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Abstract. The main purpose of this paper is to present a new formal definition
that can be used for modeling functional test. Initially, WorkFlow nets are used to
represent the main functional requirement of the software. Next, Object WorkFlow
nets derived from WorkFlow nets and object Petri nets are used to formally specify
the test models of object oriented software functionalities to be used. In particular,
the proposed models allow for the addition of complex data structure specifications
as well as complex control specifications. The dynamic execution of functional
testing models, when considering a specific software architecture, is given by the
instantiation of a testing class associated with the tested functionality. An example
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of execution of functional testing corresponding to the “Withdrawal Operation” of
a bank ATM machine is presented, as well as a comparative study based on a more
traditional UML modeling approach.
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1 INTRODUCTION

Software testing is an essential and complex activity in software engineering. It is
essential because it helps to ensure the quality and reliability of the tested soft-
ware [1]. It is complex mainly due to the actual software complexity. This is a field
within the software engineering community which has had many achievements, as
shown in [2].

According to Mathur and Malik in [3], software testing is the most important
phase in the software development life cycle. So, in the context of software devel-
opment, it would be essential to include the testing activity among all the steps of
software development, with the aim of improving the detection of flaws which may
exist as part of it, as proposed in the V-Model, since the purpose of software testing
is to determine whether a program contains errors.

Software testing methods can be divided into two broad classes: functional and
structural testing. Functional testing is used to find disagreements between the
specification and the actual implementation of the software system [4]. This is
the activity concerned with the verification of the functionalities of a software and
is essentially applied to the phase corresponding to the requirement specification
activity which is generally based on modeling techniques. According to Borba et al.
in [5], the requirements are one of the primary sources of input to the system test
process; so the requirements are also subject to verification. In functional testing,
the tester basically considers the specification to obtain test requirements or test
data without any concern for implementation. So a high-quality specification is
fundamental to support the application of functional testing. The authors in [5]
point out that a disadvantage of functional testing is that specifications, mainly
informal, may be incomplete or ambiguous, as will be the test suite which is created
based on them. To solve this, in recent years, formal methods and software testing
are seen as complementary and as two important approaches that assist in the
development of high-quality software [6]. According to Hierons et al. in [6], formal
specifications and models may be used as the basis for automating parts of the
testing process and can lead to more efficient and effective testing. In this context,
the authors highlight that the primary idea behind a formal method is the benefit
of writing a precise specification for a system. So, a specification of a system might
cover its functional as well as its structural or architectural behaviour. By using
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formal methods and testing together, it may be capable of generating functional
test cases from the specification of a system [6].

Many works have already considered formal methods for functional testing. Dif-
ferent kinds of graphs are used to formalize functional testing techniques for proce-
dural software as shown in [7], but the object-oriented software is not considered.
Simão et al. in [8] present the tool Proteum-RS/PN, that explores the criteria of
mutation testing in the context of functional testing for Reactive Systems using, in
particular, models based on Petri nets. Other tools, with the same feature, were de-
veloped based on Finite State Machines [9] and Statecharts [10]. These approaches
also consider procedural software. In [11], an approach for functional testing of
object-oriented software, based on State Machine specifications is presented. In this
approach, the authors are concerned with the functional testing of each method of
a class. In [12], a low level Petri net, named Class Petri Net Machine (CPNM), for
specifying method sequence specification of a class is proposed, and a test-case gen-
eration technique, based on Petri nets, is presented. In this technique, the authors
specify the behaviour of classes in terms of CPNM and generate test cases based
on a reachability tree that covers the correct sequence usage for all the objects of
the analysed class. The focus here therefore also becomes the internal behaviour
of a class as an individual unit. In [13], an approach based on the translation of
UML 2.0 Activity Diagrams into coloured Petri nets is presented. This approach
considers the flow controls, which exist in the UML specification, as well as the data
flows represented by objects. Test cases are then applied to the Petri net models
representing the internal behaviour of a class. Such an approach does not consider
in an explicit way the existing interaction mechanisms between objects. In [1], the
authors present the ISTA (Integration and System Test Automation), a tool for
the automated generation of an executable test code, based on high-level Petri nets
(Predicate/Transition nets or Coloured Petri nets) for specifying test models. The
approach presented in this paper is related to the testing of object-oriented software
and the ISTA input is a MID (Model-Implementation Description) specification con-
sisting of a Predicate/Transition (PrT) net, a MIM (Model-Implementation Map-
ping) and HC (Helper Code). In such an approach, more than one model/mapping
is necessary to perform a test.

Nowadays, there are many approaches that are focused on test case generation
from UML specifications [14, 15, 16]. Many of them consider the business process
models as relevant for the testing of the software and are based on UML Activity Di-
agrams, as shown in [16]. An approach based on business process modeled by BPMN
(Business Process Model and Notation) for software testing is shown in [17]. In this
approach, the process model contains information about process, flows and tasks,
and is taken as an input to generate test-cases that are generated based on these
flows. To generate the test-cases, another four models are necessary: architecture,
user interface, behaviour and data model.

None of the discussed works presented formal models that integrate data flows
as well as control flows and also consider interactions between objects in a formal
way. Another limitation which clearly appears in most of the papers which deal
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with software testing is the lack of an operational semantic for the test models. As
a matter of fact, in order to follow the execution of a test, simulation mechanisms
adapted to object-oriented systems should also be associated with the models used
to specify the software tests.

The purpose of this paper is to propose the execution and simulation of func-
tional test models that can support parallelism, concurrency, control flow represen-
tation and complex data structure specification for object-oriented software.

In Section 2, some theoretical results, necessary in order to define the general
test model, are presented. In Section 3, the definition of the test model based on
WorkFlow nets and objects Petri nets is given. In Section 4, the implementation
principle of the test model using a test class within an object oriented architecture is
presented. The dynamic execution and simulation of the test model are explained in
Section 5. Section 6 presents a comparative study between the approach presented
in this paper and an approach based on UML Diagrams in the context of V-model
software development processes. Finally, the conclusions for this paper are given in
Section 7.

2 MODELING TECHNIQUES

2.1 Petri Nets

Petri nets are defined as a directed bipartite graph with two types of nodes named
places and transitions. The nodes are connected via directed arcs. Connections
between two nodes of the same type are not allowed. Places are represented by
circles and transitions by rectangles [18, 19]. There are many extensions of Petri net
models that can be classified as low-level Petri nets or high-level Petri nets [20].

Low-level Petri nets are characterized by simple tokens in places that indicate
the partial states of the system. The definition of a marked Petri net is the following:

Definition 1. A marked Petri net is a 5-tuple PN = (P, T, F,W,M0) where [19]:

• P = {P1, P2, . . . , Pm} is a finite set of places;

• T = {T1, T2, . . . , Tn} is a finite set of transitions;

• F ⊆ (P × T )
⋃

(T × P ) is a set of arcs;

• W : F −→ {1, 2, 3, . . .} is a weight function;

• M0 : P −→ N is the initial marking.

The global state of the system is then given by the distribution of tokens con-
sidering all the places on the net. An example of an ordinary marked Petri net is
presented in Figure 1.

A state or marking in a Petri net is transformed into another marking according
to the following firing rules:

• A transition tj is enabled if each input place Pi of the transition is marked with
at least W (Pi, Tj) tokens, where W (Pi, Tj) is the weight of the arc from Pi to Tj.
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P1 P2 P3 P4 P5

t1

t2

t3

t4

3

3

Figure 1. Marked Petri net

• The firing of an enabled transition Tj consumes W (Pi, Tj) tokens from each
input place Pi of Tj and produces W (Pk, Tj) tokens for each output place Pk

of Tj, where W (Pk, Tj) is the weight of the arc from Tj to Pk. An example of
transition firing t3 is illustrated in Figure 2.

P1 P2 P3 P4 P5

t1

t2

t3

t4

3

3

Figure 2. Example of transition firing

Some of the most important properties of Petri nets are the following:

Live Petri net: A marked Petri net is said to be live, if no matter what marking
has been reached from M0, it is possible to ultimately fire any transition of the
net by progressing through some further firing sequence.

Bounded Petri net: A marked Petri net is bounded if the number of tokens in
each place does not exceed a finite number K for any marking reachable from M0.

An overview of the Petri net theory can be found in [20].

2.2 WorkFlow Nets

Petri nets can be used as a tool for the representation, validation and verification
of Workflow processes [19]. Petri nets which model Workflow processes are called
WorkFlow nets. A WorkFlow net respects the following properties [19]:

• It has only one input place, named Start, and one output place, named End. The
place Start does not have input arcs and the place End does not have output
arcs.
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• One token in the place Start represents a “case” which has to be treated and
a token in the place End represents a “case” which has been treated.

• The tasks T attached to transitions and the conditions P attached to places
must belong to an existing path between the place Start and the place End.

Figure 3 represents an example of processes for handling complaints which is
a kind of Workflow process [19].

Figure 3. An example of WorkFlow net

Soundness is the main property of WorkFlow nets. A WorkFlow net is sound
if [19]:

• For each token in the place Start, one and only one token is produced in place
End.

• When the token is produced in place End, all the other places are empty for this
case.

• For each transition (task), it is possible to move from the initial state to a state
in which that transition is enabled, i.e., there does not exist any dead transition.

2.3 Object Petri Nets

Ordinary Petri nets do not allow for the modeling of complex data structures. Many
extensions have been proposed to model this specific aspect through high-level Petri
net definitions.

The object Petri nets defined by Sibertin-Blanc [21] are based on the integration
of predicate/transition Petri nets and the concept of an object oriented paradigm.
The tokens are considered as n-tuples of instances for a class of object and carries
data structures defined as sets of attributes for specific classes. Pre-conditions and
actions are associated with transitions, which respectively act on the attributes
(eventually modifying their values) of the data structures transported by the tokens
of the net. The object Petri nets can be formally defined as:

Definition 2. A marked object Petri net can be defined by the 9-tuple:

N0 = 〈P, T, Class, V, Pre, Post, Atc, Ata,M0〉
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where

• Class is a finite set of classes of objects: for each class, a set of attributes is also
defined;

• P is a finite set of places whose types are given by Class;

• T is a finite set of transitions;

• V is a set of variables whose types are given by Class;

• Pre is the function precedent place (an arc between a place and a transition
which considers a formal sum of elements of V );

• Post is the function next place (an arc between a transition and a place which
considers a formal sum of elements of V );

• Atc is an application which associates to each transition a condition that in-
volves the attributes of the formal variables associated with the input arcs of
the transitions;

• Ata is an application which associates to each transition an action that involves
the formal attributes of the variables associated with the input arcs of the tran-
sitions and updates the attributes of the formal variables associated with the
output arcs of the transitions;

• M0 is the initial marking which associates a formal sum of objects to each place
(n-tuples of instances of classes that belong to Class);

An example of object Petri net is presented in Figure 4. The set of classes is
defined as:

Class = {Product,Request}.
The Product class has the attributes: name = identifier;

code = integer;
cost = float;

The Request class has the attributes: code : integer;
cost : float;
type : identifier;

The variable pr belongs to the Product class and the variable pd belongs to
the Request class. The place Products Stock belongs to the Product class, the place
Buffer Request belongs to the Request class and the place Processed Requests belongs
to the Request class. The initial marking M0 is given by the objects that are in the
places Poducts Stock and Buffer Request:

M0 =

 〈pr1〉+ 〈pr2〉+ 〈pr3〉
〈pd1〉+ 〈pd2〉

0

 .
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pd.cost=pr.cost

if (pr.name==pd.type)

<pr1> +
<pr2> +
<pr3>

Products Stock Buffer Request

Processed Requests

<pd1> +
<pd2>

<pr> <pd>

<pd>

t

Figure 4. Specification of a sale transaction

For example, the attributes of the object (token) pr1 can be given by:
Product pr1;
name : home theater;
code : 567544;
cost : 278, 50;
and the attributes of the object (token) pd2 can be given by:
Request pd2;
code : 123440;
cost : 00, 00;
type: home theater;

The detailed definition of the dynamic behaviour (firing rules) of the object
Petri nets can be found in [21]. In Figure 4, the transition t is enabled by the initial
marking. The attributes of the variable pr associated with the arc connecting the
place Products Stock to the transition t can be replaced by the attributes of the
objects pr1 for example. Similarly, the attributes of the variable pd associated with
the arc connecting the place Buffer Request to transition t can be replaced by the
attributes of the objects pd2 for example. Considering that the attributes of the
pair of objects (pr1, pd2) check the condition associated with the transition t, the
transition can be fired. The action associated with the transition is then executed
and a new object pd2 can be produced in the place Processed Requests, as shown in
Figure 5, with the following attributes:
Request pd2;
code : 123440;
cost : 278, 50;
type : home theater;
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<pr2>
+

<pr3>

<pd1>

<pr> <pd>

<pd>

if(pr.name==pd.type)

pd.cost=pr.cost

<pd2>

t

Products Stock Buffer Request

Processed Requests

Figure 5. Execution of a sale transaction simulation

In particular, when considering this new object pd2, the attribute cost has been
modified after the firing of t.

3 FUNCTIONAL TESTING SPECIFICATION MODEL

The implementation of a test model for oriented object software can be seen as the
execution of a test case of a Workflow process. A test case has a beginning, an end,
and performs various operations (it tests several methods of the called objects in
order to execute a given functionality) following different types of routings such as:
sequential routing, alternative routing, parallel routing or iterative routing.

A test case should also allow for the specification of complex data structures
and be a sufficiently formal model so as to be implemented and easily transformed
into an executable code. The definition of the specification model for the functional
testing of object oriented software is then given by the following definition:

Definition 3. The specification model for the functional testing of object oriented
software is defined by an object Petri net in such a way that the underlying au-
tonomous Petri net used to define the control structure of the test is given by
a WorkFlow net. The corresponding object WorkFlow net used as the final test
model is then defined by the 9-tuple:

N0 = 〈TestClass, P, T, V, Pre, Post, Atc, Ata,M0〉
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where

• TestClass represents the test type that is defined by a set of attributes of two
types:

– attributes that represent the input data of the test,

– attributes that represent the output data of the test.

• P is a finite set of places, which in particular possesses the places Start and End
which are the underlying WorkFlow net places. The element types for P are
those defined in TestClass.

• T is a finite set of transitions.

• V is a set of variables whose types are given by TestClass.

• Pre is the function precedent place which considers a formal sum of elements
of V .

• Post is the function next place which considers a formal sum of elements of V .

• Atc is an application which associates to each transition a condition that in-
volves the attributes of the formal variables associated with the input arcs of
the transitions.

• Ata is an application which associates to each transition an action that involves
the formal attributes of the variables associated with the input arcs of the tran-
sition and updates the attributes of the formal variables associated with the
output arcs of the transitions.

• M0 is the initial marking which associates to the place Start a test object whose
attributes are instantiated in TestClass.

To illustrate the main features of the given definition, an example of functionality
of an ATM (Automated Teller Machine) is considered. The informal specification
of the studied functionality is the following: Initially, the customer inserts the
identification card. If the identification card is valid, then the customer enters the
password. If the password is correct, the customer executes an operation of draw-
ing. If the balance in the customer’s account is sufficient, the customer receives the
money.

The functionality specified in natural language does not formally define what
is exactly expected from the drawing function. The different interpretations of
the textual specification can produce several control specifications given by several
WorkFlow net models. The sequential case is illustrated by the WorkFlow net in
Figure 6. In this model, all the operations are executed in a perfect sequence. The
charge-amount operation updates the balance of the client after the drawing and the
safe-update operation updates the amount of money available in the ATM machine.

The iterative case is illustrated by the WorkFlow net of Figure 7. If the user
enters a wrong password, this model allows various attempts to enter the correct
password, featuring an iterative route in the corresponding WorkFlow net.
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Start
c2 c3 c4 c5 c6

End

check_card

error_card

check_password

error_password

check_balance

error_balance

safe_update charge_amount print_receipt

Figure 6. WF-Net: Representation of generic ATM system by sequential WorkFlow net

Start
c2 c3 c4 c5 c6 End

limit_password

check_card

error_card

check_password

error_password

check_balance

error_balance

safe_update charge_amount print_receipt

Figure 7. WF-Net: ATM iterative system representation by WorkFlow net

Parallelism can be represented in the control specification of the functional test,
as illustrated by the WorkFlow net in Figure 8. In this example, the WorkFlow net
indicates that the order of execution of operations “print-receipt”, “charge-amount”
and “safe-update” is not important in the test execution and can be implemented
in parallel or in any sequence if the system does not allow true parallelism.

Start
c2 c3 c4 c5 c6

End

c8 c9

c10 c11

end_operationcheck_card

error_card

check_password

error_password

check_balance

error_balance safe_update

charge_amount

print_receipt

Figure 8. WF-Net: ATM parallel system representation by WorkFlow net

Once the control structure of the functional test is specified by an ordinary
WorkFlow net, the final model of the test can be produced using the definition of
an object WorkFlow net. For example, if the control structure of the test is the one
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specified by the WorkFlow net in Figure 6 (the sequential case), then the functional
test model will be given by the object WorkFlow net in Figure 9. In this model, the
transitions are associated with methods (operations) that manipulate the attributes
provided by the test object cl1 which is initially in the place Start. cl1 is an instance
of the class TestClass defined as:

TestClass;
Input Test Data:
number: integer; // card number
password: integer; //client password
drawing: float; //amount of money

Output Test Data:
nbr: Boolean; //indicates if the card number is genuine
s: Boolean; // indicates if the password is correct
bal: Boolean; // indicates if the amount of money indicated by the client is accept-
able according to the amount of money that exists in his bank account
imp: Boolean; // indicates if a receipt of the transaction has been printed
n: Boolean; // indicates if the amount of money of the ATM machine has been
actualized after the transaction
balance: float; // indicates the balance of the client after the drawing operation

The operations associated with the transitions are:

• getCheckCard: checks the validity of the card, manipulating the attribute number
that provides the code for the card to be analyzed. The result is then stored in
the Boolean variable nbr indicating if the card is valid or not.

• getCheckPassword: checks the validity of the password, manipulating the at-
tribute password that provides the password of the card to be analyzed. The
result is then stored in the Boolean variable s indicating if the password is valid
or not.

• getCheckBalance: checks if there is a balance, manipulating the attribute drawing
that provides the value of drawing required to be analyzed. The result is
then stored in the Boolean variable bal indicating if the balance is sufficient
or not.

• getSafeUpdate: updates the value of the safe after the drawing is completed,
manipulating the attribute drawing. The result is then stored in the Boolean
variable n, indicating if the safe has been updated or not.

• getDebitAmount: updates the value of the balance of the client after the drawing
is completed, manipulating the attribute drawing. The result is then stored in
the float variable balance, indicating the balance of the client.

• getPrintReceipt: prints a receipt for the customer, informing the transaction
made through the attributes drawing and number. The result is then stored in
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cl.nbr=getCheckCard(cl.number)

<cl>

<cl>

<cl>

<cl>
<cl>

<cl>

<cl>

<cl>

<cl>

<cl>

<cl>

<cl>

<cl>

<cl>

Start

t1

c2

t2

t3

c3

t4

c4

t5

c5

t6

c6

t7

if (cl.nbr==false)

if(cl.s==false)

t8

if (cl.s==true)

if (cl.bal==0)

if (cl.bal==true)

<cl>

<cl>

<cl>

cl.s=getCheckPassword(cl.password)

<cl>

cl.bal=getCheckBalance(cl.drawing)

cl.balance=getDebitAmount(cl.drawing)

cl.n=getSafeUpdate(cl.drawing)

cl.imp=getPrintReceipt(cl.number, cl.drawing)

t9

End

if (cl.nbr==true)

.

<cl1>

Figure 9. Object WF-Net: Functional testing specification model for generic ATM system
in the sequential case
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the Boolean variable imp, indicating whether the receipt was printed correctly
or not.

It is important to note that some transitions have pre-conditions that must be
satisfied to allow a transition firing. For example, if the condition if(cl.nbr == true)
of the transition t3 is true then the password can be tested; otherwise it means that
the condition if(cl.nbr == false) is true and the transition t2 is fired, producing
a final object in place End.

4 IMPLEMENTATION OF THE FUNCTIONAL TESTING
SPECIFICATION MODEL

The implementation of the functional testing specification model corresponds to the
instantiation of a generic testing class whose main method is the unmarked object
WorkFlow net corresponding to the tested functionality. As a matter of fact, the
marking of the object WorkFlow net will represent the creation of a specific object
used for a specific test.

ATM

+ getCheckPassword(password)
+ getCheckCard(number)
+ getCheckBalance(drawing)
+ getDebitAmount(drawing)

SAFE PRINTER

+ getSafeUpdte(drawing) + getPrintReceipt(drawing, number)

access

Figure 10. Class diagram involving the main ATM generic system classes

When applying the functional testing activity, the architecture of the software
is already known. In the context of the example of the drawing function, part of the
software architecture can be given by the class diagram of Figure 10. The testing
class will then have to interact with the main classes of the software architecture
in order to test the set of methods involved in the tested functionality, as shown in
Figure 11.
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TestClass

test

Input Datas:
-  number: integer
-  password:i
-  drawing:f

-  nbr:b
-  s:b
-  bal:b
-  imp:b
-  n:b

nteger
loat

-------------------------------------

oolean
oolean

oolean
oolean

oolean
- balance: float

Output Datas:

ATM

+ getCheckPassword(password)
+ getCheckCard(number)
+ getCheckBalance(drawing)
+ getDebitAmount(drawing)

SAFE PRINTER

+ getSafeUpdate(drawing) + getPrintReceipt(drawing, number)

acess

test

test

+ testFunction()

Figure 11. Interaction between the testing class and the main ATM generic system classes

Figure 12 illustrates the main method of the test class in the sequential case.
The methods that are called through the transitions of the object WorkFlow net are
those tested during the functional testing execution.

5 TEST SCENARIO EXECUTION

In this section, a test scenario execution that considers a specific test case is pre-
sented. The control structure of the test is that given by the object WorkFlow net
of Figure 12.

The initial marking of the net is then given by a testing object (token) cl1 in
the initial place Start which represents the test case.

The attribute values of the object cl1 at the beginning of this test execution are:

cl1 TestClass;
Input Test Data:
number: 123456;
password: 5996084;
drawing: 200,00;

Output Test Data:
nbr : false;
s : false;
bal : false;
imp : false;
n : false;
balance : 1000;

For such values, the test execution will be given through the following sequence
of steps:
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.cl.nbr=atm.getCheckCard(cl.number)

<cl>

<cl>

<cl>

<cl>
<cl>

<cl>

<cl>

<cl>

<cl>

<cl>

<cl>

<cl>

<cl>

<cl>

Start

t1

c2

t2

t3

c3

t4

c4

t5

c5

t6

c6

t7

if (cl.nbr==false)

if(cl.s==false)

t8

if (cl.s==true)

if (cl.bal==false)

if (cl.bal==true)

<cl>

<cl>

<cl>

cl.s=atm.getCheckPassword(cl.password)

<cl>

cl.bal=atm.getCheckBalance(cl.drawing)

cl.balance=atm.getDebitAmount(cl.drawing)

cl.n=safe.getSafeUpdate(cl.drawing)

cl.imp=printer.getPrintReceipt(cl.number, cl.drawing)

t9

End

if (cl.nbr==true)

.[Transition t1: getCheckCard
atm ATM

Transition t2: if(cl.nbr==false)

Transition t3: if(cl.nbr==true)
number

getCheckPassword
atm ATM

s]

Transition t4: if(cl.s=true)
password

getCheckBalance atm
ATM

bal

[Transition t5: if(cl.bal=true)

getSafeUpdate safe Safe

n

Transition t6 getDebitAmount
atm ATM

Transition t7: getPrintReceipt
print Printer

imp

Transition t8: if(cl.s==false)

if(cl.bal==false)

The transition t1 calls the
method of the object from the class, and verifies
if the card number is valid. The result is then stored in the

[ if the pre-condition is
satisfied, the card has presented identification problems.

[ if the pre-condition is
satisfied, the card has not presented identification
problems. The transition t3 calls the
method of the object from the class, and
ver i f ies i f the password
of the card is the same as the one stored
The result is stored in the boolean variable

[ if the pre-condition is satisfied,
the provided by the customer is correct. The
transition t4 calls the of the object
from the class and verifies if the balance is sufficient.
The result is stored in the boolean variable ]

if the pre-condition is satisfied,
the customer balance is positive. The transition t5 calls the
method of the object from the
class and verifies if the safe was updated after the customer
drawing and the result is stored in the boolean variable ]

[ : the transition t6 calls the
method of the object from the class and charges
on the customer account the drawed amount. The result is

[ the transition t7 calls the
method of the object from the Class and
verifies if the printer can print the customer receipt.
The result is stored in the boolean variable ]

[ if the pre-condition is satisfied,
the password provided by the user is wrong. The

[Transition t9: if the pre-condition is
satisfied, the customer balance is negative. The

g iven by the owner
in the card.

boolean variable ]nrb

The transition t2 ends the test]

transition t8 ends the test]

transition  t9 ends the test.]

stored in the float variable balance]

Figure 12. Object WorkFlow net: Method “TestFunction()” of the “TestClass”
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• The initial marking (object cl1 in place start) enables the transition t1, which has
no pre-condition. The firing of t1 calls the method getCheckCard of the object
atm from the ATM class, passing, in particular, the attribute number = 123456
(number on the card). The called method verifies the existence of the card and
returns a Boolean value saved in the attribute nbr of the object cl1. After the
firing of t1, a new object cl1 (with the attribute nbr = true modified at the end
of the firing and indicating that the card number is available) is produced in
place c2.

• With an object cl1 in c2, the transitions t2 and t3 are enabled. The pre-condition
associated with the transition t3 which specifies the existence of the card through
the attribute nbr is satisfied. The firing of t3 then calls the method getCheck-
Password of the object atm from the ATM class, passing as a parameter the
attribute password = 599604 (password of the cards). The called method verifies
the validity of the password and returns a Boolean value stored in the attribute
s of the object cl1 . After the firing of t3, a new object cl1 (with the attribute
s = true modified at the end of the firing and indicating that the password is
correct) is produced in place c3.

• With an object cl1 in c3, the transitions t4 and t8 are enabled. The pre-
condition associated with the transition t4 which specifies the validity of the
password through the attributes is satisfied. The firing of t4 then calls the
method getCheckBalance of the object atm from the ATM class, passing as
a parameter the attribute drawing = 200.00 (amount to be drawn by the client).
The called method verifies the validity of the withdrawal requested by the client
and returns a Boolean value stored in the attribute bal of the object cl1. After
the firing of t4, a new object cl1 (with the attribute bal = true modified at the
end of the firing and indicating that the balance of the customer is sufficient) is
produced in place c4.

• With an object cl1 in c4, the transitions t5 and t9 are enabled. The pre-condition
associated with the transition t5 which specifies the existence of a positive
balance through the attribute bal is satisfied. The firing of t5 then calls the
method getSafeUpdate of the object safe from the Safe class, passing as a pa-
rameter the attribute drawing = 200.00 (amount to be drawn by the client).
The called method updates the balance of the ATM machine considering the
withdrawal requested by the client and returns a Boolean value stored in the
attribute indicating that the balance of the ATM machine was updated. Af-
ter the firing of t5, a new object cl1 (with the attribute n = true modified at
the end of the firing and indicating that the value was updated) is produced in
place c5.

• With an object cl1 in c5, the transition t6 is enabled. The firing of t6 then calls
the method getDebitAmount of the object atm from the ATM class , passing
as a parameter the attribute drawing = 200.00 (amount to be drawn by the
client). The called method updates the balance of the client considering the
withdrawal requested by the client and returns the clients balance. After the
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firing of t6, a new object cl1 (with the attribute balance = 800 modified at the
end of the firing and indicating the value of the client’s balance) is produced in
place c6.

• With an object cl1 in c6 the transition t7 is enabled. The firing of t7 then calls
the method getPrintReceipt of the object impr from the Printer class, passing
as a parameter the attributes drawing = 200.00 (amount drawn by the client)
and number = 123456 (number on the card). The called method verifies that
the printer is available, returning a Boolean value stored in the attribute imp
of the object cl1. After the firing of t7, a new object cl1 (with the attribute
imp = true modified at the end of the firing and indicating that the printer is
available) is produced in place End.

Initial Value After Firing Final Value
cl1.nbr = false t1 cl1.nbr = true
cl1.s = false t3 cl1.s = true
cl1.bal = false t4 cl1.bal = true
cl1.n = false t5 cl1.n = true
cl1.balance = 1000 t6 cl1.balance = 800
cl1.imp = false t7 cl1.imp = true

Table 1. Values of attributes after the scenario execution

At the end of the test execution, Table 1 is obtained. Such a table shows the final
values of attribute of the object cl1 at the end of the test. One observes in particular
that the card number (nbr = true) was accepted by the system, the password was
correctly entered (s = true), the withdrawal was made considering positive balance
(bal = true), the cashier was updated (n = true) after the withdrawal, the customer’s
bank balance was updated after the withdrawal (balance = 800) and, finally, the
printer correctly printed an informative message on the screen (imp = true).

6 A COMPARATIVE STUDY

This section presents a comparative study between the approach presented in this
paper and an approach based on UML diagrams as that presented in [22]. The V-
Model used in software development [23] will be considered to associate each diagram
produced in functional testing to a specific activity of the software life cycle.

According to Pressman in [23] and Mathur and Malik in [3], the traditional V-
Model can be seen as an extension of the waterfall model. Its specificity is due to the
fact that each phase of the software development process is associated with specific
stages of testing activities. In particular, one of the initial phases that corresponds
to requirement specification (Stage 1) is related to a specific phase of elaboration
of functional testing models (Stage 2). The functional testing models produced in
Stage 2 are then executed in Stage 3 in order to validate the requirement models
produced in Stage 1 as presented in Figure 13.
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Unit Testing

Development
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Figure 13. V-Model

Following the approach presented in [22], three kinds of UML Diagrams can
be produced that will be associated to the three different stages 1, 2 and 3 of the
V-Model. At the requirement analysis (Stage 1), an Activity Diagram should be
designed. Activity Diagrams can represent the activities that are carried out by
a system in a procedural form. They are well adapted when the main objects of the
software architecture are not yet defined, as it is generally the case at the beginning
of the software development process. Considering the ATM system presented in the
previous sections, the Activity Diagram in Figure 14 is produced.

check_card
 check_password


error_card


check_balance


error_password


safe_update


error_balance


else
 else
 else


charge_amount
check_card


Figure 14. Activity Diagram

Such a diagram shows in a semi-formal way the activities that are carried out by
the ATM system in the sequential case. The corresponding model in the approach
presented in this paper is the WorkFlow net found in Figure 6 which can be seen
as the formal specification of the Activity Diagram in Figure 14. As a matter of
fact, the operational semantic of Activity Diagrams is derived from Petri nets in
the UML Metamodel [24]. The main advantage in working with a WorkFlow net
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model instead of an Activity Diagram is the formal operational semantic which
allows for the true simulation through the corresponding token player algorithm
and the possibility of verifying formally the Soundness property which proves the
correctness of the requirement specification. At Stage 2, where the first functional
testing models are produced, System Sequence Diagrams that describe the different
scenarios to be tested can be produced, as that shown in Figure 15.

Figure 15. System Sequence Diagram

Such a diagram shows the interactions between a user and the ATM system in
order to respect the specification given by the Activity Diagram in Figure 14. At
Stage 1 of the development process, the main objects of the future software architec-
ture are not known and interactions can only be specified with a global object called
“System”. Such a diagram allows for the representation of the called activities as
well as basic data flows but does not have a true operational semantic which allows
for a kind of scenario validation through simulation. The corresponding model pro-
duced in Stage 2 of the approach presented in this paper is the object WorkFlow
presented net in Figure 9 which allows true data processing as well as formal simu-
lation. Due to the fact that the control structure is the same as that found in the
WorkFlow net shown in Figure 6, the Soundness property of the underlying con-
trol structure of the model will continue to be respected and the initial procedural
specification will also be maintained.

At Stage 3, the objects of the software architecture are known and the System
Sequence Diagram produced in Stage 2 can be transformed into a Sequence Diagram
where the objects involved in the specified scenario are represented. Considering the
Class Diagram in Figure 10 and the System Sequence Diagram in Figure 15, the
Sequence Diagram in Figure 16 is produced and corresponds to the scenario to be
tested in order to verify the requirement specification given by the Activity Diagram
in Figure 14.

The model that corresponds to the functional testing activity of Stage 3 is the
object WorkFlow net presented in Figure 12. The difference between this model
and the one used in Stage 2 is simply the fact that at Stage 3 the objects of the
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Figure 16. Sequence Diagram

architecture are known and their names can be associated with the called method
associated with the firing of the transitions of the corresponding object WorkFlow
net.

One notes that the approach presented in this paper has a formal operational
semantic allowing for true simulation. In particular, the procedural requirement
model is maintained through the different stages of the V-Model and true data pro-
cessing specification is also allowed by the functional testing model. When a pure
UML approach is used to follow the same steps in the functional testing activi-
ties, different diagrams have to be used. The Activity Diagram allows a kind of
procedural specification but does not allow for the representation of the different
interactions between the objects of the software architecture. Sequence Diagrams
allow for interaction between objects as well as basic data flow representation but
do not keep the procedural form of the initial requirement Activity Diagram and do
not possess the real simulation rules necessary to execute the specified scenario of
the corresponding functional test.

Finally, working with an object WorkFlow net instead of a UML Diagram, the
final model obtained in Stage 3 can be easily transformed and implemented as shown
in Figure 11 into a testing class whose instantiations will correspond to the different



740 S. Julia, L.N. Vale, L.M. Soares Passos

sets of data that will be tested when considering the same scenario several times, as
it is generally the case with functional testing. A Sequence Diagram will only guide
the functional test in Stage 3 but will not truly implement the scenario to be tested.

7 CONCLUSIONS

In this paper, a formal approach based on WorkFlow nets and object Petri nets for
the modeling of functional testing was proposed. The main goal was to offer an al-
ternative to the usual informality in which the functional testing activity happens
until the present moment.

Petri nets showed themselves to be an appropriate tool for providing a formal
definition for a functional testing model. As a matter of fact, the features of func-
tional testing models are very similar to those which exist in workflow processes.
Both model types follow the same life cycle with a beginning, the execution of sev-
eral operations in sequence or not, and an end. In this contest, the WorkFlow nets
as a model for the control structure of functional tests were chosen. The capacity
of object Petri nets in representing true data structures favoured the possibility of
formally specified attributes existing in the functional testing activity.

As a future paper proposal, it would be interesting to implement a compiler or
interpreter that automatically generates the test class from the formal specification
model. It would also be important to apply the test model defined in this article
to one of the several methods used in functional testing such as ISVV (Independent
Software Validation Verification) [25], for example.
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