
Computing and Informatics, Vol. 32, 2013, 273–294

ENERGY EFFICIENT SCHEDULING
IN HETEROGENEOUS SYSTEMS WITH A PARALLEL
MULTIOBJECTIVE LOCAL SEARCH

Santiago Iturriaga, Sergio Nesmachnow

Universidad de la República, Montevideo, Uruguay
e-mail: {siturria, sergion}@fing.edu.uy

Bernabé Dorronsoro

LIFL, University of Lille 1, France
e-mail: bernabe.dorronsoro@lifl.fr

Pascal Bouvry

University of Luxembourg, Luxembourg
e-mail: pascal.bouvry@uni.lu

Abstract. This article introduces ME-MLS, an efficient multithreading local search
algorithm for solving the multiobjective scheduling problem in heterogeneous com-
puting systems. We consider the minimization of both the makespan and energy
consumption objectives. The proposed method follows a fully multiobjective ap-
proach, applying a Pareto-based dominance search that is executed in parallel by
using several threads. The experimental analysis demonstrates that the new multi-
threading algorithm outperforms a set of fast and accurate two-phases deterministic
heuristics based on the traditional MinMin. The new ME-MLS method is able to
achieve significant improvements in both makespan and energy consumption objec-
tives in reduced execution times for a large set of testbed instances, while exhibiting
a near linear speedup behavior when using up to 24 threads.

Keywords: Scheduling, local search, multithreading, heterogeneous computing



274 S. Iturriaga, S. Nesmachnow, B. Dorronsoro, P. Bouvry

1 INTRODUCTION

Distributed computing platforms have grown at a fast pace. Nowadays, they gather
many heterogeneous computing (HC) resources located worldwide. In the last
decade, the novel grid computing systems emerged as useful providers for the com-
puting power needed to tackle complex problems in many application domains [7].

In current distributed HC/grid systems, efficiently allocating tasks to be exe-
cuted on available resources (scheduling) is a key problem to take full advantage of
the computing power. The goal of the scheduling problem is to assign tasks to the
computing resources by satisfying specific efficiency criteria, usually related to the
total execution time of a bunch of tasks (makespan), but frequently also considering
other relevant objectives such as resource utilization, quality of service, etc.

Traditional scheduling problems are NP-hard [8], thus classic exact methods
are not useful in practice to solve large instances of the problem. Many deter-
ministic scheduling heuristics have been proposed, but in general they do not scale
appropriately when solving large dimension instances, also demanding long execu-
tion times. Thus, non-deterministic heuristics and metaheuristics have been used
to tackle scheduling problems, and they are shown to compute efficient schedules in
reasonable timespans for both small and large dimension instances [25, 26, 30, 32].

Recently, energy consumption has become a major concern in distributed/high
performance computing. Processors are the main consumers of energy in such sys-
tems, and frequently they also offer the most flexible options for energy manage-
ment, by applying dynamic voltage scaling (DVS), dynamic power management,
slack sharing and reclamation, etc. [11, 13, 33]. Reducing processors consumption
is a great challenge, and researchers currently focus on the development of energy-
aware scheduling algorithms for HC/grid systems [17].

In this article, we propose, implement, and evaluate ME-MLS, a highly effi-
cient multiobjective local search metaheuristic to find accurate tradeoff solutions to
the multiobjective scheduling problem of minimizing the makespan and the energy
consumption in HC/grid systems. ME-MLS is a population-based method that fol-
lows a fully multiobjective approach; it does not optimize an aggregated function of
the problem objectives, but uses a Pareto-based dominance analysis instead. The
ME-MLS population is size bounded, thus, two different replacement policies are
evaluated:

1. a fast greedy ad-hoc replacement algorithm, and

2. the Adaptive Grid Archiving (AGA) algorithm proposed by Knowles et al [14].

Both ME-MLS variants are compared versus well-known deterministic heuristics
over a large set of instances. The experimental results show that ME-MLS is able
to compute accurate tradeoff schedules in short execution times.

The manuscript is organized as follows. Section 2 introduces the multiobjective
energy-aware scheduling problem in HC systems and a review of related work. The
details about the design and implementation of the new multiobjective local search



Energy Efficient Scheduling in Heterogeneous Systems with a Parallel MO LS 275

method is presented in Section 3. Experimental evaluation of the proposed method
over a large set of problem instances is described in Section 4. Finally, Section 5
presents the conclusions and formulates the main lines for future work.

2 ENERGY-AWARE SCHEDULING IN HC SYSTEMS

This section introduces the makespan-energy heterogenous computing scheduling
problem (ME-HCSP) and a review of related work.

2.1 Problem Formulation

An HC system is composed by a set of heterogeneous computers (usually called
machines), having different computing power and energy consumption demand, de-
pending on the hardware features.

In this work, we address the problem of scheduling a set of non-dependent tasks
on an HC system. In this model, a task is considered as atomic workload unit, so it
cannot be divided, nor interrupted after it is assigned to a machine (the scheduling
problem follows a non-preemptive model). The execution times of any task and the
energy consumption to perform it vary from one machine to another. Thus, those
machines that are able to execute tasks quickly and with low energy consumption
will have a strong demand in the system.

Scheduling problems usually target the minimization of the makespan, to reduce
the time spent to execute a bunch of tasks. The makespan is defined as the time
spent since the first task begins execution to the moment when the last task is
completed [19]. The ME-HCSP aims at minimizing the makespan together with the
energy consumption in HC systems.

The mathematical model of ME-HCSP considers the following elements:

• An HC system composed of a set of heterogeneous machines P = {m1, . . . ,mM};
each machine performing at a certain processing speed and energy consumption.

• A collection of tasks T = {t1, . . . , tN} to be executed on the system.

• An execution time function ET : T × P → R+, where ET (ti,mj) is the time
required to execute task ti on machine mj.

• An energy consumption function EC : T × P → R+, where EC(ti,mj) is the
energy required to execute task ti on machine mj, and ECIDLE : P → R+, being
ECIDLE(mj) the energy that machine mj consumes in idle state.

The ME-HCSP proposes to find a schedule f that simultaneously minimizes
the makespan (defined in Equation (1)), and the energy consumption (defined in
Equation (2)), which accounts for both the energy required for tasks execution
and the energy that each machine spends in idle state until all tasks are finished;
(CP (Mj) is the completion time of machine j, i.e., the time when it finishes all its
assigned tasks). The energy for executing a given task depends on its execution time



276 S. Iturriaga, S. Nesmachnow, B. Dorronsoro, P. Bouvry

ET (ti,mj), but the two objectives are in conflict in HC systems, since fast machines
usually consume more energy than the slower ones.

max
mj∈P

∑
ti∈T :

(ti,mj)∈f

ET (ti,mj) (1)

∑
ti∈T :

(ti,mj)∈f

EC(ti,mj) +
∑

mj∈P
(makespan− CP (Mj))ECIDLE(mj) (2)

In the previous ME-HCSP formulation, all tasks can be performed disregarding
the execution order. This kind of programs are frequent in e-Science applications
over HC/grid computing, such as Single-Program Multiple-Data applications used
for multimedia processing, data mining, parallel domain decomposition of numerical
models for physical phenomena, etc.

The independent tasks model also arises when different users submit their (in-
dependent) tasks to execute in grid and volunteer-based computing services, such
as WLCG, Teragrid, Berkeley’s BOINC, Xgrid [3], where non-dependent domain
decomposition applications are often submitted for execution. Thus, the ME-HCSP
faced in this work is relevant in realistic distributed HC/grid environments.

2.2 Related Work

The main trend in energy-aware schedulers proposed in the related literature is
to apply energy management methods within the computing elements. The most
used strategies for energy management are dynamic voltage scaling (DVS), dynamic
power management, and slack sharing/reclamation methods [11, 13].

Kim et al. [12] introduced several online/batch dynamic heuristics for scheduling
tasks with priorities and deadlines in an ad-hoc grid with limited battery capacity,
using DVS for power management. The batch dynamic heuristics based on the
classic MinMin scheduler [22] performed best, but they required significantly longer
time. Li et al. [20] also proposed an energy-aware scheduler based on the MinMin
heuristic to reduce energy consumption using dynamic power management.

In 2009, Kahn and Ahmad [11] developed an energy-aware grid scheduler based
on the concept of Nash Bargaining Solution from cooperative game theory. The
scheduler was applied for planning in infrastructures with DVS-enabled machines.

Another cooperative approach to solve the energy-aware scheduling problem was
introduced by Mezmaz et al. [24], which applied a cooperative parallel bi-objective
hybrid genetic algorithm (GA), improved with the energy-aware heuristics previous-
ly proposed by Lee and Zomaya [18].

The work by Pecero et al. [29] applied a bi-objective Greedy Randomized Adap-
tive Search Procedure (GRASP) scheduler. The proposed method builds a feasible
solution using a greedy evaluation function, and uses a post-processing bi-objective
local search method applying DVS to improve the solution quality and to generate
a set of Pareto solutions.



Energy Efficient Scheduling in Heterogeneous Systems with a Parallel MO LS 277

A two-phase energy-aware heuristic for grid scheduling was proposed by Pinel
et al. [31], by first applying the MinMin heuristic to find schedules with good
makespan, and a local search in the second phase. The method allowed to find
schedules with similar quality to those computed by a cellular evolutionary algo-
rithm (EA), while reducing the execution time, and significantly improving the
MinMin schedules.

Kessaci et al. [10] proposed two multiobjective parallel evolutionary algorithms
enhanced with energy-aware scheduling heuristics for tasks with dependencies, com-
bining makespan and energy consumption in a unique function and using explicit
DVS for energy management.

Kolodziej et al. [16] developed an EA framework for designing energy-aware
schedulers, using DVS for energy reduction. The problem model in that work con-
sidered bag-of-tasks applications and a bi-objective scheduling problem minimizing
makespan and energy consumption. The article by Lindberg et al. [21] introduced
a set of eight heuristics, including two EAs for the energy-aware grid scheduling
problem subject to deadline and memory constraints.

The approach we describe in this article does not explicitly apply DVS or other
energy management methods. Instead, we propose a scheduler that computes the
energy consumption by considering the maximum and minimum energy consump-
tion provided by the processor technology, which accounts for hardware-embedded
energy saving features. The efficiency of these technologies is model dependent,
since hardware-embedded energy saving features are proprietary technologies (e.g.
AMD provides the Optimized Power Management technology in the Opteron pro-
cessor family, Intel provides the SpeedStep technology in Xeon/i7 processor family,
etc.). In our approach, a machine with assigned workload is assumed to operate at
its peak performance, consuming the maximum specified energy. Conversely, a ma-
chine with no workload is assumed to be in idle state with the embedded energy
saving technology keeping the energy consumption at its minimum specified value.

3 A MULTITHREADING ENERGY-AWARE HC SCHEDULER

This section describes the newly proposed multithreading local search algorithm to
solve the energy-aware scheduling problem in HC systems.

3.1 ME-MLS Design

ME-MLS is a population-based local search algorithm, which maintains a population
of non-dominated (elite) solutions in order to avoid biasing the search toward any
of the two objectives of the energy-aware scheduling problem. A shared-memory
parallel implementation is proposed for ME-MLS, by using a pool of threads. Each
thread is a peer that performs a search, and no thread acts in a master role.

Algorithm 1 presents the logic of each ME-MLS thread. Schedules are initialized
using a randomized version of the Minimum Completion Time (MCT) scheduling



278 S. Iturriaga, S. Nesmachnow, B. Dorronsoro, P. Bouvry

Algorithm 1 Peer threads in the ME-MLS algorithm
1: initialize solution(population, thread index)
2: initialization barrier()
3: while not stop criteria do
4: lock population()
5: s← select random schedule(population)
6: s′ ← clone(s)
7: unlock population()
8: search strategy ← select strategy(makespan, energy, or random)
9: max iterations← random(1, THREAD IT)

10: while not end search do
11: for i = 0→ max iterations do
12: local search(search strategy, s′)
13: end for
14: trylock population()
15: if locked then
16: check Pareto dominance(population, s′)
17: end search← true
18: unlock population()
19: else
20: max iterations← random(1,THREAD IT/REWORK FACTOR)
21: end search← false
22: end if
23: end while

24: end while

heuristic [22] (line 1). Each thread iteratively applies a local search (lines 11 to 13)
on a clone s′ of a randomly selected schedule s (line 6). Newly found non-dominated
schedules are inserted into the population (line 16). Since each thread has to ex-
clusively lock the population to insert a new schedule (lines 14 to 18), they apply
an additional number of operations (bounded by the REWORK FACTOR parameter –
computed in line 20) waiting for the population lock to be released. After the
new schedule is safely inserted into the population (line 16), the thread repeats the
whole process (lines 3 to 23) to keep improving non-dominated schedules from the
population. Figure 1 shows the steps performed by ME-MLS algorithm.

3.2 Replacement Algorithm

The elite population in ME-MLS is limited in size, so a replacement technique is
applied when the maximum size is reached. We evaluated two replacement methods:
a fast greedy ad hoc technique, and the Adaptive Grid Archiving technique.

Fast greedy ad hoc replacement. This technique makes use of heuristic know-
ledge regarding the makespan-energy metrics. It always inserts the newly found
non-dominated schedules into the population, helping to prevent a stagnation



Energy Efficient Scheduling in Heterogeneous Systems with a Parallel MO LS 279

Clone

schedule

Eac
h th

read

app
lies

a

rand
omi

zed

num
ber

of L
S

Insert non-dominated

schedules into the

population

P
e
rf
o
rm
n
o
n
-d
o
m
in
a
n
c
e
te
s
tElite Population

Fig. 1. Diagram of the ME-MLS algorithm

situation. When the population is full, a schedule currently in the population
is selected to be replaced based on a distance function, defined as the sum
of the relative improvements of each objective metric. Those schedules that
compute the minimum value in at least one of the problem objectives are never
replaced. When using the fast greedy ad hoc replacement technique in the ME-
MLS algorithm we will refer to ME-MLS + ad hoc algorithm.

Adaptive Grid Archiving (AGA). The AGA technique was initially proposed
as the crowding strategy applied in the Pareto Archived Evolution Strategy
(PAES) algorithm [15]. It consists in dividing up the objective space into
hypercubes with the goal of balancing the density of non-dominated solutions in
the hypercubes. Then, when inserting a non-dominated solution in the Pareto
front, its grid location in the solution space is determined. If the Pareto front is
already full and the grid location of the new solution does not match with the
most crowded hypercube, a solution belonging to that most crowded hypercube
is removed before inserting the new one. The AGA strategy guarantees three
very desirable properties for multiobjective optimization (MO) algorithms:

1. it maintains solutions at the extremes of all objectives;

2. it maintains solutions in all of the Pareto occupied regions, and

3. it distributes the remaining solutions evenly among the Pareto regions.

When using the AGA replacement technique in the ME-MLS algorithm we will
refer to ME-MLS + AGA algorithm.

3.3 Local Search

The energy-aware local search performed by each thread in ME-MLS is based on
a randomized version of the Problem Aware Local Search (PALS) method [1].



280 S. Iturriaga, S. Nesmachnow, B. Dorronsoro, P. Bouvry

Algorithm 2 Local search applied by each ME-MLS thread on schedule s′

1: search strategy ← current optimization strategy (makespan, energy, or random)
2: best operation← none
3: mA ← random machine(search strategy, s′)
4: mB ← random machine(search strategy, s′) 6= mA

5: tasksx ← random task set(mA)
6: tasksy ← random task set(mB)
7: for x ∈ tasksX do
8: operator ← random(move or swap)
9: if operator = swap then

10: for all y ∈ tasksY do
11: deltax,y ← improvement(search strategy, s′, swapx,y)
12: deltabest ← improvement(search strategy, s′, best operation)
13: if deltax,y > deltabest then
14: best operation← swapx,y
15: end if
16: end for
17: else if operator = move then
18: M ← random machine set() ∪{mB}
19: for all mD ∈M do
20: deltax,mD ← improvement(search strategy, s′,movex,mD)
21: deltabest ← improvement(search strategy, s′, best operation)
22: if deltax,mD > deltabest then
23: best operation← movex,mD

24: end if
25: end for
26: end if
27: end for

28: apply operation(best operation)

The local search performed by each thread (Algorithm 2) applies one of the
following strategies: makespan optimization, energy optimization, or random opti-
mization (line 1). The method works with two machines mA and mB to perform the
search (selected in lines 3–4). When the makespan optimization strategy is applied,
it selects with high probability the machine defining the makespan as mA and the
machine with the lowest computing time as mB. The energy optimization strategy
selects with high probability the most energy consuming machine as mA and the
less energy consuming machine as mB. The random optimization selects two ran-
dom machines as mA and mB. Then, a random set of tasks tasksX from the ones
assigned to mA is selected (line 5). For each task x ∈ tasksX , the method randomly
selects an operation to perform (line 8):

1. a swap operation, or

2. a move operation.



Energy Efficient Scheduling in Heterogeneous Systems with a Parallel MO LS 281

When the swap operation is applied (lines 9 to 16), the method selects a random
set of tasks tasksY assigned to mB (line 6), computes the values for both objectives
when swapping task x with each task y ∈ tasksY (lines 11 and 12), and chooses
the swap which improves most the schedule objectives (line 14). If the energy and
makespan improvements of the computed swap are in conflict (i.e. the swap improves
one metric but degrades the other), the best swap according to the selected search
strategy is applied. When no swap is found to improve neither of the schedule
objectives, no swap is applied.

If the move operation is applied, for task x (lines 17 to 26), the method selects
a set of random machines M = {randommachines}∪{mB} (line 18), and computes
the variation in the schedule objectives when moving task x to each machine mD ∈
M (lines 20–21). Then, the move operation which improves most the schedule
objectives prioritizing the currently selected search strategy is selected to be applied
(lines 22 to 24).

When no swap/move is found to improve neither of the schedule objectives, no
operation is applied.

3.4 Implementation Details

Implementation language and libraries. ME-MLS is implemented in GNU
C++ 4.6, avoiding heavy C++ constructs (classes, interfaces, polymorphism)
to minimize the code execution overhead.

The multithreading support is provided by the GNU POSIX thread library 2.13.
We do not use high level parallel multithreading libraries, such as OpenMP, in
order to have fine grain control over the synchronization mechanisms. Finally,
the Mersenne Twister (MT) method [23] is used to generate pseudorandom num-
bers, since empirical evidence indicates that it is more efficient than standard
generators [27]. We modified the original MT implementation to be thread-safe,
allowing multithreading random numbers generation.

Problem encoding. ME-MLS maintains in memory a multi-structure comprising
both a machine-based and a task-based encoding for schedules [25] (Figure 2).
This multi-structure allows ME-MLS to efficiently access the tasks assigned to
a given machine in O(1) via the machine-based encoding; and given a certain
task, to locate the machine to which it is assigned also in O(1) via the task-based
encoding.

Population initialization. The population is initialized using a randomized ver-
sion of the MCT heuristic [22], considering the tasks sorted in a random order.
The tasks are scheduled following that random order to the machines that first
accomplish them, providing diversity to the initial population.



282 S. Iturriaga, S. Nesmachnow, B. Dorronsoro, P. Bouvry

a) b)

Fig. 2. Problem encodings: a) machine-oriented encoding, b) task-oriented encoding

4 EXPERIMENTAL ANALYSIS

This section introduces the ME-HCSP instances and the hardware platform used in
the experimental analysis, as well as the MinMin based heuristics used as a reference
baseline to compare the ME-MLS results. Finally, the experimental results are
presented and analyzed, along with a speedup evaluation of the proposed method.

4.1 ME-HCSP Instances and Execution Platform

Instances. A set of 96 ME-HCSP instances was generated to evaluate the ME-
MLS algorithm. Each instance describes the machines scenario and the set of
tasks workloads. The scenarios were generated using realistic data, gathering
for each machine the computational power, and the energy consumption in both
idle state and processing state. The workloads were generated following the
ETC methodology [2].

Three instance dimensions were used in the experimental analysis (number of
tasks × number of machines): 512 × 16, 1 024 × 32, and 2 048 × 64. For each
dimension, 12 different scenarios and 8 workloads (4 using parameters by Ali
et al. [2] and 4 using parameters by Braun et al. [4]) were generated. Combining
all these scenarios and workloads we obtain a set of 96 ME-HCSP instances that
model realistic small- and medium-sized HC infrastructures.

Execution platform. The experimental analysis was performed on a 24-core Mag-
ny-Cours AMD Opteron Processor 6172, 2.1 GHz, 24 GB RAM, running 64-bits
CentOS 5.1 Linux, from Cluster FING (http://www.fing.edu.uy/cluster).

4.2 MinMin Based Heuristics Used as Reference Baseline

In order to compare the ME-MLS results, we propose here a set of heuristics based
on the MinMin list scheduling method [22], which is considered to outperform other
deterministic heuristics for minimizing the makespan objective [9]. The original
MinMin heuristic greedily picks the task that can be completed the soonest, taking



Energy Efficient Scheduling in Heterogeneous Systems with a Parallel MO LS 283

into account the current machine assignments. MinMin starts with a set U of all
unmapped tasks, calculates the MCT for each task in U for each machine, and assigns
the task with the minimum overall MCT to the machine that can complete it faster.
The mapped task is removed from U , and the process is repeated until all tasks are
mapped. A pseudocode of the MinMin heuristic is presented in Algorithm 3.

Algorithm 3 MinMin heuristic

1: U = T {set of unasigned tasks}
2: while U 6= ∅ do
3: for each task tk ∈ U do
4: for each machine mh ∈ P do
5: evaluate ET (tk,mh)
6: end for
7: store best pair (tk,mj)
8: end for
9: select pair (ti,mj) with minimum ET

10: assign ti to mj

11: remove ti from U
12: end while
13: return task assignment

MinMin uses a two-phases optimization strategy (the double for cycle in Al-
gorithm 3), thus we define four MinMin versions by alternating the minimization
objective in each phase. The first version minimizes the completion time in both
phases (it corresponds to the classic MinMin heuristic); the second version minimizes
the energy objective in both phases; in the remaining versions the minimization ob-
jectives are alternated to be in the first phase or in the second phase. We use the
lowercase Min notation when minimizing the completion time and the uppercase
MIN notation when minimizing the energy. Thus, the four versions of the MinMin
heuristics used in the comparison are: MinMin, MINMIN, MinMIN, and MINMin.

4.3 Multiobjective Optimization Metrics Used to Evaluate ME-MLS

Several metrics have been considered in this article to evaluate the two variants of
the proposed ME-MLS algorithm, regarding the two main purposes of multiobjective
optimization techniques:

1. converging to the Pareto front and

2. correctly sampling the set of non-dominated solutions [5, 6].

The quality metrics evaluate the convergence towards the Pareto front. We con-
sider in this work the number of (different) non-dominated solutions found for each
algorithm (ND), and Inverted Generational Distance (IGD), defined as the (normal-
ized) sum of the distances between the non-dominated solutions in the Pareto front



284 S. Iturriaga, S. Nesmachnow, B. Dorronsoro, P. Bouvry

found by the algorithm and a set of uniformly distributed points in the true Pareto
front. Smaller values of IGD mean a better approximation to the Pareto front.

The diversity metrics measure the distribution of the computed non-dominated
solutions, evaluating the capability of correctly sampling the Pareto front of the
problem. In this work we consider the spread and Relative Hypervolume (RHV)
metrics. Spread includes the information about the extreme points of the true Pareto
front in order to compute a precise value of the distribution [6]. Smaller values
of spread mean a better distribution of non-dominated solutions in the calculated
Pareto front. RHV is the ratio of the volume (in the objective functions space)
covered by the Pareto front computed by the algorithm and the volume covered by
the real Pareto front.

In the experimental analysis, the true Pareto front – which is unknown for the
ME-HCSP instances studied – was approximated by gathering the non-dominated
solutions found using both ME-MLS variants in the 30 independent executions per-
formed for each algorithm.

4.4 Parameter Setting Experiments

The goal of this work is to efficiently solve the ME-HCSP, thus a fixed 10 seconds
execution time stopping criterion is used for the ME-MLS algorithm. This time
stopping criterion is significantly lower than the execution time of the algorithms in
the related literature, which ranges from 60s to 90s [28]. For the speedup evaluation
of ME-MLS, the stopping criterion was set to 6 million iterations.

In order to provide statistical significance to the results and considering the
stochastic nature of the proposed algorithm, 30 independent ME-MLS executions
were performed on each instance. Each execution was performed using 24 threads,
the maximum number of cores available in the computing platform.

A configuration analysis was performed using the 512× 16 dimension instances
in order to find the best values for the population size (POP SIZE), the number
of local search per schedule (THREAD IT), the neighbourhood size used in the local
search (SRC TASK NHOOD, DST TASK NHOOD, and DST MACH NHOOD), and the re-work factor
(REWORK FACTOR).

The candidate values for the parameter settings study were: POP SIZE ∈
{30, 35, 40}, THREAD IT ∈ {500, 650, 800}, SRC TASK NHOOD ∈ {24, 28, 32},
DST TASK NHOOD ∈ {16, 20, 24}, DST MACH NHOOD ∈ {8, 12, 16}, and REWORK FACTOR ∈
{10, 14, 18}. The best results were obtained with the following configuration
POP SIZE = 30, THREAD IT = 650, SRC TASK NHOOD = 28, DST TASK NHOOD = 16,
DST MACH NHOOD = 16, and REWORK FACTOR = 14.

4.5 Results and Discussion

This subsection presents and discusses the experimental results obtained in the
evaluation of the ME-MLS scheduling algorithm.



Energy Efficient Scheduling in Heterogeneous Systems with a Parallel MO LS 285

Solution quality. Table 1 reports the average and best makespan and energy im-
provements by the two studied variants of ME-MLS with respect to the MinMin
based heuristic that performs the best for that instance and objective. The
results show that ME-MLS outperforms the best MinMin based heuristic with
makespan improvements of up to 14.0 % and energy consumption improvements
of up to 13.9 %. Both ME-MLS + AGA and ME-MLS + ad hoc are able to com-
pute schedules with similar average objective values for instances with dimension
up to 1 024× 32. ME-MLS + ad hoc computes slightly better average schedules
than ME-MLS + AGA when solving instances with dimension 2 048×64. In the
small ME-HCSP instances (512 × 16), the best improvements are obtained for
the makespan objective, while in the largest ME-HCSP instances (2 048 × 64),
the best improvements are obtained for the energy consumption. Figure 3 sum-
marizes the average improvements by dimension when comparing ME-MLS to
each MinMin based heuristic.

d
im

en
si
o
n
5
1
2
×

1
6 model heter.

ME-MLS+AGA ME-MLS+ad hoc
makespan energy makespan energy
best avg best avg best avg best avg

Ali

high high 12.9% 9.4% 9.5% 4.4% 12.3% 9.1% 9.7% 4.4%
high low 14.0% 9.5% 9.5% 5.1% 13.5% 9.2% 9.5% 5.2%
low high 10.9% 8.3% 9.3% 5.3% 10.9% 8.4% 9.2% 5.2%
low low 10.9% 4.1% 10.7% 7.4% 11.2% 4.0% 10.7% 7.4%

Braun

high high 11.7% 9.5% 9.7% 6.3% 11.6% 9.2% 10.0% 6.2%
high low 5.5% 3.8% 5.3% 2.3% 5.4% 3.8% 5.2% 2.3%
low high 10.3% 8.0% 8.3% 4.1% 10.5% 7.8% 8.3% 4.2%
low low 5.9% 5.0% 5.5% 3.2% 5.9% 5.0% 4.7% 3.1%

d
im

en
si
o
n
1
0
2
4
×

3
2 model heter.

makespan energy makespan energy
best avg best avg best avg best avg

Ali

high high 9.7% 7.3% 9.6% 5.9% 10.5% 7.1% 10.0% 6.2%
high low 8.7% 7.2% 8.9% 5.6% 9.7% 6.7% 9.2% 5.4%
low high 10.8% 8.7% 9.9% 7.8% 11.3% 9.0% 9.8% 7.3%
low low 6.8% 2.3% 11.4% 8.9% 7.0% 2.6% 11.4% 8.8%

Braun

high high 8.8% 6.2% 9.3% 5.7% 9.1% 6.1% 10.3% 6.3%
high low 10.1% 7.6% 9.4% 6.0% 10.3% 7.5% 9.8% 6.3%
low high 8.5% 6.0% 7.9% 4.4% 8.7% 5.8% 8.0% 4.7%
low low 10.5% 9.0% 11.3% 8.8% 11.3% 9.3% 11.0% 8.5%

d
im

en
si
o
n
2
0
4
8
×

6
4 model heter.

makespan energy makespan energy
best avg best avg best avg best avg

Ali

high high 7.2% 5.0% 9.4% 4.6% 8.5% 5.7% 11.1% 6.8%
high low 6.2% 4.2% 9.2% 4.6% 7.7% 5.2% 10.7% 6.5%
low high 6.8% 4.5% 12.7% 9.9% 7.6% 6.3% 12.7% 9.4%
low low 3.4% 0.3% 12.9% 9.3% 4.8% 1.1% 13.3% 9.2%

Braun

high high 7.2% 4.7% 9.9% 5.3% 8.1% 5.4% 10.8% 7.3%
high low 7.6% 6.2% 9.5% 6.6% 7.8% 6.4% 10.4% 8.3%
low high 7.4% 5.0% 9.9% 4.8% 8.8% 5.6% 11.7% 7.0%
low low 6.4% 4.3% 13.9% 10.1% 8.0% 6.0% 13.8% 9.6%

Table 1. ME-MLS improvements over the best MinMin heuristic

Multiobjective optimization metrics. We compared ME-MLS + AGA and
ME-MLS + ad hoc by studying the multiobjective optimization metrics on the
Pareto front approximations computed by each algorithm. In order to deter-
mine the significance of the comparison, a statistical analysis was performed



286 S. Iturriaga, S. Nesmachnow, B. Dorronsoro, P. Bouvry

0

5

10

15

20

25

30

35

M
in

M
in

M
in

M
IN

M
IN

M
in

M
IN

M
IN

M
in

M
in

M
in

M
IN

M
IN

M
in

M
IN

M
IN

M
in

M
in

M
in

M
IN

M
IN

M
in

M
IN

M
IN

a
v

g
. 

im
p

ro
v

e
m

e
n

t 
(%

) 
makespan (AGA) makespan (ad hoc)

energy (AGA) energy (ad hoc)

512×16 1024×32 2048×64 

Fig. 3. Average ME-MLS improvements over the MinMin based heuristics

over the results for each algorithm, metric, and problem instance solved. First,
the Kolmogorov-Smirnov (K-S) test was applied to check whether the metric
values follow a normal distribution or not. The values for the D statistic by the
K-S test indicated that the results for ME-MLS + AGA and ME-MLS + ad hoc
are not normally distributed. As a consequence, the non-parametric Kruskal-
Wallis statistical test was performed with a confidence level of 95 %, to compare
the distributions for ME-MLS + AGA and ME-MLS + ad hoc.

Table 2 reports the average and standard deviation values for the ND and IGD
quality metrics for each instance model, heterogeneity class, and problem di-
mension.

Table 3 reports the average and standard deviation values for spread and RHV
diversity metrics for each instance model, heterogeneity class, and problem di-
mension. For each metric and heterogeneity class, the best algorithm and the
number of problem instances in which it is the best with 95 % confidence (i.e.
the computed pairwise p-value is below 5× 10−2) is also reported in the best95%
column. The result is emphasized in bold font when a given algorithm variant
is always better than the other one in the twelve problem instances solved for
each instance model, heterogeneity class, and problem dimension.

Table 2 demonstrates that ME-MLS + AGA outperforms ME-MLS + ad hoc in
terms of the quality metrics, specially in the largest ME-HCSP instances. Re-
garding the diversity metrics, Table 3 shows that both algorithms compute sim-
ilar results for spread and RHV for dimension 512 × 16, but ME-MLS + AGA
was able to find Pareto fronts with better diversity and covering properties for
dimension 1 024× 32 and 2 048× 64, as it is demonstrated by the values of the
spread and RHV metrics.



Energy Efficient Scheduling in Heterogeneous Systems with a Parallel MO LS 287
d
im

en
si
o
n
5
1
2
×

1
6 model heter.

ND IGD (normalized)
AGA ad hoc best95% AGA ad hoc best95%

Ali

high high 8.33± 2.47 4.11± 1.43 AGA 10/12 1.00± 0.39 1.57± 0.76 AGA 6/12
high low 8.02± 2.65 4.20± 1.39 AGA 8/12 1.00± 0.44 1.51± 0.73 AGA 5/12
low high 6.67± 2.42 3.82± 1.20 AGA 10/12 1.00± 0.34 1.56± 0.64 AGA 8/12
low low 2.84± 1.54 2.49± 1.12 ad hoc 3/12 1.00± 0.40 1.04± 0.40 ad hoc 1/12

Braun

high high 6.63± 3.06 3.75± 1.50 AGA 7/12 1.00± 0.43 1.53± 0.64 AGA 5/12
high low 6.18± 3.30 3.36± 1.50 AGA 8/12 1.00± 0.33 1.65± 0.67 AGA 6/12
low high 6.64± 3.03 3.84± 1.56 AGA 7/12 1.00± 0.45 1.31± 0.61 AGA 5/12
low low 6.02± 3.10 3.21± 1.21 AGA 7/12 1.00± 0.36 1.59± 0.63 AGA 7/12

d
im

en
si
o
n
1
0
2
4
×

3
2 AGA ad hoc best95% AGA ad hoc best95%

Ali

high high 9.98± 0.22 4.44± 1.31 AGA 12/12 1.00± 0.32 2.38± 0.68 AGA 12/12
high low 9.99± 0.09 4.16± 1.38 AGA 12/12 1.00± 0.32 2.62± 0.87 AGA 10/12
low high 8.67± 1.48 3.63± 1.01 AGA 12/12 1.00± 0.23 3.35± 1.01 AGA 12/12
low low 5.90± 1.90 2.92± 0.84 AGA 10/12 1.00± 0.43 1.57± 0.62 AGA 5/12

Braun

high high 9.98± 0.16 4.14± 1.23 AGA 12/12 1.00± 0.28 2.29± 0.63 AGA 12/12
high low 9.95± 0.43 4.72± 1.35 AGA 12/12 1.00± 0.29 2.48± 0.80 AGA 10/12
low high 9.96± 0.42 4.75± 1.30 AGA 12/12 1.00± 0.32 2.38± 0.83 AGA 12/12
low low 8.56± 1.49 3.63± 0.99 AGA 12/12 1.00± 0.24 3.06± 0.97 AGA 12/12

d
im

en
si
o
n
2
0
4
8
×

6
4 AGA ad hoc best95% AGA ad hoc best95%

Ali

high high 10.00± 0.00 5.25± 0.92 AGA 12/12 1.00± 0.26 2.04± 0.62 AGA 12/12
high low 10.00± 0.05 5.20± 0.99 AGA 12/12 1.00± 0.25 2.13± 0.67 AGA 10/12
low high 9.09± 1.19 3.72± 1.10 AGA 12/12 1.00± 0.20 3.19± 0.92 AGA 12/12
low low 8.02± 1.63 3.66± 1.18 AGA 12/12 1.00± 0.26 1.47± 0.53 AGA 6/12

Braun

high high 10.00± 0.00 5.19± 0.93 AGA 12/12 1.00± 0.26 2.13± 0.65 AGA 12/12
high low 10.00± 0.00 5.18± 0.92 AGA 12/12 1.00± 0.26 2.19± 0.77 AGA 12/12
low high 10.00± 0.00 5.23± 0.87 AGA 12/12 1.00± 0.29 2.00± 0.65 AGA 12/12
low low 9.49± 0.86 4.03± 1.16 AGA 12/12 1.00± 0.19 2.92± 1.00 AGA 12/12

Table 2. ME-MLS multiobjective quality metrics

The sample Pareto front approximations in Figure 4 show that the ME-
MLS + AGA algorithm is able to compute accurate solutions, with good diversity
and an appropriate covering.

Summarizing, the study indicates that the AGA replacement strategy is a useful
choice to improve the quality and diversity of the schedules found by the ME-
MLS algorithm, significantly improving over the ad hoc replacement technique
regarding the two main goals in MO.

Computational efficiency: speedup evaluation. A speedup analysis was per-
formed for both ME-MLS + AGA and ME-MLS + ad hoc algorithms in order
to study the reductions in the execution times when using different numbers of
threads. The speedup evaluation was done over the 1 024 × 32 instances, and
performing 30 independent executions of each version of the algorithm, using
a stopping criterion of 6 million iterations.

Figure 5 graphically summarizes the results of the speedup analysis when us-
ing up to 24 threads executing on the 24 cores available in the Magny-Cours
experimental computing platform used.

The study indicates that both ME-MLS + AGA and ME-MLS + ad hoc algo-
rithms have a near linear speedup behavior. ME-MLS + AGA is the most effi-
cient and scalable algorithm: it achieves a speedup of 22.4 when using 24 threads,
while ME-MLS + ad hoc obtains a speedup of 20.2.



288 S. Iturriaga, S. Nesmachnow, B. Dorronsoro, P. Bouvry
d
im

en
si
o
n
5
1
2
×

1
6

model heter.
spread RHV

AGA ad hoc best95% AGA ad hoc best95%

Ali

high high 1.00± 0.12 1.07± 0.28 AGA 5/12 0.85± 0.06 0.79± 0.07 AGA 6/12
high low 1.00± 0.10 1.05± 0.26 ad hoc 4/12 0.82± 0.08 0.78± 0.08 AGA 6/12
low high 1.00± 0.15 1.20± 0.32 AGA 6/12 0.89± 0.05 0.85± 0.06 AGA 8/12
low low 1.01± 0.15 1.00± 0.17 ad hoc 2/12 0.82± 0.09 0.81± 0.08 none

Braun

high high 1.00± 0.13 1.02± 0.29 none 0.84± 0.07 0.79± 0.08 AGA 7/12
high low 1.00± 0.14 1.08± 0.33 AGA 5/12 0.91± 0.04 0.88± 0.04 AGA 6/12
low high 1.00± 0.11 1.05± 0.25 AGA 3/12 0.80± 0.09 0.77± 0.09 AGA 6/12
low low 1.00± 0.14 1.12± 0.30 AGA 7/12 0.92± 0.03 0.91± 0.03 AGA 5/12

d
im

en
si
o
n
1
0
2
4
×

3
2

AGA ad hoc best95% AGA ad hoc best95%

Ali

high high 1.00± 0.15 1.30± 0.40 AGA 9/12 0.86± 0.05 0.75± 0.07 AGA 11/12
high low 1.00± 0.13 1.17± 0.39 AGA 7/12 0.84± 0.05 0.72± 0.08 AGA 11/12
low high 1.00± 0.15 1.39± 0.46 AGA 10/12 0.92± 0.03 0.81± 0.05 AGA 11/12
low low 1.00± 0.17 1.00± 0.34 AGA 2/12 0.90± 0.04 0.89± 0.04 AGA 5/12

Braun

high high 1.00± 0.15 1.21± 0.42 AGA 7/12 0.86± 0.05 0.77± 0.06 AGA 11/12
high low 1.00± 0.13 1.32± 0.36 AGA 8/12 0.85± 0.05 0.74± 0.07 AGA 11/12
low high 1.00± 0.15 1.37± 0.39 AGA 10/12 0.86± 0.05 0.76± 0.06 AGA 11/12
low low 1.00± 0.14 1.40± 0.43 AGA 10/12 0.91± 0.03 0.82± 0.05 AGA 11/12

d
im

en
si
o
n
2
0
4
8
×

6
4

AGA ad hoc best95% AGA ad hoc best95%

Ali

high high 1.00± 0.14 1.47± 0.37 AGA 10/12 0.82± 0.04 0.76± 0.08 AGA 9/12
high low 1.00± 0.14 1.45± 0.38 AGA 10/12 0.83± 0.04 0.77± 0.07 AGA 8/12
low high 1.00± 0.15 1.35± 0.43 AGA 10/12 0.88± 0.03 0.81± 0.06 AGA 11/12
low low 1.00± 0.14 1.17± 0.36 AGA 5/12 0.82± 0.06 0.84± 0.04 ad hoc 6/12

Braun

high high 1.00± 0.14 1.46± 0.37 AGA 10/12 0.83± 0.04 0.76± 0.07 AGA 11/12
high low 1.00± 0.13 1.44± 0.33 AGA 8/12 0.86± 0.03 0.78± 0.07 AGA 11/12
low high 1.00± 0.15 1.49± 0.34 AGA 10/12 0.83± 0.04 0.76± 0.07 AGA 10/12
low low 1.00± 0.15 1.43± 0.37 AGA 10/12 0.88± 0.02 0.81± 0.05 AGA 11/12

Table 3. ME-MLS multiobjective diversity metrics

5 CONCLUSIONS

In this article, we have proposed, implemented, and evaluated a new fast parallel
multiobjective local search algorithm to tackle the energy-aware scheduling problem
in HC systems. The new scheduler, called ME-MLS, is based on Pareto domi-
nance, and it works on a population of non-dominated schedules that are iteratively
evolved in parallel by using multithreading programming techniques. In order to
demonstrate the good performance of the algorithm, an efficient termination condi-
tion of only 10 seconds was set in the experimental evaluation, allowing to perform
almost-online scheduling in HC systems.

The experimental analysis compared the proposed method versus state-of-the-
art scheduling techniques. Two different versions of the multiobjective scheduling
ME-MLS algorithm were evaluated, differing on the policy followed to discard non-
dominated solutions when the population is full: the ME-MLS + AGA and the ME-
MLS + ad hoc algorithms.

The two proposed versions of the algorithm were evaluated on a testbed of
96 problem instances with dimensions of up to 2 048 tasks and 64 processors, and
they were validated by comparing the obtained results versus those of four ver-
sions of the state-of-the-art MinMin scheduler: the classical one and three other
energy-efficient ones. The Kruskal-Wallis non-parametric test was applied to look



Energy Efficient Scheduling in Heterogeneous Systems with a Parallel MO LS 289

485

490

495

500

505

510

515

520

525

530

13.0 13.5 14.0 14.5 15.0 15.5

e
n

e
rg

y
 c

o
n

su
m

p
ti

o
n

 

makespan 

Braun high/high 

(×
1

0
 6
) 

(×10 

5) 

143

144

145

146

147

148

149

150

151

152

153

39 40 41 42 43 44 45 46

e
n

e
rg

y
 c

o
n

su
m

p
ti

o
n

 

makespan 

Ali low/high 

(×
1

0
 3
) 

Fig. 4. Approximated Pareto fronts computed by the ME-MLS + AGA algorithm

for statistical significance on the algorithms comparison, and we concluded that
ME-MLS + AGA offers a better overall performance than ME-MLS + ad hoc.

The experimental analysis shows that ME-MLS + AGA outperforms best Min-
Min based heuristic for every instance, with improvements of up to 14.0 % for the
makespan and up to 13.9 % in the energy consumption. The performance analysis
shows that the two ME-MLS variants have a promising scalability behavior.

As future work, we are working on improving ME-MLS to make it quicker and
more accurate, by designing new specialized operators for the problem. Addition-
ally, we plan to integrate the proposed local search algorithms into well-known and



290 S. Iturriaga, S. Nesmachnow, B. Dorronsoro, P. Bouvry

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16 18 20 22 24

sp
e

e
d

u
p

 

threads 

MLS+ad hoc

MLS+AGA

Fig. 5. Speedup for the two variants of the ME-MLS algorithm

accurate multiobjective EAs to look for higher quality solutions. We also plan to
tackle dynamic versions of the scheduling problem in HC/grid environments.

Acknowledgments

The work of S. Nesmachnow and S. Iturriaga is partly supported by Agencia Na-
cional de Investigación e Innovación (ANII) and Programa de Desarrollo de las
Ciencias Básicas (PEDECIBA), Uruguay. B. Dorronsoro acknowledges that he
present work is partially supported by the National Research Fund, Luxembourg,
and cofunded under the Marie Curie Actions of the European Commission (FP7-
COFUND). P. Bouvry would like to acknowledge that this work was partly sup-
ported by Luxembourg FNR GreenIT project (C09/IS/05).

REFERENCES

[1] Alba, E.—Luque, G.: A new Local Search Algorithm for the DNA Fragment
Assembly Problem. In Proc. of 7th European Conf. on Evolutionary Computation in
Combinatorial Optimization 2007, pp. 1–12.

[2] Ali, S.—Siegel, H.—Maheswaran, M.—Ali, S.—Hensgen, D.: Task Execu-
tion Time Modeling for Heterogeneous Computing Systems. In Proc. of 9th Hetero-
geneous Computing Workshop 2000, pp. 185–192.

[3] Berman, F.—Fox, G.—Hey, A.: Grid Computing: Making the Global Infrastruc-
ture a Reality. Wiley 2003.



Energy Efficient Scheduling in Heterogeneous Systems with a Parallel MO LS 291

[4] Braun, T.—Siegel, H.—Beck, N.—Bölöni, L.—Maheswaran, M.—
Reuther, A.—Robertson, J.—Theys, M.—Yao, B.—Hensgen, D.—
Freund, R.: A Comparison of Eleven Static Heuristics for Mapping a Class of
Independent Tasks into Heterogeneous Distributed Computing Systems. J. Parallel
Distrib. Comput., Vol. 61, 2001, No. 6, pp. 810–837.

[5] Coello, C.—Lamont, G.—van Veldhuizen, D.: Evolutionary Algorithms for
Solving Multi-Objective Problems. Springer, Berlin, Heidelberg 2007.

[6] Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley-
Interscience Series in Systems and Optimization, John Wiley & Sons, Chichester 2001.

[7] Foster, I.—Kesselman, C.: The Grid: Blueprint for a Future Computing Infra-
structure. Morgan Kaufmann 1998.

[8] Garey, M.—Johnson, D.: Computers and intractability. Freeman 1979.

[9] Izakian, H.—Abraham, A.—Snasel, V.: Comparison of Heuristics for Scheduling
Independent Tasks on Heterogeneous Distributed Environments. In Proc. of Int. Joint
Conf. on Comp. Sciences and Optimization, Washington, DC, USA 2009, pp. 8–12.

[10] Kessaci, Y.—Mezmaz, M.—Melab, N.—Talbi, E.G.—Tuyttens, D.: Paral-
lel Evolutionary Algorithms for Energy Aware Scheduling. Intelligent Decision Sys-
tems in Large-Scale Distributed Environments, Springer 2011.

[11] Khan, S.—Ahmad, I.: A Cooperative Game Theoretical Technique for Joint Opti-
mization of Energy Consumption and Response Time in Computational Grids. IEEE
Trans. Parallel Distrib. Syst., Vol. 20, 2009, pp. 346–360.

[12] Kim, J.-K.—iegel, H.—Maciejewski, A.—Eigenmann, R.: Dynamic Resource
Management in Energy Constrained Heterogeneous Computing Systems Using Volt-
age Scaling. IEEE Trans. Parallel Distrib. Syst., Vol. 19, 2008, pp. 1445–1457.

[13] Kim, K.—Buyya, R.—Kim, J.: Power Aware Scheduling of Bag-of-Tasks Applica-
tions with Deadline Constraints on DVS-Enabled Clusters. In Proc. of 7th IEEE Int.
Symposium on Cluster Computing and the Grid 2007, pp. 541–548.

[14] Knowles, J.—Corne, D.: Properties of an Adaptive Archiving Algorithm for
Storing Nondominated Vectors. IEEE Trans. Evol. Comput., Vol. 7, 2003, No. 2,
pp. 100–116.

[15] Knowles, J.—Corne, D.: Approximating the Nondominated Front Using the
Pareto Archived Evolution Strategy. Evol. Comput., Vol. 8, 2000, No. 2, pp. 149–172.

[16] Kolodziej, J.—Khan, S.—Wang, L.—Byrski, A.—Min-Allah, N.—
Madani, S.: Hierarchical genetic-based grid scheduling with energy optimization.
Cluster Computing, DOI:10.1007/s10586–012-0226–7, 2012.

[17] Lee, Y.-C.—Zomaya, A.: Minimizing Energy Consumption for Precedence Con-
strained Applications Using Dynamic Voltage Scaling. In Proc. of 9th IEEE/ACM
Int. Symposium on Cluster Computing and the Grid 2009, pp. 92–99.

[18] Lee, Y.-C.—Zomaya, A.: Energy Conscious Scheduling for Distributed Computing
Systems Under Different Operating Conditions. IEEE Trans. Parallel Distrib. Syst.,
Vol. 22, 2011, pp. 1374–1381.

[19] Leung, J.—Kelly, L.—Anderson, J.: Handbook of Scheduling: Algorithms,
Models, and Performance Analysis. CRC Press 2004.



292 S. Iturriaga, S. Nesmachnow, B. Dorronsoro, P. Bouvry

[20] Li, Y.—Liu, Y.—Qian, D.: A Heuristic Energy-Aware Scheduling Algorithm for
Heterogeneous Clusters. In Proc. of 15th Int. Conf. on Parallel and Distributed Sys-
tems 2009, pp. 407–413.

[21] Lindberg, P.—Leingang, J.—Lysaker, D.—Khan, S.—Li, J.: Comparison
and Analysis of Eight Scheduling Heuristics for the Optimization of Energy Consump-
tion and Makespan in Large-Scale Distributed Systems. Journal of Supercomputing,
Vol. 59, 2012, No. 1, pp. 323–360.

[22] Luo, P.—Lu, K.—Shi, Z.: A Revisit of Fast Greedy Heuristics for Mapping a Class
of Independent Tasks Onto Heterogeneous Computing Systems. J. Parallel Distrib.
Comput., Vol. 67, 2007, No. 6, pp. 695–714.

[23] Matsumoto, M.—Nishimura, T.: Mersenne Twister: A 623-Dimensionally
Equidistributed Uniform Pseudo-Random Number Generator. ACM Trans. Model.
Comput. Simul., Vol. 8, 1998, No. 1, pp. 3–30.

[24] Mezmaz, M.—Melab, N.—Kessaci, Y.—Lee, Y.—Talbi, E.G.—Zomaya,
A.—Tuyttens, D.: A Parallel Bi-Objective Hybrid Metaheuristic for Energy-Aware
Scheduling for Cloud Computing Systems. J. Parallel Distrib. Comput., Vol. 71, 2011,
No. 11, pp. 1497–1508.

[25] Nesmachnow, S.—Cancela, H.—Alba, E.: Heterogeneous Computing Schedul-
ing with Evolutionary Algorithms. Soft Computing, Vol. 15, 2010, No. 4, pp. 685–698.

[26] Nesmachnow, S.—Iturriaga, S.: Multiobjective Scheduling on Distributed He-
terogeneous Computing and Grid Environments Using a Parallel Micro-CHC Evolu-
tionary Algorithm. In Proc. of Int. Conf. on P2P, Parallel, Grid, Cloud and Internet
Computing 2011, pp. 134–141.

[27] Nesmachnow, S.—Luna, F.—Alba, E.: Time Analysis of Standard Evolutionary
Algorithms as Software Programs. In Proc. of 11th Int. Conf. on Intelligent Systems
Design and Applications 2011, pp. 271–276.

[28] Nesmachnow, S.—Cancela, H.—Alba, E.: A Parallel Micro Evolutionary Al-
gorithm for Heterogeneous Computing and Grid Scheduling. Appl. Soft Comput.,
Vol. 12, 2012, No. 2, pp. 626–639.

[29] Pecero, J.—Bouvry, P.—Fraire, H.—Khan, S.: A Multi-Objective GRASP
Algorithm for Joint Optimization of Energy Consumption and Schedule Length of
Precedence-Constrained Applications. In Proc. of Int. Conf. Cloud and Green Com-
puting 2011, pp. 1–8.

[30] Pinel, F.—Dorronsoro, B.—Bouvry, P.: Solving Very Large Instances of the
Scheduling of Independent Tasks Problem on the GPU. Journal of Parallel and Dis-
tributed Computing 2012 (to appear).

[31] Pinel, F.—Dorronsoro, B.—Pecero, J.—Bouvry, P.—Khan, S.: A Two
Phase Heuristic for the Energy-Efficient Scheduling of Independent Tasks on Com-
putational Grids. Journal of Cluster Computing 2012 (to appear).

[32] Xhafa, F.—Duran, B.: Parallel Memetic Algorithms for Independent job Schedul-
ing in Computational Grids. Recent Advances in Evolutionary Computation for Com-
binatorial Optimization, Springer 2008, pp. 219–239.



Energy Efficient Scheduling in Heterogeneous Systems with a Parallel MO LS 293

[33] Zhu, D.—Melhem, R.—Childers, B.: Scheduling with Dynamic Voltage/Speed
Adjustment Using Slack Reclamation in Multiprocessor Real-Time Systems. IEEE
Trans. Parallel Distrib. Syst., Vol. 14, 2003, pp. 686–700.

Santiago Iturriaga has a degree in engineering and a M. Sc.
in computer science from Universidad de la República, Uruguay.
He is an assistant at Engineering Faculty, Universidad de
la República. His M. Sc. thesis is focused on high performance
metaheuristics for scheduling. He has published journal and con-
ference articles in these areas.

Sergio Nesmachnow has a degree in engineering, a M. Sc. and
a Ph. D. in computer science from Universidad de la República,
Uruguay. He is currently a Full Professor at Numerical Comput-
ing Center, Engineering Faculty, Universidad de la República,
working on scientific high performance computing, parallel meta-
heuristics, and their application for solving complex real-world
problems. He has published over 50 papers in international jour-
nals and conference proceedings, has been member of techni-
cal program committees of many international conferences, and
serves as editor and reviewer for leading journals and confer-

ences.

Bernabé Dorronsoro has a degree in engineering and
a Ph. D. in computer science from University of Málaga, Spain,
and he is currently working as research associate at University of
Luxembourg. His research interests include grid computing, ad
hoc networks, the design of efficient meta-heuristics, and their
application for solving complex real-world problems in logistics,
telecommunications, bioinformatics, combinatorial, multiobjec-
tive, and global optimization. He has several articles in impact
journals and one book, has been a program committee mem-
berof several conferences and workshops, and he usually serves

as reviewer for leading journals and conferences.



294 S. Iturriaga, S. Nesmachnow, B. Dorronsoro, P. Bouvry

Pascal Bouvry has a Ph. D. in computer science at Univer-
sity of Grenoble, France. He is now Professor at the Faculty of
Sciences, Technology and Communication, University of Luxem-
bourg and head of the Computer Science and Communication
research unit (http://csc.uni.lu). He is specialized in paral-
lel and evolutionary computing and his current interest concerns
the application of nature-inspired computing for solving reliabil-
ity, security, and energy-efficiency problems in clouds, grids and
ad-hoc networks.


