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Abstract. We describe multilevel aggregation in the specific context of using
Markov chains to rank the nodes of graphs. More generally, aggregation is a graph
coarsening technique that has a wide range of possible uses regarding information re-
trieval applications. Aggregation successfully generates efficient multilevel methods
for solving nonsingular linear systems and various eigenproblems from discretized
partial differential equations, which tend to involve mesh-like graphs. Our primary
goal is to extend the applicability of aggregation to similar problems on small-world
graphs, with a secondary goal of developing these methods for eventual applicabi-
lity towards many other tasks such as using the information in the hierarchies for
node clustering or pattern recognition. The nature of small-world graphs makes
it difficult for many coarsening approaches to obtain useful hierarchies that have
complexity on the order of the number of edges in the original graph while retain-
ing the relevant properties of the original graph. Here, for a set of synthetic graphs
with the small-world property, we show how multilevel hierarchies formed with non-
overlapping strength-based aggregation have optimal or near optimal complexity.
We also provide an example of how these hierarchies are employed to accelerate
convergence of methods that calculate the stationary probability vector of large,
sparse, irreducible, slowly-mixing Markov chains on such small-world graphs. The
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stationary probability vector of a Markov chain allows one to rank the nodes in
a graph based on the likelihood that a long random walk visits each node. These
ranking approaches have a wide range of applications including information retrieval
and web ranking, performance modeling of computer and communication systems,
analysis of social networks, dependability and security analysis, and analysis of
biological systems [19].

Keywords: Markov chain, aggregation, multilevel, random graphs

1 INTRODUCTION

Information retrieval applications typically involve networks that are large, with per-
haps billions of connected network members, or nodes, and unstructured, meaning
that there is no regular connection pattern. Further, they are frequently scale-free,
meaning the nodes cannot be arranged in a low-dimensional manifold without many
edges spanning relatively long distances. This property is typified by power-law
networks, where the fraction g(k) of nodes in the network having &k connections to
other nodes goes for large values of k as g(k) ~ k=7 where v is a constant whose
value is typically in the range 1 < v < 4. Coarsening the underlying graphs of such
networks, while retaining certain relevant properties, is useful to perform scalable
calculations used to extract relevant features of the network.

For example, schemes that rapidly extract information from networks often make
use of low-rank decompositions of large, sparse data structures such as matrices or
tensors. These decompositions usually involve the computation of eigenvectors or
singular vectors (or analagous tensor bases) and fast, scalable approximation to such
vectors is important for the underlying scheme to be practical for large data sets.
Multilevel hierarchies formed on coarse versions of the original graphs often allow
rapid calculation of low-rank approximations.

Coarsening a scale-free graph into a hierarchy with optimal complexity that is
still rich enough to approximate desired features of the original graph can be diffi-
cult, and approaches that are quite successful for simpler graphs often fail. In this
work, we focus on a specific class of nonsymmetric eigenvalue problems that arises
when computing the steady-state of a Markov chain, which determines popularity
of each entity within a network. Many of the techniques presented here are specific
to this class of problem, however, similar methods may be employed for eigenprob-
lems relating to other calculations of interest. A few common applications include
approximating the commute time between two nodes in a graph using several of the
lowest eigenmodes of the graph Laplacian [15], clustering a graph using an eigenvec-
tor of the graph Laplacian corresponding to the smallest positive eigenvalue (Fiedler
vector partitioning) [13, 14], and approximating the number of triangles in a graph
using several of the largest eigenvalues of the adjacency matrix [33]. We further sug-
gest that the coarsening approaches may be useful for tasks that do not necessarily
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involve eigenproblems, such as clustering or pattern recognition (a related approach
to image segmentation is employed in [18]).

A Markov chain with n states is represented by an n x n non-negative matrix, B,
that is column-stochastic, 1'B = 1'. The stationary vector that we seek, x, satisfies
the following eigenproblem with known eigenvalue:

Bx=x, |xhi=1 x>0, (1)

)

where the normalization constraint and the non-negativity constraint make x a prob-
ability vector. If every node in the underlying network is connected to every other
node through a series of directed arcs, then the matrix B is called irreducible. We
assume this property, which guarantees that there is a unique solution to (1) that is
strictly positive (x > 0), by the Perron-Frobenius theorem (see [2, 10] for details).

Because the sizes of the graphs of interest tend to grow very large, it is imperative
that we seek solution methods that are algorithmically scalable. An algorithmically
scalable method computes an approximate solution (to a specified error tolerance)
with an amount of work proportional to the amount of information in matrix B,
which for the problems we consider is proportional to the number of edges in the
graph. The simplest solution method is the power method, which converges to x
when B is aperiodic, meaning the lengths of all directed cycles on the graph of B
have greatest common denominator equal to one. Letting ¥(B) denote the set of
eigenvalues of B, it is well-known that the rate of convergence of the power method
is dependent on thesubdominant eigenvalue(s), Ao, where

[Xo| = max |A| for A € B(B)\ {1}.

When |A\s| &~ 1, B is called slowly-mizing, and if there exist eigenvalues A # 1 such
that Re A = 1, then the convergence rates of the power method and of related
classical iterative techniques are unacceptably close to 1 as well. For many Markov
chains of interest there are nondominant eigenvalues that approach 1 as the prob-
lem size increases; for these problems the power method and its relatives are not
algorithmically scalable. Moreover, for many of these problems, applying Krylov
acceleration (such as preconditioned GMRES) to classical iterative methods does
not improve the scalability. This is largely because these techniques influence the
approximate solution locally, and a great many iterations are required to properly
obtain the desired global solution from a poorly distributed initial guess. Multilevel
iterative methods are employed to accelerate convergence for this type of problem
by reducing error components at different scales on progressively coarser levels.
Methods based on aggregation of Markov states have proven to be fruitful ap-
proaches to accelerating convergence for slowly mixing Markov chains. In these
methods, aggregates of Markov states are formed and a coarse-level transition ma-
trix is constructed using basic probability calculus that describes the transition
probabilities between the aggregated states. Iteration on the fine level is acce-
lerated by iteration on the coarse level using the coarse-level transition matrix,
followed by multiplicative correction on the fine level. The earliest work along
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these lines is Takahashi’s two-level iterative aggregation/disaggregation method for
Markov chains [31]. Two-level aggregation/disaggregation has been studied exten-
sively since [19, 28, 21, 20, 23, 7, 24, 30]. Convergence proofs are given for two-level
aggregation/disaggregation methods in [23, 24].

Two-level iterative aggregation/disaggregation can naturally be extended to
multiple levels, along the lines of multigrid methods for linear systems of equa-
tions [6]. Direct extension of two-level aggregation/disaggregation to multiple levels
was first explored in [17, 22], and later also in [10]. In the latter, aggregates are
formed algebraically based on “strength of connection” in the scaled problem matrix,
where each column is scaled by the value of the the current iterate at the correspond-
ing graph vertex. Thus coarse grids on all levels are formed adaptively, based on the
current iterate, and are different in each iteration. However, numerical results in [8]
show that the resulting multilevel aggregation method, while improving on two-level
aggregation results, does not give satisfactory convergence for many slowly-mixing
Markov chains: the number of multigrid iterations required for convergence grows
significantly as a function of problem size, resulting in computational complexity
that is much worse than the optimal O(n) complexity. For many types of problems,
employing so-called W-cycles (in which coarser levels are visited increasingly often)
will restore optimal convergence properties; experience shows, however, that this
is not the case with existing multilevel aggregation methods on scale-free graphs.
For a Markov problem posed on a mesh-like graphs, or a graph whose nodes can
be embedded into low-dimensional manifold with very few relatively long-distance
connections, smoothed aggregation (SA) may be employed to improve the approxi-
mation properties of the multilevel hierarchy and result in a scalable method [8].

Often a multilevel hierarchy may not be rich enough to provide a useful stand-
alone method, but a simple top-level acceleration technique may be employed to
greatly improve convergence. The schemes we present here use multilevel hierarchies
that adapt with every cycle and standard Krylov acceleration cannot be applied to
accelerate these methods because the spaces involved are not related by a fixed
preconditioner. However, flexible acceleration is possible for methods with changing
hierarchies or nonstationary preconditioners. In this paper, we do not use flexible
GMRES or flexible CG, but we discuss an acceleration technique that is customized
to solve problem (1), employing a constrained minimization problem as presented
in [11].

This paper demonstrates the use of multilevel hierarchies within accelerated
versions of the classical unsmoothed aggregation algorithm [17, 10] and the SA
algorithm given in [8] in the context of Markov chains posed on scale-free networks
(Figure 1). Since the degrees (number of edges coming from each node) of the
nodes are distributed according to a power law, the number of nodes with small
degree is very large while the number of nodes with large degree is very small (but
nonzero) [1]. Scale-free networks frequently have the small-world property, where
the minimal path length between any pair of nodes is small and independent of
the size of the network. The power-law distribution and small-world property pose
fundamental difficulties for the multilevel methods we employ, which were originally
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Fig. 1. A small version of the Bardbasi-Albert model (described in Section 4.1), coarsened
using neighborhood aggregation. To the far left is a visualization of the original
graph, center left depicts the first coarsening, center right the second coarsening,
and far right the third coarsening. Black dots represent nodes, and light gray lines
represent bidirectional links. Visualization was performed by randomly distributing
nodes in the unit circle and performing several iterations of sequentially moving the
ith node’s location to a weighted average of the locations of all nodes connected to
the ith node and the current location of the ith node itself.

designed for graphs coming from discretized partial differential equations (which are
mesh-like and neither scale-free nor small-world). We show, for a specific class of
scale-free test problems, that a multilevel, pure aggregation approach can generate
multilevel hierarchies with complexity on the order of the number of edges in the
graph while essentially retaining power-law distributions on coarse levels. Applying
acceleration techniques with these multilevel aggregations improves convergence to
the stationary vector significantly, but the methods designed for mesh-like graphs
are not automatically algorithmically scalable for scale-free graphs. Further, we
replace the standard aggregation approach with a simple aggregation routine that
takes advantage of tree-like structure within a graph, and scalability is achieved for
a simple model problem that is highly tree-like.

The rest of this paper is organized as follows. Section 2 mostly reviews several
multilevel aggregation techniques for accelerating ranking calculations, and Sec-
tion 2.3 introduces a new aggregation approach that takes advantage of tree-like
structure within a graph. Section 3 reviews a top-level Krylov-like acceleration that
enhances the robustness of multilevel aggregation techniques. Section 4 presents
numerical results and Section 5 has concluding remarks.

2 MULTILEVEL AGGREGATION FOR MARKOV CHAINS

We briefly review the multilevel aggregation algorithm for Markov chains from [17,
22, 10, 8] following the presentation in [8]. Pure aggregation (often called unsmoothed
aggregation) is the process of building intergrid transfer operators from local group-
ings of the nodes within a graph. Smoothed aggregation is a commonly used tech-
nique where these intergrid transfer operators are smoothed (presented briefly in
Section 2.4) to enhance approximation within coarse spaces.
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2.1 Pure Aggregation Multilevel Methods

We describe the process of using aggregation to coarsen a graph. Let A =1— B
and rewrite Bx = x as
Ax = 0. (2)

Rewrite the exact solution, x, in terms of the current approximation, x;, and its
multiplicative error, e;, or x = diag(x;)e;, obtaining

Adiag(x;)e; = 0. (3)

We assume here that all components of x; are nonzero (Perron-Frobenius theory
guarantees that the exact solution, x, also has this property, see [2]). At convergence,
the multiplicative error is e; = 1, the vector of all ones.

The n fine-level degrees of freedom are aggregated into m groups according to
the columns of aggregation matrix ) € R™™, where ¢;; = 1 if fine-level node ¢
belongs to aggregate j and ¢;; = 0 otherwise. For example, if the fine-level degrees
of freedom are ordered according to the aggregates they belong to, then @ has the
form

Q

I
OO O O O =
OO Of—= = =IO O
Ol—= =IO O oo O

Aggregates are determined using strength of connection in the scaled problem ma-
trix, Adiag(x;). The details of the aggregation algorithms we use are explained
below in Sections 2.2 and 2.3.

Once @ has been determined, a coarse-level version of Equation (3) is con-
structed:

QT Adiag(x;)Qe. = 0, (5)

where e, represents the coarse-level approximation of unknown fine-level multiplica-
tive error, e;.

Define the restriction and prolongation operators, R and P, by R = Q7 and
P = diag(x;)Q, and write RAPe. = 0 with the coarse-level operator, A, defined by

A, = RAP. (6)
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Note that P71 = Rx; = Q7x; is the restriction of current fine-level approxima-
te x; to the coarse level. The coarse-level error, e., can be used to define an improved
coarse-level approximation, x, = diag(Q?x;)e,, leading to the coarse-level equation

A,(diag(Q"xi)) %, = 0. (7)
We define coarse-level stochastic matrix, B.., as
B, = Q" Bdiag(x;)Q(diag(Q”x;)) " (8)

This matrix is nonnegative and satisfies 17 B, = 17 with the coarse-level vector of
all ones denoted by 1.. Some algebra shows A.(diag(Q"x;))™* =1 — B..

Coarse-level Equation (7) was introduced in [29] and has a straightforward prob-
abilistic interpretation (see, e.g., [22, 10]). It is well-known that (7) can be used to
accelerate simple one-level iterative methods for Equation (2), like the power method
or weighted Jacobi relaxation methods. For example, a two-level numerical method
(aggregation/disaggregation) may proceed by relaxation on Equation (2) on the
fine level, followed by a coarse-level solve of Equation (7), a coarse-level correction
according to

x;11 = P(diag(Q"x;)) 'x. = Pe,, (9)

and another relaxation on the fine level.

In this paper, we use the weighted Jacobi method for all relaxation operations.
We split problem matrix A into its diagonal, lower, and upper triangular parts as
A =D — (L+U), using standard notation. Weighted Jacobi relaxation with weight
w € (0,1) is given by

x (1 —w)x—l—wD*l(L—l—U)x.

A multilevel method can then be obtained by recursively applying the two-level
method to coarse-level Equation (7). In multilevel cycling, a parameter p is used
to determine the type of cycle employed. From any given level, p is the number of
times the algorithm cycles to the coarsest grid and returns to the current level before
moving to the next finer level. In this paper, we consider so-called V-cyles (= 1)
and W-cycles (u = 2); the latter are obtained by applying coarse-level correction
twice. The resulting algorithm is printed here as Algorithm 1.
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Algorithm 1: Multilevel Aggregation
x « MA(A, x,v1, v, 1)
if not on coarsest level then

x + Relax(A4,x) 1, times;
Build @;
R+ QT and P «+ diag(x)Q.;
A.+ RAP,
/* first coarse-level solve. */
X, + MA(Adiag(QTx)™!, QTx, 11, 1);
/* secondary coarse-level solves. */
fork=2,...,pdo

| xc < MA(Adiag(Q"x) ™!, xc, 11, 12);
end
/* coarse-level correction. x/
x + P(diag(Q7x))'x;
x < Relax(A4,x) 1, times.;
else

| x <« direct solve of Ax =0, [|x|; = 1.
end

2.2 Neighborhood-Based Aggregation Routine

We determine aggregates based on strength of connection in the scaled problem ma-
trix A = Adiag(x;) [10]. In this paper, we use a symmetrized strength of connection
measure and the neighborhood-based aggregation technique of [34]. Note that this
type of aggregation is a more standard version, typically used for mesh-like graphs,
and differs from the aggregation technique used in [10, §].

Node i is considered to be strongly connected to node j in the graph of Aif

—ai; > 9122}{*&%} or  —aj > 91?3;({*&%}, (10)

where 6 is a user-selected ‘threshold” parameter. The strong neighborhood of any
node 7, denoted N, is the set of all nodes that are strongly connected to i within
the graph of A, including 7. In the description of the algorithm, @) ; stands for the
index set of the nonzero elements of the Jth column of @), the aggregation matrix
from Equation (4).

In order to address the scale-free nature of the graphs, Algorithm 2 orders the
nodes by their degree. This allows the aggregation algorithm to focus on grouping
the nodes of large degree first. This is slightly different from the neighborhood
aggregation used in [11], where no sorting was assumed. Ordering the nodes based
on their approximate popularity (nodal value of current iterate, x;) was explored
in [10, 8] and remains another option.
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Algorithm 2: Neighborhood-Based Aggregation
{Qs}7-, <+ NeighborhoodAgg(A diag(x), )
For all points , build strong neighborhoods N; based on Adiag(x) and 6.;
Order the nodes from highest degree to lowest degree. Set R + {1,...,n}
and J + 0.;
/* 1st pass: assign entire neighborhoods to aggregates */
forie{l,...,n} do
if (RNAN;) =N, then
J—J+1;
Qi+ N, QJ — Ni;
R+ R\ N
end

end
m< J.
/* 2nd pass: put remaining points in aggregates they are most
connected to */
while R # 0 do
Pick i € R and set J < argmaxy_,; _,,card (N; N Qk).;
Set Qy < QU {i} and R «+ R\ {i};
end
for Je{l,...,m}do Q; < Q.

In Section 4, we demonstrate that it is possible for this simple aggregation
technique to yield pure-aggregation multigrid hierachies with bounded complexity
for a class of scale-free graphs. This grouping technique may be employed for efficient
ranking calculations on mesh-like graphs [11], but the same implementation tends
not give optimal ranking calculations for simple scale-free graphs. Instead, we show
that merely replacing neighborhood-based aggregation with a modified aggregation
routine may give better results.

2.3 Leaf-Based Aggregation Routine

Several scale-free graphs of interest are tree-like or have tree-like components. In
this section we develop an aggregation strategy that is applicable to such graphs (the
model we consider in Section 4 produces graphs that are highly tree-like). Define
a leaf node to be a terminal point on the graph, or a node with only one connec-
tion. Any leaf is only connected to its parent node, and the leaf node’s dependence
is entirely captured by this connection. Therefore, it should be contained in the
same aggregate as its parent. This type of grouping yields a coarse grid repre-
senting a subspace that has high approximation for all eigenvectors corresponding
to eigenvalues of small magnitude, which allows the multilevel cycle to efficiently
sort out these vectors on coarser grids. If node 7 is the leaf and node j is its par-
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ent, then consider rearranging the ith row of (A — Al)y = 0 for any eigenpair

(Ay),
(@i — Ny = —a4;y;.

If A < ay for every leaf i, then sign(y;) = sign(y;), due to a; > 0 and a;; < 0.
Further, if A\ is known, as it is in the ranking application, an iterative relaxation
method can quickly resolve the ratio y;/y;.

If the underlying graph of our system is purely a tree, simply aggregating all
leaves with their parents and any parents with no leaves as children by themselves
yields a coarser tree. This strategy is presented in Algorithm 3. For more general
graphs, this process will only coarsen the parts of the graph that have tree-like
structure. For highly tree-like graphs, repeating Algorithm 3 yields a multilevel hi-
erarchy that has excellent capability for accelerating the ranking calculation, or any
calculation having to do with small eigenvectors. In Section 4, we demonstrate that
this approach to aggregation gives algorithmically scalable ranking calculations for
a class of highly tree-like test problems.

Algorithm 3: Leaf-Based Aggregation
Qs < LeafAgg(Adiag(x),0)
Let £ be the set of leaves, {i : card(N; \ {i}) = 1}
Set R + {1,...,n} and J + 0
/* 1st pass: group all leaves with their parents */
forie L do
if : € R then
Pick parent j € N;.;
J—J+1;
Qs+ N;NR);
R+ R\(N;NR).;
end
end
/* 2nd pass: put remaining points in their own aggregates */
while R # () do
| J«J+1, Q5 {i}, R+ R\ {i}.
end

Remark: For a pure tree, consider performing the ranking calculation using Gauss-
Seidel relaxation, with parent-first ordering. Then, consider a multilevel update
that employs Algorithm 3. This approach is a cyclic reduction, and conver-
gence is attained in one iteration. However, this superb performance will not
generalize to more general graphs or to calculations involving an unknown eigen-
value. Therefore, we do not implement this in Section 4, where our intention is
to merely show that a change in the aggregation mindset gives scalable results
with a purely simultaneous relaxation scheme like Weighted Jacobi. It should be
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noted that a more sophisticated relaxation (one that updates leaf nodes last) is
likely to further improve the efficiency of the calculation, with high parallelism,
even for more general graphs that have some tree-like structure. More explicitly,
in the first few coarsenings, leaf-based aggregation could be used to trim away
the tree-like components of a graph to obtain a much coarser graph with decent
approximation for a range of eigenvalues. This idea will be investigated for more
complicated networks in further work.

2.4 Operator Smoothing

For multilevel aggregation methods applied to graphs that have mesh-like structure
(e.g. planar graphs), the convergence of the ranking calculation is often greatly
improved by applying a smoothing operator to the intergrid transfer operators,
R and P. This idea is called smoothed aggregation, and was originally used for
related algorithms applied to nonsinuglar linear systems [34] and later used for
Algorithm 1 applied to steady-state Markov eigenproblems [8] on mesh-like graphs.
We refer the reader to [8, 9, 32] for the additional details of this method and its
relatives.

If the error propagation operator of the relaxation process is sparse, then some
version of it is used for smoothing the intergrid transfer operators. For aggregation
methods, the intergrid transfer operators are set to

R=Q"'(I —arAD™) (11)

and
P = (I —apD 'A)diag(X)Q, (12)

where (ag, ap) are smoothing parameters. We use ag = ap = 0.7 for the results
in Section 4. Additionally, a process called lumping may be required to guarantee
that coarse-level problem, A.x. = 0., has a non-negative solution.

This unfiltered operator smoothing is generally not acceptable for scale-free
graphs as smoothing dilates the aggregates, making coarse-level operators, A., es-
sentially full. For a typical scale-free graph, using larger aggregates does not remedy
this situation; it just decreases the ability of the coarse-grid correction to acceler-
ate the convergence. We demonstrate the difficulties with smoothed aggregation
in Section 4. A related method based on algebraic multigrid (MCAMG [9]) would
have similar difficulties for scale-free graphs, if no modification to the coarsening
procedure is made.

3 TOP-LEVEL ACCELERATION

Multilevel hierarchies may not be rich enough to provide useful stand-alone solvers
for the stationary probability distribution. However, a simple top-level acceleration
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Fig. 2. Histograms of nodal degree for the first four levels of both a smoothed neighborhood
aggregation (left) and a pure neighborhood aggregation (right) multigrid hierarchy
applied to the p = 1 preferential attachment model of size n = 32 768. The histogram
for the original graph is shown in the white and increasingly darker shades of grey
represent increasingly coarser levels. The original graph is power law in nature, but
the smoothed aggregation coarse levels do not maintain the power law; after a few
coarsenings the graph matrices are essentially dense. Pure aggregation does a much
better job of maintaining a power law degree distribution for the initial coarsening,
but the coarser levels are more hub-like.
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scheme (similar to Krylov acceleration) may be used to greatly improve the con-
vergence properties of the method. This technique enhances the robustness of this
class of methods.

Assume we have some version of Algorithm 1 that produces a sequence of itera-
tes, {x;}2°,, designed to approximate the solution of problem (1). At the k' itera-
tion, let the last m iterates be columns of an n x m matrix,

X = [Xkra Xk—1y -y Xk—m+2, Xk—m+1]7 (13)

with x; being the newest iterate. We call m the window size. All columns of X are
assumed to have the following properties:

x; >0 and x| =1, i=1,...,n. (14)

The natural question arises: is there a linear combination of these m iterates that
is optimal in some sense? If the method that produces iterates {x;}:2, is a stationary
preconditioned residual correction, such as the weighted Jacobi iteration or a fixed
and additive multigrid correction, the standard answer to this question is to use
a Krylov acceleration technique. Algorithm 1, however, is a nonlinear updating
scheme, where the multigrid hierarchy changes with each iteration. Therefore we
take a fairly standard approach similar to that described in [35], where it is applied
to nonlinear PDE problems using FAS full approximation scheme, a well-known
multigrid technique for nonlinear problems [3, 6]. Both approaches are essentially
generalized versions of Krylov acceleration that attempt to minimize the (nonline-
ar) residual of a linear combination of iterates, each modified for their respective
problems.

We define the subset of probability vectors in n-dimensional space to be

P:={weR" suchthat |w];=1, and w >0},
It is easily seen that the functional F(w) = (Aw, Aw) is uniquely minimal in P
at the solution to (1). Our goal is to minimize this functional within a subset, V,

of the range of X, with additional constraints ||w||; = 1 and w > 0, ensuring that
w is a probability vector. Formally, this is

minimize F(w) within V := P N R(X). (15)

We label the requirements imposed on set V in the following way:

(C1) (Normalization Constraint) lwll, =1
(C2) (Nonnegativity Constraints) w >0
(C3) (Subspace Constraint) w e R(X)

Note that (C1) is a single equality constraint while (C2) is a set of inequality
constraints. Also, (C3) is technically a set of equality constraints which determine
a linear subspace of R™. However, because m << n and dim(R(X)*) ~ n, it is
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more convenient (and equivalent) to use the fact that there exists a vector z such
that w = Xz for any w satisfying (C3). This approach is preferred versus explicitly
addressing the constraint equations, which are less accessible and inefficient to deal
with.

If (C2) holds, then the absolute values in ||w||; are unnecessary. Thus, (C1)
is a linear constraint, Y ,w; = 1. Furthermore, because w € R(X), there exists
a vector z such that w = Xz. This implies that

n n m m n m
Iwih =D Jwi=) > Xz =D %) Xy=) 2,
i i=1 j=1 j=1 =1 j=1

due to each column in X being a probability vector. Therefore, the constrained
subset is equivalently written as

i=1

’R(X)ﬁ?’—{w—Xz:izi—l,XZZO}. (16)

This is a convex subset of R™ defined by a single equality constraint and a large
number, n, of inequality constraints. Formally, we rewrite the minimization problem
as

minimize: 7z (X'A'AX)z,
subject to: 1z = 1, and (17)
Xz > 0.

A solution to (17) is given by any vector
x* =Xz =21Xp + 29X 1+ .-+ ZnXp—meit, (18)

where coefficients z; are selected to minimize (AXz, AXz) with the equality con-
straint satisfied, Z;n:l zj = 1, and the full set of inequality constraints satisfied,
Z;”:l x;j2; > 0, for any 1 <i <n.

It is shown in [12] that for the m = 2 case, we are guaranteed that only two
constraints are necessary, and the other n — 2 constraints may be ignored when
solving (17). For slightly larger sets of the iterates, say m = 3 or m = 4, we assume
that the constrained minimization is performed in O(n) operations, near the cost
of a cycle of Algorithm 1 itself, which is consistent with what we have observed in
the experiments. The implementation for the experiments in this paper employs the

active set method from the quadprog function in Matlab® [16].

4 NUMERICAL RESULTS

In this section, we assess the use of aggregation-based multilevel hierarchies for
some scale-free graphs. First we consider C,), the operator complexity of the algo-
rithm. (), is defined as the sum of the number of nonzero elements in all problem
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matrices, A., on all levels, divided by the number of nonzero elements in the fine-
level matrix, A. Note that all operators on each level are counted in C,, (i.e., for
W-cycles, we count two operators on level two, four on level three, eight on level
four, etc.). Since most of the work in our algorithms consist of relaxations, whose
work is proportional to the number of nonzeros in the operator matrix, C,, gives
a good indication of the amount of work required for a cycle. The work per cycle
scales linearly as a function of problem size if C, is bounded by a constant. More
generally, a multigrid method attains optimal scalability (linear in the number of
unknowns) when the number of iterations is bounded as a function of problem size,
and the work per iteration scales linearly as a function of problem size. In the tables
‘n’ is the number of nodes, ‘levs’ is the number of levels used in the multilevel hie-
rachy, ‘iteration counts’ is the number of iterations until the convergence tolerance
is reached, and ‘Cl,’ is the operator complexity of the last cycle.

We then show numerical performance tests for calculating the stationary proba-
bility distribution of a Markov chain with a few versions of Algorithm 1: both stand-
alone and accelerated cycles involving neighborhood-based aggregation (smoothed
and unsmoothed) and unsmoothed leaf-based aggregation. For all the numerical
results presented, we start from a random, strictly positive, initial guess and iter-
ate until the 1-norm residual, ||Ax;||1, has been reduced by a factor of 107%. We
do a direct solve on the coarsest level. All multilevel cycles used are (1,1) cycles
(vy = vy = 1 in Algorithm 1), and we use strength threshhold parameter 6 = 0.25 for
all test problems on all levels, as in [8, 9]. For simplicity, the weight in our weighted
Jacobi relaxation scheme is always chosen as 0.7. Accelerated methods use window
size m = 3.

Smoothed Aggregation | Pure Aggregation

n p=1 p=2 p=1 p=2
1024 3.23 3.89 1.23 1.34
2048 3.37 5.17 1.22 1.36
4096 4.34 7.03 1.23 1.38
8192 5.63 9.14 1.24 1.41
16 384 7.48 11.42 1.24 1.42
32768 9.54 14.62 1.24 1.44

Table 1. Operator complexities for multilevel hierarchies created to coarsen graphs ge-
nerated using the preferential attachment model adding either one edge per node
(p = 1) or two edges per node (p = 2). For the p = 2 cases, each hierarchy has
only 3 or 4 levels. The hierarchies for the p = 1 case are used in the other tables
below to solve for steady state probability distributions.

4.1 Example: Barabasi-Albert Model

We present a test problem associated with a synthetic, small-world graph generated
using a common random graph model, a version of the preferential attachment model
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Iteration Counts

n | Cu | levs | SAM SAM+
1024 | 3.26 4 166 28
2048 | 3.53 4 224 31
4096 | 4.82 4 303 38
8192 | 5.63 4 430 63
16384 | 7.48 4 670 79
32768 | 9.54 5 862 83

Table 2. Calculating stationary probability distributions on preferential attachment
graphs using stand-alone and accelerated smoothed neighborhood aggregation ver-
sions of Algorithm 1 with u =1 (V-cycles)

Iteration Counts

n | Cop | levs Vv V+
1024 | 1.23 4 355 59
2048 | 1.23 4 366 58
4096 | 1.22 4 696 69
8192 | 1.24 5 745 82
16384 | 1.24 5 > 999 127
32768 | 1.23 5 > 999 142

Table 3. Calculating stationary probability distributions on preferential attachment
graphs using stand-alone and accelerated pure neighborhood aggregation versions
of Algorithm 1 with p =1 (V-cycles)

proposed in [1]. Random graphs are generated by starting with a small graph with
5 nodes and successively adding new nodes with a fixed number of edges, p. These
edges are randomly attached to an old node with probability that is proportional to
the old node’s degree. An example is shown in the leftmost panel of Figure 1.
Table 1 shows that pure neighborhood-based aggregation methods coarsen the
graphs into hierarchies appearing to have bounded C,,, independent of problem

Iteration Counts

n | Cg | levs AW W+
1024 | 1.52 4 233 37
2048 | 1.50 4 319 47
4096 | 1.53 4 326 51
8192 | 1.55 5 492 63
16384 | 1.55 5 > 999 96
32768 | 1.54 5 > 999 109

Table 4. Calculating stationary probability distributions on preferential attachment
graphs using stand-alone and accelerated pure neighborhood aggregation versions
of Algorithm 1 with p =2 (W-cycles)
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Iteration Counts

n | Cup |levs | 'V V+
1024 | 1.55 4 12 8
2048 | 1.57 5 | 12 8
4096 | 1.59 6 || 12 8
8192 | 1.59 6 || 12 8
16384 | 1.61 8 || 12 8
32768 | 1.61 9 | 12 8

Table 5. Calculating stationary probability distributions on preferential attachment
graphs using stand-alone and accelerated pure leaf-based aggregation versions of
Algorithm 1 with =1 (V-cycles)

Pure Leaf Aggregation

10000 [

1000

100

10r

frequency of nodes

1 2 4 8 16 32 64 128 256
degree

Fig. 3. Histograms of nodal degree for levels 1, 3, 5, and 7 of a pure, leaf-based aggrega-
tion multigrid hierarchy for the same graph as in Figure 2. The histogram for the
original graph is shown in the white and increasingly darker shades of grey represent
increasingly coarser levels. The leaf-based aggregation routine maintains the power
law degree distribution on all levels.

size, whereas the smoothed neighborhood-based aggregation methods demonstrate
complexities that grow dramatically. Thus the complexity of multilevel hierarchies
is acceptable for pure aggregation for the graphs generated by adding either one
(p=1) or two (p = 2) edges per new node (see Table 1). Additionally, the power
law degree distributions are better maintained on coarser levels for pure aggregation
(see Figure 2). If p = 1, the stochastic matrices associated with the graphs tend to
be slowly mixing: there are subdominant eigenvalues with Re\ & 1 for the matrices
we generated. If similar graphs are generated with more than one edge per new node
(p > 1), our observations suggest that the associated stochastic matrices have high
probability to not be slowly mixing (|A2] < 0.9 for all of a small number of randomly
sampled graphs of various size), and multilevel methods are not required for calcu-
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lating the stationary vector. Therefore, we only apply the multilevel eigensolver
techniques to the graphs generated by adding one edge per node.

We form stochastic matrices associated with random walks on these random
graphs. Note that the steady-state solution for these test problems can be easily
calculated using the relative size of the degree of each node, because they are un-
weighted random walks on undirected graphs. Still, this scale-free example is a good
test problem for our methods, which can also handle directed graphs without such
simple solutions.

The results of applying the smoothed neighborhood aggregation version of Al-
gorithm 1 to this example problem are reported in Table 2. The iteration counts
for the unaccelerated method (labeled SAM) increase rapidly with the problem size.
The iteration counts for the accelerated method (labeled SAM+) are significantly
reduced, but are not bounded independent of the problem size. Additionally, the
operator complexity is growing rapidly for large problems.

Better results are obtained by applying the accelerator to the pure neighborhood
aggregation version of Algorithm 1. Table 3 contains results for V-cycles and Table 4
contains results for W-cycles. The iteration counts for the unaccelerated method
(labeled V' and W) increase rapidly with the problem size. The iteration counts for
the accelerated method (labeled V4 and W+) are again significantly reduced, but
are still not bounded independent of the problem size. The operator complexities,
however, do not increase for larger problem sizes as noted earlier. W-cycles have
slightly better performance than V-cycles.

The leaf-based aggregation provides scalable ranking calculations, as displayed
in Table 5. Independent of the problem size, the multilevel hierarchies have bounded
operator complexity and the iteration counts are bounded as well. Also, for a spe-
cific problem, Figure 3 shows that the power-law structure of the original graph is
maintained on coarse levels of the multilevel hierarchy.

5 CONCLUSIONS AND FUTURE WORK

We have shown examples of small-world graphs where pure neighborhood aggrega-
tion achieved multilevel hierarchies of optimal complexity and retained power-law
distribution on coarse-grids, whereas smoothed neighborhood aggregation did nei-
ther. Additionally, these multilevel hierarchies were used to calculate stationary
probability vectors for Markov chains, where a Krylov-like acceleration technique
was developed and employed to significantly reduce iteration counts.

Using an aggregation routine that takes advantage of tree-like structure within
graphs allows pure aggregation solvers that are scalable for a class of test problems.
Next, we intend to generalize this algorithm to be robust and scalable for a wider
class of complicated network graphs. Additionally, we are developing related algo-
rithms that compute multiple eigenvectors that are to be used for several types of
network calculations relevant to information retrieval.
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