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Abstract. Echo State neural networks (ESN), which are a special case of recurrent
neural networks, are studied from the viewpoint of their learning ability, with a goal
to achieve their greater predictive ability. In this paper we study the influence of the
memory length on predictive abilities of Echo State neural networks. The conclusion
is that Echo State neural networks with fixed memory length can have troubles with
adaptation of its intrinsic dynamics to dynamics of the prediction task. Therefore,
we have tried to create complex prediction system as a combination of the local
expert Echo State neural networks with different memory length and one special
gating Echo State neural network. This approach was tested in laser fluctuations
and turbojet gas temperature prediction. The prediction error achieved by this
approach was substantially smaller in comparison with prediction error achieved by
standard Echo State neural networks.
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1 INTRODUCTION

From the point of information transfer during processing, neural networks can be
divided into two types: feed-forward neural networks and recurrent neural net-
works [4]. Unlike the feed forward networks, recurrent neural networks contain at
least one cyclical path, where the same input information repeatedly influences the
activity of the neurons in a cyclical path. The advantage of such networks is their
close correspondence to biological neural networks, but there are many theoretical
and practical difficulties connected with their adaptation. The common problem of
all such networks is the lack of an effective supervised training algorithm. The prob-
lem of difficult training was largely overcome by Echo State neural networks, where
only weights to output neurons are trained. That can be achieved in one step [2, 3].
On one hand their application bypasses a problem of efficient training, but on the
other hand, by imposing an echo-state property we restrict the ESN recurrent dy-
namics to contractions, making it less general (unlike fully trained recurrent neural
networks, ESN cannot learn, e.g. the context-free grammar [13]). A very fast al-
gorithm is used in these networks consisting of a calculation of one pseudo-inverse
matrix, which is a standard numerical task.

In this paper we studied the influence of the memory length on predictive abilities
of these special neural networks. We have found that Echo State neural networks
(ESN) with fixed memory length can have troubles with adaptation of its intrinsic
dynamics to dynamics of the prediction task. Therefore we suggest to create complex
prediction system as a combination of the local expert Echo State neural networks
with different memory length and one special gating ESN. The increase of number
of the Echo State neural networks in the whole prediction system does not mean any
substantial increase in computational demands due to very fast training algorithm.
The advantage of this approach is that we get higher flexibility and better quality
of prediction.

Connection between “liquid state” computing, related to echo states, and back-
propagation was mentioned previously in [8, 12]. In our previous work [9, 10, 11]
we explored a possibility to improve “one-step” learning by evolutionary approaches
and Anti-Oja’s learning. Mixtures of local expert neural networks and its application
in time series prediction can be found in [1, 5, 6].

2 ECHO STATE NEURAL NETWORK

Echo State neural networks are atypical in architecture and training of recurrent
neural networks (RNN). This new approach leads to a fast, simple and constructive
supervised learning algorithm for the RNN. The basic idea of ESN is an application
of a huge reservoir, as a source of dynamic behavior of a neural network, from which
neural activities are combined into the required output.

The activity of hidden layer neurons in an RNN is further denoted as x(n) =
(x1(n), z2(n), ..., xn(n)), where z;(n) is the output of the i*® hidden neuron in
time n, and N is the number of hidden neurons. Under certain conditions, each z;(n)
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Fig. 1. The typical architecture of Echo State neural networks. The only weights which
are trained in this architecture are the weights from the hidden to the output layer
(dashed arrows).

is a function of the networks previous inputs u(n),u(n — 1), ..., processed by the
network. The input vector is denoted as u(n) = (ui(n), us(n),...,ux(n)), where
u;(n) is the input of the i*" input neuron at the time n and K is the number of input
neurons. Therefore, there exists such a function, F, so that:

x(n) = E(u(n),u(n —1),...). (1)

Metaphorically speaking, the state of the neural network x(n) can be considered as
an “echo”, or in other words, a reflection of its previous inputs.

2.1 Description of the Neural Network

Neural network consists of K input, N hidden and L output neurons. The state of
the neurons in the input layer at the time n is characterized by the vector

u(n) = (u1(n),us(n), ..., ux(n)),
in the output layer by the vector

y(n) = (y1(n),y2(n), ..., yr(n)),
and in the hidden layer by the vector

x(n) = (z1(n), z2(n), ..., zn(n)).

The values of all the synaptic weights will be stored in matrices. An input weight
matrix will be created: W™ = (w}}) of size N x K, a weight matrix between hidden

neurons: W = (wj;) of size N x N, a matrix of output weights: W = (wg}") size
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of L x (K + N + L), and a matrix of weights from the output back to the reservoir:
WPk — () size of N x L. Tt is notable that, in this type of network, both direct
input-output weights, as well as the recurrent weights between output neurons are
allowed.

The structure and topology of ESN can be adjusted according to their current
task. It is not necessary, for example, to use sigmoid output neurons, back weights
from the output layer to the reservoir may or may not exist (they were not used),
and even the input neurons may not be used (they were used). The output neurons
used in this application were with no loops and with f = tanh (hyperbolic tan-
gent) activation function. We can find detailed description of the learning algorithm
in [2, 7).

We will just introduce computation of activities of the internal and output neu-
rons. The states of hidden neurons in ”dynamical reservoir” are calculated by the
formula

x(n+1) = f(W™u(n) + Wx(n) + W"*d(n)), (2)

where f is the activation function of hidden neurons. The states of output neurons
are calculated by the formula

y(n+1) = W (u(n+1),x(n+ 1),y(n)), (3)

where f°“ is the activation function of output neurons.

3 TESTING DATA

The goal of this paper is to compare the results achieved by original “one-step”
learning algorithm with our new approach. We have used two different data sets.

The first data set represents exact laboratory measurements. This data set was
composed of a time sequence of 1000 samples of laser fluctuations data, and the
quality of prediction was measured by an error of prediction in the next 100 steps.

The second data set was composed of a time sequence of 555 samples of turbojet
gas temperature, and the quality of prediction was measured by an error in the
next 30 samples. In addition there were also available turbine rotation and air
temperature values.

A mean absolute percentage error (MAPE)! was used to measure the quality of
prediction on these testing sets, where test values P/ and predicted values P
are used, and N is the number of couples of values (the length of the predicted time
series):

Pireal _Picalc
Pq_rv'eal

N

N

i=1

MAPE = % 100. (4)

I The MAPE error was used in order to allow a comparison with results of prediction
on the predicted data achieved by other methods [9, 11], which also used MAPE error.
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A mean squared error (MSE) and standard deviation (SD) were also used for the
final evaluation of results:

éV:1(P@'Teal _ Picalc)Z (5)
N .

MSE =

1 N
D = § Peale _ )2
S \leiZI(l y)? (6)

where y' is the mean (average) of predicted values.

4 MOTIVATION AND METHOD

One of the most important parameters influencing the predictive ability of Echo
State neural networks is spectral radius («) of synaptic weights matrix W. The
appropriate choice of the spectral radius has crucial importance for the eventual
success of the ESN training. This is because « is closely connected to the intrinsic
timescale of the dynamics of the dynamic reservoir (DR). Small value of o means
that we have a fast DR, large value of a (close to 1) means that we have a slow
DR. The intrinsic timescale of the task should match the DR timescale. Standard
settings of « lies in a range between 0.6 and 0.99 (based on empirical observations).
Proper setting of this parameter is crucial for the prediction quality of the resulting
ESN. It should be small for the fast training data dynamics and large for the slow
training data dynamics. Typically, a needs to be hand-tuned by trying out several
settings. The DR timescale depends exponentially on 1 — «, so e.g. settings of
a =0.99, 0.98, 0.97 will yield an exponential speedup of DR timescale, not a linear
one [2]. From the other point of view « is influencing the memory of the ESN. If
the value of « is less than 1, we can use the response of DR in more complex ESN
architecture. On the other hand, the neural network has the tendency to gradually
forget information from the previous time steps. In other words, ESN has memory
with exponential decrease of information.

With the change of the a parameter we are also changing the number of the
previous inputs, which will have the influence on the current state of the DR. We
have made the following simple experiments. Different Echo State neural networks
were trained and used for the time series prediction. The only difference among
individual ESN networks was in the « parameter value. In the end, every ESN
network had different prediction accuracy of the whole testing set; but what is more
important, not every sample from the testing set was predicted most accurately by
the winning ESN. In other words, Echo State neural networks with different memory
length differed in the prediction accuracy for the individual time steps of the whole
testing set.

In Figure 2 we can see the comparison of a part of the laser fluctuations testing
set for two Echo State neural networks with different a parameter. This part rep-
resents a quick change in the data set, which is very difficult for neural network to
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adapt to. As we can see, the Echo State neural network with a equal to 0.67 (faster
dynamics) can better adapt to a sudden change in the data, but still the better pre-
diction accuracy at the whole testing set was achieved with the Echo State neural
network with « equal to 0.8.

1,1
Laser X
fluctuations e o o Experimental Values
o,
Predicted Values. Alpha: 0.8
0,7
Predicted Values. Alpha: 0.67
0,5
0,3
0,1
-0,1
Time step
03 1 10 19

Fig. 2. Comparison of prediction accuracy of a part of the laser fluctuations testing set for
two Echo State neural networks with different o parameter. The overall prediction
accuracy was 29.52 % for the ESN with « 0.8 and 36.7 % for « equal to 0.67.

Thus our goal was to create a complex prediction system as a combination of
the local expert Echo State neural networks with different o parameter and one
special gating ESN. Local expert Echo State neural networks were used for the
testing set prediction, but the task of the gating ESN was different. This neural
network should determine which local expert ESN has the best prediction accuracy
for the given time step of the testing set. The increase of number of the Echo
State neural networks in the whole prediction system does not mean any substantial
increase in computational demands, because the whole ESN training process is only
computation of one pseudo inverse matrix. We can see the scheme of the whole
prediction system in Figure 3.

5 EXPERIMENTS

The whole learning process was divided into three parts. The task of the first part
was to find parameters of local expert ESN networks, which would be optimal for
the quality of prediction on the laser fluctuations and turbojet gas temperature
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Fig. 3. The scheme of the whole prediction system

sets. The achieved results should also serve for comparison with results achieved
in the third part. The second part of experiments was aimed at finding the best
parameters of gating Echo State neural network and prepares the whole system for
the final third part. The third part of experiments was focused on the evaluation
of prediction results, where the above mentioned gating ESN was used as global
expert with simple task — finding the local ESN with the best prediction accuracy
for a given time step.

5.1 The First Part of Experiments

As mentioned in Section 5, the first part involves two tasks: Finding best parameters
of local expert ESN networks and obtaining prediction results. These results will be
used later for comparison with the ones achieved in the third part.

The ESN consists of dynamic reservoir with one output neuron and one input
neuron for laser data and three input neurons for turbojet gas temperature data.
In the case of turbojet gas temperature, the first input represents gas temperature
outgoing from the turbojet, the second input represents air temperature incoming
to the turbojet and the third input represents rotation of the turbine.

The weight matrix between hidden neurons (W) should be sparse, to encourage
rich variety of dynamics in dynamical reservoir. For that reason, only 2% of all
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connections in dynamical reservoir were created. The network’s hidden units are
standard sigmoid units, with a transfer function f = tanh (hyperbolic tangent) and
the synaptic weights were initialized from interval [—1, 1] with uniform distribution.

A considerable number of experiments was carried out, the representative results
of which can be seen in Table 1 for laser data and in Table 2 for turbojet gas
temperature data.

Index | DR | « | Average MAPE | The best MAPE
1 200 | 0.8 33.86 % 31.24%
2 250 | 0.8 34.23% 29.52%
3 250 | 0.7 36.29 % 31.34%
4 300 | 0.7 35.94% 32.85%

Table 1. Results of representative experiments in the first part: laser time series

Index | DR | o« | Average MAPE | The best MAPE
1 250 | 0.8 2.93% 1.81%
2 300 | 0.7 2.70 % 1.78%
3 300 | 0.8 2.64 % 1.50 %
4 350 | 0.8 3.58 % 2.33%

Table 2. Results of representative experiments in the first part: turbojet gas temperature
series

In these tables, DR represents the dynamic reservoir; « is the spectral radius of
the weight matrix W, which is influencing the ability of the neural network to exhibit
echo states. These DR and « values were chosen in accordance with the proposal
used by Jaeger [2]. We have changed the number of neurons in DR from 50 to 1000
with step equal to 25. The « value was changed from 0.59 to 0.99 with step 0.1.
Experiments were carried out in the following way. For each value of DR and the
parameter «, the values of synaptic weights in DR were randomly generated 1000
times. This number was estimated to be large enough for statistical evaluation of
prediction error on a testing set and for each initialization of weights the error for the
testing set was calculated. Further, an average error of all 1000 trials is presented
in the columns Average MAPE (Table 1 and 2). Also, the smallest achieved error
was recorded in the Best MAPE in the same tables.

A clear correlation between Best and Average value columns is apparent from
Tables 1 and 2. When a better Average MAPE was achieved, there is also a better
Best MAPE. This way we have found best parameters (number of neurons in DR
and «) for each individual local expert. The best results for both prediction sets
were achieved with « 0.8 and with DR consisting of 250 neurons for laser data and of
300 neurons for turbojet gas temperature data. We can see graphical representation
of the best error for laser testing set in Figure 4 and for air temperature set in
Figure 5.
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Fig. 4. Testing data: 100 records of laser fluctuations and 100 values predicted by standard
Echo State neural network (MAPE 29.52 %).
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Fig. 5. Testing data: 30 records of turbojet gas temperature values and 30 values predicted
by standard Echo State neural network (MAPE 1.5 %)
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5.2 The Second Part of Experiments

In this part of experiments we have optimal parameters of the local expert ESN
networks, in regard to the used laser fluctuations and turbojet gas temperature
sets. These networks are already trained and ready to use in this second part.

Now we have to find the best parameters of the gating Echo State neural network.
First, we had to create the training set for this special neural network. Therefore
we had trained 40 ESN networks with different values of the a parameter. The rest
of the parameter values and initialization of the synaptic weights of these neural
networks were chosen based on the best results from the first phase of the expe-
riments. The a parameter value of individual ESN ranged between 0.59 and 0.99
with sampling step 0.1.

The training of ESN is based on linear regression and one-step learning algo-
rithm. Therefore, we have no possibility to catch the error signal during this learning
process. So the local expert ESN networks were used for self prediction of the whole
laser fluctuations and turbojet gas temperature sets and the time series obtained
in that way reflects the quality of adaptation of each local expert to the training
sets.

Afterwards, we were able to select the local expert ESN networks with the
best prediction accuracy for the individual time steps of the training sets. The
architecture and input of the gating ESN was the same as the one used for local
expert ESN networks for individual testing sets. The only difference was in the
desired output. In the case of gating ESN, this output was represented by the
sequence number of the local expert ESN network with the best prediction accu-
racy for the following timestep. Thus the gating ESN had simple classification
task.

A considerable number of experiments was carried out; the representative results
are in the following Table 3 for laser and in Table 4 for turbojet gas temperature
time series.

‘ Index | Size of DR | Alpha | Classification accuracy
1 250 0.75 76.4%
2 300 0.76 81.6 %
3 350 0.84 72.2%

Table 3. Results of representative experiments in the second part: laser time series

‘ Index | Size of DR | Alpha | Classification accuracy
1 200 0.74 63.6 %
2 270 0.81 76.4 %
3 300 0.86 67.8%

Table 4. Results of representative experiments in the second part: turbojet gas tempera-
ture time series



Modular Echo State Networks in Time Series Prediction 331

Experiments in this part and description of attributes from Tables 3 and 4 are
equivalent to experiments and description of attributes from the first part. There-
fore, these descriptions will not be repeated again.

5.3 The Third Part of Experiments

The main experiments were carried out in the third phase with already trained local
expert ESN networks and the gating ESN. All 40 local expert ESN networks were
used for the prediction of the next 100 values for laser time series and 30 values for
turbojet gas temperature series, which were not a part of the training sets (these
values were used for the prediction quality measurements). After this process, for
each training set we have created one time series as an average of all 40 time series
predicted by local expert ESN networks. This time series served as an input into
the gating ESN. The gating ESN was consequently used for the determination of
the local expert ESN with the best prediction accuracy for individual time steps of
the testing sets.

In the following Table 5 we can see the comparison of best achieved errors on
testing data sets for standard Echo State neural network and our new approach —
Modular Echo State neural networks. We can see graphical representation of these
two approaches in Figures 6 and 7. It is clear from this table and figures that the
modular approach can increase the quality of prediction considerably in comparison
with standard Echo State neural network.

Testing data Original Approach Modular ESN approach
MAPE/MSE/SD MAPE/MSE/SD

Laser fluctuations 29.42%/1.18¢—3/0.221 | 16.62%/0.29¢—4/0.218
Turbojet gas temperature 1.50 %/74.86/7.852 0.70%/19.04/7.120

Table 5. Results of experiments in the third part

6 CONCLUSIONS

Echo State neural networks are relatively new in the domain of neural networks.
Their advantage is a closer connection with biological models inherent to recurrent
neural networks and in their usage of the reservoir of dynamic behavior without
adjusting the weights within the hidden layer. Echo State neural networks have
a substantial advantage over other types of recurrent networks in their “one-step”
learning ability.

However, there is no incremental approach further improving performance of
an Echo State neural network. We decided to improve the performance by using
a set of Echo State neural networks, each trained with different value of alpha
parameter. This parameter controls the length of time, during which the old inputs
can influence the output of the Echo State neural network, metaphorically “the
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Fig. 6. Testing data: 100 records of laser fluctuations and 100 values predicted by Modular
Echo State neural networks approach (MAPE 16.62 %)
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Fig. 7. Testing data: 30 records of turbojet gas temperature values and 30 values predicted
by Modular Echo State neural networks approach (MAPE 0.70 %)
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length of the Echo”. Gating Echo State neural network was trained to decide, in
which part of the dynamic phase the modeled system is. In each time step of the
test, this gating network selected from the set the best Echo State neural network
trained with suitable alpha parameter. The answer of this selected network was
used as a response in the current time step.

We have chosen laser fluctuations and turbojet gas temperature as the testing
data. Our aim was to find out whether this approach is able to increase prediction
quality in comparison with original Echo State neural networks. From the results
shown in the paper, it is clear that this aim has been accomplished. Modular Echo
State neural networks approach can increase the quality of the network’s prediction.
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