then, the CI tool also detects it causing
the generation of artifacts. Feedback from the generation is shown, using a user-
friendly and homogeneous interface, compared to other tools used during the process.
Finally, using various available tools, such as EMF Compare, along with software
specifically developed for this purpose, artifacts are built incrementally. The idea is
to compare models using the EMF Compare algorithms and represent the differences
using the Cicchetti et al. [13] proposal as a basis. The Xpand12 engine is used to
perform model to text transformations and to generate the incremental software.

12 The Eclipse Foundation. Xpand http://wiki.eclipse.org/Xpand/ (December 16,
2012)

Combining CI and MDE 315

ModelVersionControlSystem

Cruise

Control
MetamodelExt

WebDashboard

OAW.xsl

ISourceControl

ModelVersionControl

Incremental

Model-Driven

Generator

ModelDiffEMF Compare

Incremental

software

Uses

Issue addressed

Leads

Domain-Specific Language

to Meta-Object Facility

Converter

Arbitrary

Models

Standard-

based Models

1

2

3

4

X

Source model

Meta-

metamodel

Metamodel

Target model

Reality

M3

M2

M1

M0

Extended

Metamodel

differences

detected

Transformation

Difference Model

Xpand /

templates

Instance of

Output detail

Created

component

Created

component

(optional)

New

artifact

Reused

component

Detail

Figure 6. Prototype overview

5 QUANTITATIVE EVALUATION

When we finished the prototype, we conducted three case studies to assess the
potential advantages gained by working with MDCI. The tests were designed to
compare the results of the proposed method to the other methods of the study, with
special interest in the traditional MDE approach, in terms of time and resources
needed to develop software. For this purpose, numerical values were derived from
changes in the models that guided the construction or modification of the software.
These parameters corresponded to the following factors:

1. the number of generated artifacts after a change in a model,

2. the size of such artifacts,

3. the generation time for the artifacts, and

4. the deployment time in the production environment.

We used these parameters because they are numerical values that indicate areas in
which the prototype may offer improvements. Thus, if the value of these parame-
ters is low, the changes will have less impact on the final system. For example, if
the number and size of the generated artifacts is very small and they have to be
distributed through a network to be deployed in a final system, then the time they
will take would be lower than if the number and size of the generated artifacts were
greater. The same applies to the time parameter. A very small time may mean
that the system impact is so minimal that end users would not even notice a loss of

316 V. Garćıa-Dı́az, J. Pascual Espada, E. R. Núnez-Valdéz et al.

service. This list of parameters is not exclusive, and other parameters may be used
in future studies.

Table 1 shows the different possibilities for making a development under the
MDE approach. As suggested by prior studies, such as Karlesky and Williams [31],
many software developers do not currently know what a CI is, and many of those
who do know what a CI is do not use CIs because working with the current tools
can be quite complex. Thus, current MDE developments are usually performed
with technique 1 (Table 1). However, as discussed below, the use of CI with MDE
(technique 2) is very beneficial for development. The completion of the prototype
for this study also allowed for an evaluation of the benefits arising from the use of
techniques 3 and 4. Finally, technique 5 represents the use of MDCI.

Technique Description

1 Only MDE
2 MDE and continuous integration
3 MDE, continuous integration and in-

cremental generation of artifacts
4 MDE, continuous integration and

model version control system
5 MDCI. Equivalent to the union of

MDE, continuous integration, incre-
mental generation of artifacts and
model version control system

Table 1. Development possibilities with MDE

The first evaluation was conducted from a case study based entirely on a real
application called The Beer House13. This is a complete starter kit to create content
management systems (CMSs) and electronic commerce sites. This application can
be downloaded and used freely. Furthermore, some prior studies have used it as an
example (e.g., [4, 6, 38]). Therefore, we have an example of a complete and fully
functional application made with the ASP.NET MVC framework14 using the C#
language and the SQL Server database management system. To complete the case
study, during CI, various actions with the generated artifacts were performed using
tools like NCover, FxCop, MsTest15, NDepend16 or NDoc17.

13 TheBeerHouse: CMS & E-Commerce Starter Kit http://www.codeplex.com/

TheBeerHouse/ (January 14, 2013)
14 Microsoft Corporation. ASP.NET MVC http://www.asp.net/mvc/ (January 10,

2013)
15 Microsoft Corporation. MsTest http://msdn.microsoft.com/en-us/library/

ms182486.aspx (November 29, 2012)
16 SMACCHIA. NDepend http://www.ndepend.com/ (November 6, 2012)
17 NDoc http://ndoc.sourceforge.net/ (November 8, 2012)

Combining CI and MDE 317

0,1 1 10 100 1000

Only MDE

MDE and CI

MDE, CI and INC

MDE, CI and MVCS

MDCI

Number of artifacts
1000 10000 100000 1000000 10000000 100000000

Only MDE

MDE and CI

MDE, CI and INC

MDE, CI and MVCS

MDCI

Size of artifacts (bytes)

100 1000 10000 100000

Only MDE

MDE and CI

MDE, CI and INC

MDE, CI and MVCS

MDCI

Generation time (milliseconds)
100 1000 10000 100000 1000000

Only MDE

MDE and CI

MDE, CI and INC

MDE, CI and MVCS

MDCI

Deployment time (milliseconds)

The second case study was based on a real application called Simple WebSite
Software (SWS)18, which aims to provide what is necessary to build simple Web
applications with a small amount of effort. SWS is created using the PHP19 language
with HTML and CSS style sheets to control the look and feel of the site. During
continuous integration, files generated in each case were introduced into a Web
server. This was time consuming during the deployment phase.

18 Gliedt, Terry and the University of Michigan. Simple WebSite Software http://

phpsws.sourceforge.net/ (May 9, 2012)
19 The PHP Group. PHP http://www.php.net/ (January 7, 2013)

318 V. Garćıa-Dı́az, J. Pascual Espada, E. R. Núnez-Valdéz et al.

0,1 1 10 100 1000

Only MDE

MDE and CI

MDE, CI and INC

MDE, CI and MVCS

MDCI

Number of artifacts
1000 10000 100000 1000000 10000000 100000000

Only MDE

MDE and CI

MDE, CI and INC

MDE, CI and MVCS

MDCI

Size of artifacts (bytes)

100 1000 10000 100000

Only MDE

MDE and CI

MDE, CI and INC

MDE, CI and MVCS

MDCI

Generation time (milliseconds)
100 1000 10000 100000 1000000

Only MDE

MDE and CI

MDE, CI and INC

MDE, CI and MVCS

MDCI

Deployment time (milliseconds)

Figure 7. Confidence intervals of average values (α = 0.05)

The third case study was based on a real application called Tweeterati20, which
is a Twitter21 client developed using Windows Presentation Foundation [45] tech-
nology. As in the second case study, files were introduced into a Web server during
integration. In this case, because the code was interpreted rather than compiled, we
had to compile the regenerated assemblies when required.

20 Singh, Arunjeet. Tweeterati http://tweeterati.codeplex.com/ (April 6, 2012)
21 Twitter. http://www.twitter.com/ (January 19, 2013)

Combining CI and MDE 319

Figure 7 shows an interesting result inferred from the three case studies, that
may be taken as a basis for further experiments or forecasts. We obtained confidence
intervals of average values (with 95 % confidence) that could be obtained in the future
for new case studies focusing on the number and size of the artifacts, the generation
time and the deployment time. Obviously, this figure would change if more case
studies were added, but after three case studies, the figure serves as a preliminary
estimation of the future trend. Table 2 shows the MDCI improvement factor, which
was always greater than 14 %.

Techn. Num. arti. Siz. arti. Gen. time Dep. time

1 357 216 2883 329 32 854 33 557
2 1 268 13 599 2 283 11 225
3 2 2 1 946 1 928
4 634 6 799 1 147 5 633
5 1 1 1 1

Table 2. MDCI improvement factor based on the technique

For clarity and due to word count limitations, the following sub-sections refer
only to the first case study. However, as Figure 7 suggests, the results can be
extrapolated to the other case studies because they had very homogeneous results.

5.1 Domain-Specific Language

To carry out the example, we built a DSL specially designed to perform the con-
figuration tasks of the CMS. Thus, depending on user input, the generator created
different configuration files and various SQL scripts that completed the application
data load in the corresponding database. Thus, it was a typical example of an
application of MDE, in which a user without programming knowledge was able to
program in a given domain by using a DSL specific to his or her needs. Figure 8
shows, for reasons of size, only a small fragment of metamodel used for building
the DSL. On it, it is possible to see the main concepts of the language such as Ba-
sicConfig, UsersConfig or SectionsConfig. Each of the main elements has a set of
sub-elements used to configure the different aspects that the system has.

The complete metamodel acts as the abstract syntax for the DSL created using
Xtext [27] as the development platform. Figure 9 shows a fragment of the grammar
used to build the concrete textual syntax of the DSL. From the grammar, textual
keywords for the language and the underlying metamodel can be inferred. Please,
see Koster [36] to know the details of how the technologies used to implement the
DSL work.

5.2 Tests Performed

To achieve the case study objectives, we made a number of sequential changes in
the input model used for generating the artifacts. These changes included additions,

320 V. Garćıa-Dı́az, J. Pascual Espada, E. R. Núnez-Valdéz et al.

Figure 8. Capture of part of the metamodel used for the DSL

modifications or deletions of users, user profiles, articles, elements per page, cate-
gories of items, support for languages, polls, product shipments, payment methods,
newsletters, and departments. It is important to note that we completed the same
tests for each technique described in Table 1 to collect analyzable and comparable
data.

5.3 Results

The evolution of the model led to the acquisition of 150 results for the five different
techniques. The results table created has the following columns:

1. the number of test performed,

2. the technique used according to Table 1,

3. if the UV is such that it should detect that it has created a new version of the
input model,

4. the number of generated artifacts,

5. the size of the sum of the artifacts generated in bytes,

6. artifact generation time in milliseconds and

7. the deployment time for the artifact production machine in milliseconds.

This table with the values is very large so in the next section we use graphics to
facilitate the understanding of the results to the reader.

Combining CI and MDE 321

Figure 9. Capture of part of the grammar used for the DSL

5.4 Analysis of Results

5.4.1 Number of Artifacts

The first graphs show the number of generated artifacts, depending on the input
parameters. Figure 10 a) shows that when the CI tool identifies that there has
been a change in the model, relevant artifacts will be generated depending on the
technique used. In this case, the techniques that worked the best were 3 and 5
because they incorporated the incremental generation of artifacts.

Using a MVCS (techniques 4 and 5), we detected that changes made by the user
of the modeling tool did not cause a new version of the software to be generated,
thus unnecessary regeneration of artifacts was avoided (Figure 10 b)). That may
happen for example when the model is modified because someone thinks that it is
better the way he or she thinks but it turns out to be only a syntactic change and
not a semantic one. In those cases, the generator should do nothing because even
when the models are different, changes do not involve a variation of the concepts.

Technique 5 behaved the best, under both criterion above, thus it is clear that
with this technique the smallest number of artifacts will be generated (Figure 10 c)).

Figure 10 d) shows the number of artifacts that have been regenerated using
traditional techniques instead of CI with MDE. The scale used in the graphic is much
higher than in the previous cases. The reason is because working only with MDE
we take into account that all the artifacts are manipulated, copied, uploaded, etc.
whenever there is a change in the input model. However, with the other alternatives

322 V. Garćıa-Dı́az, J. Pascual Espada, E. R. Núnez-Valdéz et al.

330

43

330

43
0

50

100

150

200

250

300

350

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI

330

43 0 0
0

50

100

150

200

250

300

350

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI

660

86

330

43
0

100

200

300

400

500

600

700

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Only MDE

A) Number of artifacts generated with version change in the model B) Number of artifacts generated without version change in the model

C) Total number of artifacts generated D) Total number of artifacts generated (without continuous integration)

a)

330

43

330

43
0

50

100

150

200

250

300

350

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI

330

43 0 0
0

50

100

150

200

250

300

350

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI

660

86

330

43
0

100

200

300

400

500

600

700

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Only MDE

A) Number of artifacts generated with version change in the model B) Number of artifacts generated without version change in the model

C) Total number of artifacts generated D) Total number of artifacts generated (without continuous integration)

b)

we are working with the union of MDE and CI. Thus, even if there is no incremental
generation of artifacts or the version control system is not specific for models, only
specific related artifacts are treated. However, with a traditional approach, it is
usually necessary to generate new artifacts from models and put them together
with the other items, either specific for a customer or for the entire product family.
Although, of course, this is not always the case and it only happens in the worst
case, we only try to illustrate that using only MDE is a more hands-on approach.

Combining CI and MDE 323

330

43

330

43
0

50

100

150

200

250

300

350

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI

330

43 0 0
0

50

100

150

200

250

300

350

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI

660

86

330

43
0

100

200

300

400

500

600

700

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Only MDE

A) Number of artifacts generated with version change in the model B) Number of artifacts generated without version change in the model

C) Total number of artifacts generated D) Total number of artifacts generated (without continuous integration)c)

330

43

330

43
0

50

100

150

200

250

300

350

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI

330

43 0 0
0

50

100

150

200

250

300

350

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI

660

86

330

43
0

100

200

300

400

500

600

700

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Only MDE

A) Number of artifacts generated with version change in the model B) Number of artifacts generated without version change in the model

C) Total number of artifacts generated D) Total number of artifacts generated (without continuous integration)d)

Figure 10. Number of artifacts; a) Number of artifacts generated with version change in
the model, b) Number of artifacts generated without version change in the model,
c) Total number of artifacts generated, d) Total number of artifacts generated
(without continuous integration)

324 V. Garćıa-Dı́az, J. Pascual Espada, E. R. Núnez-Valdéz et al.

A) Size of artifacts (bytes) with version change in the model B) Size of artifacts (bytes) without version change in the model

C) Average size of artifacts (bytes) D) Average size of artifacts (bytes) (without continuous integration)

1474560

188416

1474560

188416
0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI

1474560

188416 0 0
0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI

2949120

376832

1474560

188416
0

500000

1000000

1500000

2000000

2500000

3000000

3500000

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI 0

50000000

100000000

150000000

200000000

250000000

300000000

350000000

400000000

450000000

500000000

Only MDE

a)

A) Size of artifacts (bytes) with version change in the model B) Size of artifacts (bytes) without version change in the model

C) Average size of artifacts (bytes) D) Average size of artifacts (bytes) (without continuous integration)

1474560

188416

1474560

188416
0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI

1474560

188416 0 0
0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI

2949120

376832

1474560

188416
0

500000

1000000

1500000

2000000

2500000

3000000

3500000

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI 0

50000000

100000000

150000000

200000000

250000000

300000000

350000000

400000000

450000000

500000000

Only MDE

b)

5.4.2 Size of Artifacts

The next graphs show the total size of the generated artifacts, in bytes, depending on
the input parameters. Figure 11 a) shows that when the CI tool identified that there
had been a change in the model, artifacts were generated. As previously mentioned,
techniques 3 and 5 worked the best. The results regarding the size of the artifacts
in other cases (Figures 11 b), 11 c) and 11 d)) were also directly proportional to the
number of artifacts in this case study.

Combining CI and MDE 325

A) Size of artifacts (bytes) with version change in the model B) Size of artifacts (bytes) without version change in the model

C) Average size of artifacts (bytes) D) Average size of artifacts (bytes) (without continuous integration)

1474560

188416

1474560

188416
0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI

1474560

188416 0 0
0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI

2949120

376832

1474560

188416
0

500000

1000000

1500000

2000000

2500000

3000000

3500000

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI 0

50000000

100000000

150000000

200000000

250000000

300000000

350000000

400000000

450000000

500000000

Only MDE

c)
A) Size of artifacts (bytes) with version change in the model B) Size of artifacts (bytes) without version change in the model

C) Average size of artifacts (bytes) D) Average size of artifacts (bytes) (without continuous integration)

1474560

188416

1474560

188416
0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI

1474560

188416 0 0
0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI

2949120

376832

1474560

188416
0

500000

1000000

1500000

2000000

2500000

3000000

3500000

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI 0

50000000

100000000

150000000

200000000

250000000

300000000

350000000

400000000

450000000

500000000

Only MDE

d)

Figure 11. Size of artifacts; a) Size of artifacts (bytes) with version change in the model,
b) Size of artifacts (bytes) without version change in the model, c) Average size of
artifacts (bytes), d) Average size of artifacts (bytes) (without continuous integra-
tion)

326 V. Garćıa-Dı́az, J. Pascual Espada, E. R. Núnez-Valdéz et al.

A) Generation time (ms) with version change in the model B) Generation time (ms) without version change in the model

C) Average generation time (ms) D) Average generation time (ms) (without continuous integration)

7439

5802

7397

6065

0

1000

2000

3000

4000

5000

6000

7000

8000

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI

7306

5684

0 0
0

1000

2000

3000

4000

5000

6000

7000

8000

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI

14745

11486

7397

6065

0

2000

4000

6000

8000

10000

12000

14000

16000

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI 0

50000

100000

150000

200000

250000

300000

Only MDE

a)

A) Generation time (ms) with version change in the model B) Generation time (ms) without version change in the model

C) Average generation time (ms) D) Average generation time (ms) (without continuous integration)

7439

5802

7397

6065

0

1000

2000

3000

4000

5000

6000

7000

8000

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI

7306

5684

0 0
0

1000

2000

3000

4000

5000

6000

7000

8000

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI

14745

11486

7397

6065

0

2000

4000

6000

8000

10000

12000

14000

16000

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI 0

50000

100000

150000

200000

250000

300000

Only MDE

b)

5.4.3 Generation Time

The graphs in the third group show the time needed, in milliseconds, to generate
the artifacts when the input models are changed. The results did not vary much
as a function of this parameter (Figure 12 a)). We also observed that the results
for techniques 3 and 5, while very similar, were not identical because it is highly
unlikely that probabilistically different runs on a machine will result in exactly the
same times. Figures 12 b), 12 c) and 12 d) show the other values obtained.

Combining CI and MDE 327

A) Generation time (ms) with version change in the model B) Generation time (ms) without version change in the model

C) Average generation time (ms) D) Average generation time (ms) (without continuous integration)

7439

5802

7397

6065

0

1000

2000

3000

4000

5000

6000

7000

8000

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI

7306

5684

0 0
0

1000

2000

3000

4000

5000

6000

7000

8000

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI

14745

11486

7397

6065

0

2000

4000

6000

8000

10000

12000

14000

16000

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI 0

50000

100000

150000

200000

250000

300000

Only MDE

c)
A) Generation time (ms) with version change in the model B) Generation time (ms) without version change in the model

C) Average generation time (ms) D) Average generation time (ms) (without continuous integration)

7439

5802

7397

6065

0

1000

2000

3000

4000

5000

6000

7000

8000

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI

7306

5684

0 0
0

1000

2000

3000

4000

5000

6000

7000

8000

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI

14745

11486

7397

6065

0

2000

4000

6000

8000

10000

12000

14000

16000

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI 0

50000

100000

150000

200000

250000

300000

Only MDE

d)

Figure 12. Generation time; a) Generation time (ms) with version change in the model,
b) Generation time (ms) without version change in the model, c) Average genera-
tion time (ms), d) Average generation time (ms) (without continuous integration)

328 V. Garćıa-Dı́az, J. Pascual Espada, E. R. Núnez-Valdéz et al.

A) Deployment time (ms) with version change in the model B) Deployment time (ms) without version change in the model

C) Average deployment time (ms) D) Average deployment time (ms) (without continuous integration)

684050

85090

686820

84960
0

100000

200000

300000

400000

500000

600000

700000

800000

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI

681750

75270 0 0
0

100000

200000

300000

400000

500000

600000

700000

800000

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI

1365800

160360

686820

84960
0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI 0

500000

1000000

1500000

2000000

2500000

Only MDE

a)

A) Deployment time (ms) with version change in the model B) Deployment time (ms) without version change in the model

C) Average deployment time (ms) D) Average deployment time (ms) (without continuous integration)

684050

85090

686820

84960
0

100000

200000

300000

400000

500000

600000

700000

800000

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI

681750

75270 0 0
0

100000

200000

300000

400000

500000

600000

700000

800000

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI

1365800

160360

686820

84960
0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI 0

500000

1000000

1500000

2000000

2500000

Only MDE

b)

5.4.4 Deployment Time

The graphs in the fourth group show the time needed, in milliseconds, to deploy the
artifacts when the input models are modified. Figures 13 a), 13 b), 13 c) and 13 d)
show the obtained output.

Combining CI and MDE 329

A) Deployment time (ms) with version change in the model B) Deployment time (ms) without version change in the model

C) Average deployment time (ms) D) Average deployment time (ms) (without continuous integration)

684050

85090

686820

84960
0

100000

200000

300000

400000

500000

600000

700000

800000

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI

681750

75270 0 0
0

100000

200000

300000

400000

500000

600000

700000

800000

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI

1365800

160360

686820

84960
0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI 0

500000

1000000

1500000

2000000

2500000

Only MDE

c)
A) Deployment time (ms) with version change in the model B) Deployment time (ms) without version change in the model

C) Average deployment time (ms) D) Average deployment time (ms) (without continuous integration)

684050

85090

686820

84960
0

100000

200000

300000

400000

500000

600000

700000

800000

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI

681750

75270 0 0
0

100000

200000

300000

400000

500000

600000

700000

800000

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI

1365800

160360

686820

84960
0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

MDE and CI MDE, CI and INC MDE, CI and MVCS MDCI 0

500000

1000000

1500000

2000000

2500000

Only MDE

d)

Figure 13. Deployment time; a) Deployment time (ms) with version change in the model,
b) Deployment time (ms) without version change in the model, c) Average deploy-
ment time (ms), d) Average deployment time (ms) (without continuous integration)

330 V. Garćıa-Dı́az, J. Pascual Espada, E. R. Núnez-Valdéz et al.

5.4.5 Summary of Results

We have shown that technique 5 (MDCI) was the best in all the tests for the four
output parameters. Additionally, the traditional technique performed the worst.
Moreover, by incorporating CI in development, results are improved. Incorporating
a MVCS or an incremental generator also improved the results, creating a better
tool in either case.

6 CONCLUSIONS AND FUTURE WORK

With the goal of creating a prototype that met the objectives, we have presented
various problems encountered. These problems included the following:

1. selection of an MDE initiative,

2. version control systems for models,

3. user-friendly and uniform interface, and

4. incremental generation of artifacts.

Finally, a quantitative evaluation was carried out, which suggested various numerical
advantages of using MDCI rather than other types of development strategies.

In this study, our key research objectives were achieved. The prototype inte-
grates model-driven developments in a more appropriate way. Thus, it allows domain
experts to modify software systems without any help from technical staff. Tradi-
tionally, although CI has been used in a development, domain experts could not
participate for themselves in the evolution of the system. By bridging the gap be-
tween MDE and CI, the domain experts that understand the semantics of a DSL [68]
can also make changes in the system without many technical skills. We believe that
we have fulfilled our two main objectives as follows:

• Integrate model-driven projects: with the incorporation of the continuous in-
tegration, model version control systems and incremental code generators, it is
possible for different members of the development team to be able to properly
integrate model-driven projects in a distributed and continuous way, as they do
for traditional developments, but working in a model-driven development rather
than a code-driven one. The numerical values of the results also suggest the
benefits of integration reducing times for testing and generation of artifacts.

• Allow domain experts to modify software systems: with the incorporation of
the continuous integration, model version control systems and incremental code
generators, it is possible for different experts in a domain to be able to change
software models (languages with a high level of abstraction are used) created for
that domain in a distributed way, causing applications to change dynamically
and transparently to the users of modeling tools. The continuous integration
tool is responsible for orchestrating the entire process. Thus, changes in models
representing the domain of the problem does not require the regeneration of

Combining CI and MDE 331

all the artifacts and the redeployment of the application; allowing customers to
modify, in many cases, software systems by themselves without any help from
technical staff.

Although some benefits have been suggested, there is still much work to be
done. Based on the lessons learned in this work, we are able to describe a MDCI
process that will answer the typical process related questions such as who, what,
where, when, and why. In addition, the inputs and outputs, the methods, and the
measurements could be described. It would also be useful to define a procedure
based on this process.

The tests conducted may be sufficient to suggest the advantages provided by
MDCI, but it would be interesting to conduct more case studies in different fields
with the aim of performing quantitative and qualitative analyses on the differences
between using traditional methods and using more advanced features like CI, MDE,
MVCS, or MDCI. Other interesting topics would be the analysis of how to optimize
and ensure quality of development, or how to measure the potential ROI for the
industry.

Finally, it should be noted that to implement the prototype presented in this
work, the simultaneous interaction of about 30 software components was required.
Some of these applications were built specifically for this work. However, previously
existing tools have very different origins and are designed for very heterogeneous
purposes. Setting up all the tools to work properly was a very difficult task that
required people with expertise in diverse technologies. Thus, it would be interesting
to avoid or reduce the effort of users by standardizing the interaction between the
tools.

Acknowledgements

This work has its origins in the research conducted by the University of Oviedo
and Link Nmd Servicios Industriales S.L. under contract No. FUO-EM-120-07 –
Software Development for the Realization of Traceability. We thank the anonymous
reviewers for their constructive comments, which helped us to greatly improve the
manuscript.

REFERENCES

[1] Altmanninger, K.: Models in Conflict – Towards a Semantically Enhanced Version
Control System for Models. In: Giese, H. (Ed.): MoDELS Workshops. Springer,
Lecture Notes in Computer Science, Vol. 5002, 2008, pp. 293–304.

[2] Altmanninger, K.—Kappel, G.—Kusel, A.—Retschitzegger, W.—
Seidl, M.—Schwinger, W.—Wimmer, M.: AMOR – Towards Adaptable Model
Versioning. 1st International Workshop on Model Co-Evolution and Consistency Man-
agement, in conjunction with Models ’08, 2008.

332 V. Garćıa-Dı́az, J. Pascual Espada, E. R. Núnez-Valdéz et al.

[3] Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley,
October 1999.

[4] Bellinaso, M.: ASP.NET 2.0 Website Programming: Problem – Design – Solution.
Wrox, 2006.

[5] Bentley, J. L.: Little Languages. Communications of the ACM, Vol. 29, 1986,
No. 8, pp. 711–721.

[6] Berardi, N.—Katawazi, A.—Bellinaso, M.: ASP.NET MVC 1.0 Website Pro-
gramming: Problem – Design - Solution. Wrox, 2009.

[7] Boehm, B. W.: Software Engineering Economics. Springer, New York, USA, 2002.

[8] Brun, C.—Pierantonio, A.: Model Differences in the Eclipse Modeling Frame-
work. UPGRADE, The European Journal for the Informatics Professional, Vol. 9,
2008, No. 2, pp. 29–34.

[9] Bézivin, J.—Brunette, C.—Chevrel, R.—Jouault, F.—Kurtev, I.: Bridg-
ing the Generic Modeling Environment and the Eclipse Modeling Framework. Pro-
ceedings of the International Workshop on Software Factories (OOPSLA ’05), 2005.

[10] Bézivin, J.—Hillairet, G.—Jouault, F.—Kurtev, I.—Piers, W.: Bridging
DSL Tools and the Eclipse Modeling Framework. Proceedings of the International
Workshop on Software Factories (OOPSLA ’05), 2005.

[11] Caldiera, G.—Basili, V. R.: Identifying and Qualifying Reusable Software Com-
ponents. Computer, Vol. 24, 1991, No. 2, pp. 61–70.

[12] Cicchetti, A.—Ruscio, D. D.—Pierantonio, A.: A Metamodel Independent
Approach to Difference Representation. Journal of Object Technology, Vol. 6, 2007,
No. 9, pp. 165–185.

[13] Cicchetti, A.—Ruscio, D. D.—Pierantonio, A.: An ATL Based Implementa-
tion to Support a Metamodel Independent Approach to Difference Representation.
Technical report, Dipartimento di Informatica, Università degli Studi dell’Aquila,
2007.

[14] Clements, P.—Northrop, L.: Software Product Lines – Practice and Patterns.
Addison-Wesley, 2002.

[15] Compuware. Compuware OptimalJ: How Model-Driven Development Enhances Pro-
ductivity. Technical report, Compuware Corporation, 2005.

[16] Cook, S.: Domain-Specific Modeling and Model Driven Architecture. In:
Frankel, D. S., Parodi, J. (Eds.): The MDA Journal: Model Driven Architecture
Straight From The Masters, Ch. 5. Meghan-Kiffer Press, Tampa, 2004.

[17] Cook, S.—Jones, G.—Kent, S.—Wills, A. C.: Domain-Specific Development
with Visual Studio DSL Tools. Addison-Wesley, 2007.

[18] Duvall, P.—Matyas, S.—Glover, A.: Continuous Integration: Improving Soft-
ware Quality and Reducing Risk. Addison-Wesley, 2007.

[19] Ebert, C.—Parro, C. H.—Suttels, R.—Kolarczyk, H.: Improving Valida-
tion Activities in a Global Software Development. Proceedings of the 23rd Interna-
tional Conference on Software Engineering (ICSE ’01), IEEE Computer Society, 2001,
pp. 545–554.

Combining CI and MDE 333

[20] Frame, J. D.: The New Project Management: Tools for an Age of Rapid Change,
Complexity and Other Business Realities; Electronic Version. Jossey-Bass Busi-
ness & Management Series. Jossey-Bass, Newark, 2002.

[21] Garćıa-D́ıaz, V.—Fernández-Fernández, H.—Palacios-González, E.—
G-Bustelo, B. C. P.—Sanjuan-Mart́ınez, O.—Lovelle, J. M. C.: TALIS-
MAN MDE. Mixing MDE Principles. Journal of Systems and Software, Vol. 83, 2010,
No. 7, pp. 1179–1191.

[22] Garćıa-D́ıaz, V.—Fernández-Fernández, H.—Palacios-González, E.—
G-Bustelo, B. C. P.—Lovelle, J. M. C.: Intelligent Traceability System of
Cabrales Cheese Using MDA TALISMAN. In: Arabnia, H. R., Mun, Y. (Eds.): In-
ternational Conference on Artificial Intelligence (IC-AI 2008), CSREA Press, 2008,
pp. 578–584.

[23] Gitzel, R.—Korthaus, A.—Schader, M.: Using Established Web Engineering
Knowledge in Model-Driven Approaches. Science of Computer Programming, Vol. 66,
2007, No. 2, pp. 105–124.

[24] Greenfield, J.—Short, K.: Software Factories: Assembling Applications with
Patterns, Models, Frameworks, and Tools. Companion of the 18th Annual ACM SIG-
PLAN Conference on Object-Oriented Programming (OOPSLA ’03), ACM, 2003,
pp. 16–27.

[25] Gronback, R. C.: Eclipse Modeling Project: A Domain-Specific Language (DSL)
Toolkit. 1st ed. Addison-Wesley, March 2009.

[26] Groth, R.: Is the Software Industry’s Productivity Declining? IEEE Software,
Vol. 21, 2004, No. 6, pp. 92–94.

[27] Haase, A.—Völter, M.—Efftinge, S.—Kolb, B.: Introduction to openArchi-
tectureWare 4.1.2. Proceedings of TOOLS EUROPE 2007 – Objects, Models, Com-
ponents, Patterns, July 2007.

[28] Herbsleb, J. D.—Grinter, R. E.: Splitting the Organization and Integrating the
Code: Conway’s Law Revisited. Proceedings of the 21st International Conference on
Software Engineering (ICSE ’99), ACM, 1999, pp. 85–95.

[29] Hutchinson, J.—Rouncefield, M.—Whittle, J.: Model-Driven Engineering
Practices in Industry. 2011 33rd International Conference on Software Engineering
(ICSE), IEEE, 2011, pp. 633–642.

[30] Jacobson, I.—Booch, G.—Rumbaugh, J.: The Unified Software Development
Process. Addison-Wesley, 1999.

[31] Karlesky, M.—Williams, G.: Mocking the Embedded World: Test-Driven De-
velopment, Continuous Integration, and Design Patterns. Embedded Systems Con-
ference Silicon Valley, 2007.

[32] Kelly, S.—Tolvanen, J.-P.: Domain-Specific Modeling: Enabling Full Code Gen-
eration. John Wiley & Sons, 2008.

[33] Kent, S.: Model Driven Engineering. Proceedings of the Third International Con-
ference on Integrated Formal Methods (IFM ’02), Springer, London, UK, 2002,
pp. 286–298.

[34] Khuller, S.—Raghavachari, B.: Graph and Network Algorithms. ACM Com-
puting Surveys, Vol. 28, 1996, No. 1, pp. 43–45.

334 V. Garćıa-Dı́az, J. Pascual Espada, E. R. Núnez-Valdéz et al.

[35] Kolovos, D. S.—Di Ruscio, D.—Pierantonio, A.—Paige, R. F.: Different
Models for Model Matching: An Analysis of Approaches to Support Model Differ-
encing. Proceedings of the 2009 ICSE Workshop on Comparison and Versioning of
Software Models (CVSM ’09), IEEE Computer Society, 2009, pp. 1–6.

[36] Koster, V.: Implementation and Integration of a Domain Specific Language with
OAW and Xtext. MT AG, Ratingen, 2007.

[37] Kramer, M. E.—Klein, J.—Steel, J. R.: Building Specifications as a Domain-
Specific Aspect Language. Proceedings of the Seventh Workshop on Domain-Specific
Aspect Languages, ACM, 2012, pp. 29–32.

[38] Love, C.: ASP.NET 3.5 Website Programming: Problem – Design – Solution. Wrox,
2009.

[39] McConnell, S.: Code Complete. Second Edition. Microsoft Press, Redmond, WA,
USA, 2004.

[40] Mcilroy, D.: Mass-Produced Software Components. Proceedings of the 1st Interna-
tional Conference on Software Engineering, Garmisch Partenkirchen, Germany, 1968,
pp. 88–98.

[41] Mellor, S. J.—Clark, A. N.—Futagami, T.: Guest Editors’ Introduction:
Model-Driven Development. IEEE Software, Vol. 20, 2003, No. 5, pp. 14–18.

[42] Meyers, B.—Vangheluwe, H.: A Framework for Evolution of Modelling Lan-
guages. Science of Computer Programming, Vol. 76, 2011, No. 12, pp. 1223–1246.

[43] Miller, J.—Mukerji, J.—Belaunde, M.—Burt, C.—Cummins, F.—
Dsouza, D.—Duddy, K.—Kaim, W. E.—Oya, M.—Soley, R.—Watson, A.:
MDA Guide, v1.0.1. Technical report, Object Management Group, 2003, http:

//www.omg.org/docs/omg/03-06-01.pdf.

[44] Murta, L.—Correa, C.—Prudencio, J. G.—Werner, C.: Towards Odyssey-
VCS 2: Improvements over a UML-Based Version Control System. Proceedings of
the 2008 International Workshop on Comparison and Versioning of Software Models
(CVSM ’08), ACM, 2008, pp. 25–30.

[45] Nathan, A.: Windows Presentation Foundation Unleashed (WPF) (Unleashed).
Sams, Indianapolis, IN, USA, 2006.

[46] Néron, B.—Ménager, H.—Maufrais, C.—Joly, N.—Maupetit, J.—
Letort, S.—Carrère, S.—Tufféry, P.—Letondal, C.: Mobyle: A New Full
Web Bioinformatics Framework. Bioinformatics, Vol. 25, 2009, No. 22, pp. 3005–3011.

[47] Nguer, E. M.—Spyratos, N.: A User-Friendly Interface for Evaluating Prefer-
ence Queries over Tabular Data. Proceedings of the 26th Annual ACM International
Conference on Design of Communication (SIGDOC ’08), ACM, 2008, pp. 33–42.

[48] Oliveira, H. L. R.—Murta, L. G. P.—Werner, C.: Odyssey-VCS: A Flexible
Version Control System for UML Model Elements. Proceedings of the 12th Inter-
national Workshop on Software Configuration Management (SCM ’05), ACM, 2005,
pp. 1–16.

[49] Olsson, K.: Daily Build. The Best of Both Worlds: Rapid Development and Control.
Technical report, Swedish Eng. Industries, 1999.

[50] OMG. Meta Object Facility 2.0. Technical report, OMG, 2005. http://www.omg.

org/mof/.

Combining CI and MDE 335

[51] PMI. A Guide to the Project Management Body of Knowledge, Third Ed. Project
Management Institute, 2005.

[52] Reiter, T.—Altmanninger, K.—Bergmayr, A.—Kotsis, G.: Models in Con-
flict – Detection of Semantic Conflicts in Model-Based Development. Proceedings
of 3rd International Workshop on Model-Driven Enterprise Information Systems
(MDEIS-2007), in conjuction with 9th International Conference on Enterprise In-
formation Systems, 2007.

[53] Richardson, J.—Gwaltney, W.: Ship It! A Practical Guide to Successful Soft-
ware Projects. Pragmatic Bookshelf, 2005.

[54] Ruiz, M.—España, S.—Pastor, Ó.—González, A.: Supporting Organisational
Evolution by Means of Model-Driven Reengineering Frameworks. 2013 IEEE Sev-
enth International Conference on Research Challenges in Information Science (RCIS),
IEEE, 2013, pp. 1–10.

[55] Rumpe, B.: Towards Model and Language Composition. Proceedings of the First
Workshop on the Globalization of Domain Specific Languages, ACM, 2013, pp. 4–7.

[56] Schaefer, I.: Variability Modelling for Model-Driven Development of Software
Product Lines. Proceedings of Fourth International Workshop on Variability Mod-
elling of Software-Intensive Systems (VaMoS), 2010, pp. 85–92.

[57] Schmid, K.—Verlage, M.: The Economic Impact of Product Line Adoption and
Evolution. IEEE Software, Vol. 19, 2002, No. 4, pp. 50–57.

[58] Seidewitz, E.: What Models Mean. IEEE Software, Vol. 20, 2003, No. 5, pp. 26–32.

[59] Selic, B.: MDA Manifestations. The European Journal for the Informatics Profes-
sional (UPGRADE), Vol. 9, 2008, No. 2, pp. 12–16.

[60] Sharpe, R.: Building a Better Bug-Trap. The Economist. Science Technology Quar-
terly, 2003.

[61] Shneiderman, B.: Designing the User Interface Strategies for Effective Human-
Computer Interaction. SIGBIO News, Vol. 9, 1987, No. 1, 6.

[62] Spinellis, D.: Version Control Systems. IEEE Software, Vol. 22, 2005, No. 5,
pp. 108–109.

[63] Spinellis, D. D.: The Information Furnace: User-Friendly Home Control. Pro-
ceedings of the 3rd International System Administration and Networking Conference
(SANE 2002), 2002, pp. 145–174.

[64] St̊ahl, D.—Bosch, J.: Experienced Benefits of Continuous Integration in Indus-
try Software Product Development: A Case Study. The 12th IASTED International
Conference on Software Engineering, 2013.

[65] Szabo, C.—Chen, Y.: A Model-Driven Approach for Ensuring Change Traceabil-
ity and Multi-Model Consistency. 22nd Australian Software Engineering Conference
(ASWEC), IEEE, 2013, pp. 127–136.

[66] Tassey, G.: The Economic Impacts of Inadequate Infrastructure for Software Test-
ing. Technical report, National Institute of Standards and Technology, 2002.

[67] Tolosa, J. B.: A New Approach for Meta-Model Interoperability through Transfor-
mation Models. Master’s Thesis, University of Oviedo, 2009.

[68] Tolvanen, J.-P.: Domain-Specific Modeling in Practice. Technical report, Meta-
case, 2008.

336 V. Garćıa-Dı́az, J. Pascual Espada, E. R. Núnez-Valdéz et al.

[69] Tomassetti, F.—Torchiano, M.—Tiso, A.—Ricca, F.—Reggio, G.: Matu-
rity of Software Modelling and Model Driven Engineering: A Survey in the Italian
Industry. 16th International Conference on Evaluation & Assessment in Software En-
gineering (EASE 2012), IET, 2012, pp. 91–100.

[70] Toulmé, A.: Presentation of EMF Compare Utility. EclipseCon, 2007.

[71] van der Linden, F. J.—Schmid, K.—Rommes, E.: Software Product Lines in
Action: The Best Industrial Practice in Product Line Engineering. Springer, July
2007.

[72] Völter, M.: A Catalog of Patterns for Program Generation. Eighth European Con-
ference on Pattern Languages of Programs (EuroPloP 2003), 2003.

[73] Völter, M.—Stahl, T.: Model-Driven Software Development: Technology, Engi-
neering, Management. John Wiley & Sons, June 2006.

[74] Wade, J.: Practical Guidelines for a User-Friendly Interface. Proceedings of the
International Conference on APL (APL ’84), ACM, 1984, pp. 365–371.

[75] Whittle, J.—Hutchinson, J.—Rouncefield, M.—Burden, H.—Heldal, R.:
Industrial Adoption of Model-Driven Engineering: Are the Tools Really the Prob-
lem? Model-Driven Engineering Languages and Systems. Springer, Lecture Notes in
Computer Science, Vol. 8107, 2013, pp. 1–17.

Vicente Garc��a-D��az is Lecturer in the Computer Science De-
partment of the University of Oviedo. He has got his Ph.D. in
computer engineering from the University of Oviedo. His re-
search interests include model-driven engineering, domain spe-
cific languages, technology for learning and entertainment,
project risk management, software development processes and
practices. He has graduated in Prevention of Occupational Risks
and is a Certified Associate in Project Management through the
Project Management Institute.

Jordán Pascual Espada is a research scientist in the Com-
puter Science Department of the University of Oviedo. He has
got his Ph.D. in computer engineering from the University of
Oviedo. He has got his B.Sc. in computer science engineering
and his M.Sc. in web engineering. He has published several arti-
cles in international journals and conferences and he has worked
in several national research projects. His research interests in-
clude the Internet of Things, exploration of new applications
and associated human computer interaction issues in ubiquitous
computing and emerging technologies, particularly mobile and
web applications.

Combining CI and MDE 337

Edward Rolando N�unez-Vald�ez has got his Ph.D. in com-
puter engineering from the University of Oviedo. He has got
his M.Sc. and a DEA in software engineering from the Pontifical
University of Salamanca and his B.Sc. in computer science from
the Autonomous University of Santo Domingo. He has partici-
pated in several research projects. He has taught mathematics
and computer science at various schools and universities and has
worked in software development companies and IT Consulting as
an IT consultant and application developer. He has published
several articles in international journals and conferences. His

research interests include object-oriented technology, web engineering, recommendation
systems and modeling software.

B. Cristina Pelayo G-Bustelo is Lecturer in the Computer
Science Department of the University of Oviedo. She has got her
Ph.D. in computer engineering from the University of Oviedo.
Her research interests include object-oriented technology, web
engineering, eGovernment, modeling software with BPM, DSL
and MDA.

Juan Manuel Cueva Lovelle graduated as a mining engineer
from Oviedo Mining Engineers Technical School in 1983 (Oviedo
University, Spain). He has got his Ph.D. from the Polytechnic
University of Madrid (1990). From 1985 he has been Professor
in the languages and computers systems area at the University
of Oviedo, and he is the ACM and IEEE voting member. His
research interests include object-oriented technology, language
processors, human-computer interface, web engineering, model-
ing software with BPM, DSL and MDA.

