
Computing and Informatics, Vol. 35, 2016, 555–585

IMPROVING THE ARC-EAGER MODEL
WITH REVERSE PARSING

Daniel Fernández-González

Departamento de Informática
Universidade de Vigo
Campus As Lagoas
32004 Ourense, Spain
e-mail: danifg@uvigo.es

Carlos Gómez-Rodŕıguez, David Vilares

LyS Research Group
Departamento de Computación
Universidade da Coruña
Campus de A Coruña
s/n, 15071 A Coruña, Spain
e-mail: {cgomezr, david.vilares}@udc.es

Abstract. A known way to improve the accuracy of dependency parsers is to
combine several different parsing algorithms, in such a way that the weaknesses of
each of the models can be compensated by the strengths of others. For example,
voting-based combination schemes are based on variants of the idea of analyzing
each sentence with various parsers, and constructing a combined output where the
head of each node is determined by “majority vote” among the different parsers.
Typically, such approaches combine very different parsing models to take advan-
tage of the variability in the parsing errors they make. In this paper, we show
that consistent improvements in accuracy can be obtained in a much simpler way
by combining a single parser with itself. In particular, we start with a greedy
implementation of the Nivre pseudo-projective arc-eager algorithm, a well-known
left-to-right transition-based parser, and we combine it with a “mirrored” version
of the algorithm that analyzes sentences from right to left. To determine which of
the two obtained outputs we trust for the head of each node, we use simple crite-

556 D. Fernández-González, C. Gómez-Rodŕıguez, D. Vilares

ria based on the length and position of dependency arcs. Experiments on several
datasets from the CoNLL-X shared task and the WSJ section of the English Penn
Treebank show that the novel combination system obtains better performance than
the baseline arc-eager parser in all cases. To test the generality of the approach,
we also perform experiments with a different transition system (arc-standard) and
a different search strategy (beam search), obtaining similar improvements in all
these settings.

Keywords: Automata, computational linguistics, dependency parsing, natural lan-
guage processing, parsing

Mathematics Subject Classification 2010: 68T50

1 INTRODUCTION

Nowadays, when the huge amount of raw textual information that computers must
process, a vital role has been given to the tasks such as information extraction,
machine translation or question answering in many different fields. All these tasks
involve a transformation of unrestricted natural language text into representations
that a machine can handle easily. This is, in fact, the main goal of a natural language
processing (NLP).

One of the most ubiquitous and useful NLP processes is syntactic parsing. This
consists of mapping a sentence in a natural language into its syntactic representa-
tion. Two different syntactic formalisms are popular for this purpose: constituency
representations [5, 12] or dependency representations [43]. Parsing a sentence with
constituency representations means decomposing it into constituents or phrases, and
in that way a phrase structure tree is created with relationships between words and
phrases, as in Figure 1. In contrast, the goal of parsing a sentence with dependency
representations is to create a dependency graph consisting of lexical nodes linked by
binary relations called dependencies. A dependency relation connects two words,
with one of them acting as the head and the other one as the dependent. A depen-
dency graph can also be called a dependency tree, if each node of the graph has
only one head and the structure is acyclic. Figure 2 shows a dependency tree for an
English sentence, where each edge is labeled with a dependency type.

Dependency parsing has recently gained a wide interest in the natural language
processing community and has been used for many problems ranging from machine
translation [13] to ontology construction [41]. Some of the most accurate and efficient
dependency parsers are based on data-driven parsing models such as those by Nivre
et al. [34], McDonald et al. [28], Titov and Henderson [44], Martins et al. [25],
Huang and Sagae [21], Koo and Collins [22], Zhang and Nivre [49], Bohnet and
Nivre [7] or Gómez-Rodŕıguez and Nivre [17]. These dependency parsers can be
trained from syntactically annotated text without the need for a formal grammar,

Improving the Arc-Eager Model with Reverse Parsing 557

S

VP

NP

N

tree

NMOD

constituency

D

a

V

is

NP

Prn

This

Figure 1. Constituency tree for an English sentence

ROOT0 This1 is2 a3 dependency4 tree5

ROOT

SBJ

PRED

NMOD

DET

Figure 2. Dependency tree for an English sentence

and they provide a simple representation of syntax that maps to predicate-argument
structure in a straightforward way.

Most data-driven dependency parsers can be classified into two families: graph-
based and transition-based parsers [27]. On the one hand, graph-based parsers [14,
28] learn a model for scoring possible dependency graphs for a given sentence and,
then, the parsing process consists of searching for the highest-scoring graph. In
transition-based parsing [45, 34], a model is learned for scoring transitions from
one parser state to the next, and the parsing process consists of finding a high-
scoring sequence of transitions that will traverse a series of states until a complete
dependency graph is created. The most commonly used graph-based and transition-
based parsers are the maximum spanning tree parser by McDonald et al. [28] and
the arc-eager parser with the pseudo-projective algorithm by Nivre and Nilsson [37],
respectively.

It has been proved by McDonald and Nivre [26] that transition-based parsers
suffer from error propagation: a transition erroneously chosen at an early moment
can place the parser in an incorrect state that will in turn lead to more incor-
rect transitions in the future. Since some transition-based parsers (as the arc-eager
parser) analyze the sentence from left to right, the probability of choosing an incor-
rect transition tends to be higher as we approach the end of a given sentence. As
a consequence, the dependency tree obtained by a transition-based parser typically

558 D. Fernández-González, C. Gómez-Rodŕıguez, D. Vilares

presents more (propagating) errors in the rightmost arcs of the graph than in the
leftmost arcs.

With the goal of reducing the effect of error propagation on the rightmost arcs
of the graph, Nilsson [29] proposes the application of a reverse parsing strategy on
the arc-eager parser by Nivre [31]. This proceeds by transforming the left-to-right
arc-eager parser into a right-to-left variant. That way, the reverse parser analyses
a sentence from the end to the beginning, likely making more errors in the leftmost
arcs of the dependency tree than in the rightmost arcs in relation to the standard
parser.

Nilsson [29] proved experimentally that analyzing a sentence in reverse order
does not improve the global accuracy of the arc-eager parser. However, the reverse
arc-eager parser is able to build correctly some arcs of the dependency tree that
the original arc-eager version creates erroneously. Concretely, we found out that,
in addition to having a better performance in rightmost arcs, the right-to-left arc-
eager version is able to achieve higher accuracy in arcs with certain lengths. To
take the advantage of that, we present an efficient combination system that obtains
a new dependency tree by joining the dependency trees created by each parser. This
system uses two different strategies to accomplish the combination: a strategy based
on the position of the arcs and another based on the length of the arcs.

Our combination system presents several advantages in comparison to other
strategies such as voting or stacking,1 where a complex combination process must be
done involving several parsers with different natures. The simplicity of our approach
allows the pseudo-projective arc-eager parser by Nivre and Nilsson [37] to improve
its own accuracy without increasing its execution time and by using exclusively one
parser that analyses a sentence in parallel in both directions at the same time.

We test the accuracy of the combinative approach on eight datasets from CoNLL-
X shared task [9] and on the English WSJ corpus from the Penn Treebank [24]. In
these experiments, the combination of the arc-eager parser and its reverse variant
outperforms the accuracy of both parsers in the nine languages tested, and even im-
proves over the scores of the maximum spanning tree parser by McDonald et al. [28].
Moreover, the combinative approach is not only beneficial for the pseudo-projective
arc-eager parser with greedy search, but also for other transition-based models like
the pseudo-projective arc-standard parser [32] and other search strategies like the
beam search used by the ZPar system [48], as we show experimentally in Section 6.

The rest of this article is organized as follows: in Section 2, we discuss other
research work that deals with parser combination. Section 3 introduces some nota-
tion and concepts about transition-based dependency parsing. Section 4 describes
the pseudo-projective arc-eager parser [37] and its reverse variant. In Section 5, we

1 Strictly speaking, our approach can be seen as a degenerate instance of weighted
voting, where there are only two systems and therefore the weighting scheme reduces to
a Boolean criterion to choose among them at each node. In this article, we call “voting
systems” those that use more than two systems, thus requiring more complex schemes
involving majority voting or numeric weights.

Improving the Arc-Eager Model with Reverse Parsing 559

discuss different strategies to implement the parser combination system. Section 6
presents an empirical study of the performance of the reverse arc-eager parser and
the combinative approaches, as well as the effect of this novel technique on the
arc-standard parser and a beam-search-based parser. It also shows an analysis that
explains why the combination system improves over the individual scores. Finally,
Section 7 contains a final discussion.

2 RELATED WORK

Some dependency parser combination approaches have been applied successfully in
the literature. One of the most influential is the approach by Sagae and Lavie [39].
Following on the work by Zeman and Žabokrtský [46], they present a framework
for combining the output of different parsers by applying a voting system. This
approach consists of letting several parsers assign votes to the dependency links
that they consider that should belong to the final dependency graph. In that way,
a weighted graph is created. Afterwards, a quadratic maximum spanning tree al-
gorithm must be applied to find the final output. This combination system has
the drawback of increasing the time complexity of the parsing process significantly.
As the maximum spanning tree algorithm must be used, a combination of different
linear parsers results into a quadratic system. On the contrary, our approach does
not increase the time complexity of the combined parsers.

The combination method described by Sagae and Lavie [39] was used in other
works to combine several transition-based parsers. Concretely, Hall et al. [20] and
Nilsson [29] use this voting system to combine six transition-based parsers, where
two of them are the arc-eager parser by Nivre [31] and its reverse version. Only
Nilsson [29] presents an individual evaluation of the reverse arc-eager parsing ac-
curacy. In his results, he shows that the reverse arc-eager version performs worse
than the standard version on ten datasets of the CoNLL 2007 shared task. How-
ever, the author confirms that the combined parsers were not properly optimized.
This does not happen in our research, where both models were conveniently tuned
and, as a consequence, the reverse arc-eager parser proves more accurate than the
conventional left-to-right version on the Czech dataset.

Another example of using the voting combination by Sagae and Lavie [39] is the
work by Samuelsson et al. [40]. In this research, two more transition-based parsers
are added to those combined in Hall et al. [20] and Nilsson [29]. In addition to
this, the authors join the eight combined parsers with a semantic parser in order to
achieve a better accuracy. As the other approaches based in voting combination, this
one tries to combine different parsers with different time complexities. The resulting
system’s complexity is the maximum among those of the combined systems, which
is quadratic. In our combination system only one single algorithm is used (the
arc-eager parser by Nivre and Nilsson [37]) and its time complexity remains linear.

A different combinative approach is the one undertaken by Nivre and McDon-
ald [36]. They implement a feature-based integration which tries to combine a graph-

560 D. Fernández-González, C. Gómez-Rodŕıguez, D. Vilares

based parser with a transition-based model only during learning time: one parser
helps the other to create the trained model. This method receives the name of stack-
ing combination. The main drawback is that the quadratic time complexity of the
graph-based parser increases the overall time complexity. To prevent that, Attardi
and Dell’Orletta [3] propose a stacking combination of one linear transition-based
parser with its own reverse version. In that way, the linear time complexity is main-
tained. However, this approach has the drawback that the right-to-left parser cannot
be applied until the left-to-right parser ends, whilst our combination system allows
both parsers to run in parallel, reducing the execution time. This means that, in
multicore machines, our approach takes practically the same time to parse a sentence
as the single arc-eager parser does, and additionally, it achieves an improvement in
accuracy.

An evaluation and comparison between the voting and stacking combination
approaches, as well as further information about these approaches, can be found in
Fishel and Nivre [16] and Surdeanu and Manning [42].

Finally, Zhang and Clark [47] propose a beam-search parser that combines both
graph-based and transition-based parsing into a single system that uses a transition-
based decoder with a scoring model using graph-based information. This approach,
which has also been used in other recent works [6, 7], is different from stacking:
instead of using two separately trained models, it combines the graph-based and
transition-based approaches into a single model. In spite of the fact that the resulting
system is also linear, the approach developed by Zhang and Clark is not as fast as
the greedy arc-eager algorithm that we use in this paper.

3 TRANSITION-BASED DEPENDENCY PARSING

In this section, we introduce some definitions and notation concerning transition-
based dependency parsing that will be used throughout the article.

3.1 Dependency Parsing

A dependency graph is a labeled directed graph that represents the syntactic struc-
ture of a given sentence. More formally, it can be defined as follows:

Definition 1. Let w = w1 . . . wn be an input string. A dependency graph for
w1 . . . wn is a labelled directed graph G = (Vw, E), where Vw = {0, . . . , n} is the
set of nodes, and E ⊆ Vw × L× Vw is the set of labelled directed arcs.

The set Vw is the set of nodes. This means that every token index i of the
sentence is a node (1 ≤ i ≤ n) and that there is a special node 0, which does not
correspond to any token of the sentence and which will always be a root of the
dependency graph (normally the only root).

Each arc in E encodes a dependency relation between two tokens. We call
an edge (wi, l, wj) in a dependency graph G a dependency link from wi to wj with

Improving the Arc-Eager Model with Reverse Parsing 561

label l, represented as wi
l→ wj. We say that wi is the head of wj and, conversely,

that wj is a dependent of wi. The labels on dependency links are typically used
to represent their associated syntactic functions, such as SBJ for subject in the
dependency link is2 → This1 in Figure 2.

For convenience, we write wi → wj ∈ E if the link (wi,wj) exists (regardless of
its label) and wi →∗ wj ∈ E if there is a (possibly empty) directed path from wi

to wj.
Most dependency-based syntactic formalisms do not allow arbitrary dependency

graphs as syntactic representations. Instead, they are typically restricted to acyclic
graphs where each node has at most one head. Such dependency graphs are called
dependency forests.

Definition 2. A dependency graph G is said to be a dependency forest if it satisfies
the following:

1. Single-head constraint : if wi → wj, then there is no wk 6= wi such that wk → wj.

2. Acyclicity constraint : if wi →? wj, then there is no arc wj → wi.

Nodes that have no head in a dependency forest are called roots. Apart from the
previous two constraints, some dependency formalisms add the additional constraint
that a dependency forest can have only one root (or, equivalently, that it must be
connected). A forest of this form is called a dependency tree.

The system in charge of parsing a given sentence producing a dependency graph
is called a dependency parser. In this article, we will work with dependency parsers
that output dependency trees. These parsers enforce the single-head and acyclicity
constraints, and they link all of their root nodes as dependents of a dummy root
node 0.

For reasons of computational efficiency, many dependency parsers are restricted
to work with projective dependency structures, that is, dependency trees in which
the projection of each node corresponds to a contiguous substring of the input:

Definition 3. An arc wi → wk is projective iff, for every word wj occurring between
wi and wk in the sentence (wi<wj<wk or wi>wj>wk), wi →? wj.

Definition 4. A dependency graph G = (Vw, E) is projective iff every arc in E is
projective.

Projective dependency trees are not sufficient to represent all the linguistic phe-
nomena observed in natural languages, but they have the advantage of being effi-
ciently parsable. Even so, non-projective dependency structures present in natural
languages represent, in many languages, a rather reduced portion of the total.

3.2 Transition Systems

In this article, we work with transition-based dependency parsers that are defined
following the framework of Nivre [33]. According to this, a deterministic depen-
dency parser is defined by a non-deterministic transition system, specifying a set

562 D. Fernández-González, C. Gómez-Rodŕıguez, D. Vilares

of elementary operations that can be executed during the parsing process, and an
oracle that deterministically selects a single transition at each choice point of the
parsing process. More formally, they are defined as follows:

Definition 5. A transition system for dependency parsing is a tuple S = (C, T, cs,
Ct), where

1. C is a set of possible parser configurations,

2. T is a finite set of transitions, which are partial functions t : C → C,

3. cs is a total initialization function that maps each input string w to a unique
initial configuration cs(w), and

4. Ct ⊆ C is a set of terminal configurations.

Definition 6. An oracle for a transition system is a function o : C → T .

Although the specific nature of configurations varies among parsers, they are
required to contain at least a set A of dependency arcs and a buffer B of unread
words, which initially holds all the words in the input sentence. A transition-based
parser will be able to read input words by popping them from the buffer, and to
create dependency arcs by adding them to the set A.

An input sentence w can be parsed using a transition system S = (C, T, cs, Ct)
and an oracle o by starting in the initial configuration cs(w), calling the oracle
function on the current configuration c, and updating the configuration by applying
the transition o(c) returned by the oracle. This process is repeated until a terminal
configuration is reached, and the dependency analysis of the sentence is defined by
the terminal configuration. Each sequence of configurations that the parser can
traverse from an initial configuration to a terminal configuration for some input w
is called a transition sequence.

Note that, apart from a correct transition system, a practical parser needs a good
oracle to achieve the desired results, since a transition system only specifies how to
reach all the possible dependency graphs that could be associated to a sentence, but
not how to select the correct one. Oracles for practical parsers can be obtained by
training classifiers on treebank data [34].

4 REVERSING THE ARC-EAGER PARSER

4.1 Arc-Eager Parser

In this article, we use as our main baseline the well-known parser called pseudo-
projective arc-eager by Nivre and Nilsson [37]. This is the result of adding a pseudo-
projective transformation to the arc-eager parser by Nivre [31]. As a transition-based
parser, the basic arc-eager parser is defined by a transition system S = (C, T, cs, Ct)
such that:

Improving the Arc-Eager Model with Reverse Parsing 563

• C is the set of all configurations of the form c = 〈σ,B,A〉, where σ and B are
disjoint lists of nodes from Vw (for some input w), and A is a set of dependency
arcs over Vw. The list B, called the buffer, is used to hold nodes corresponding
to input words that have not yet been read. The list σ, called the stack, contains
nodes for words that have already been read, but still have dependency links
pending to be created. For convenience, we will use the notation σ|i to denote
a stack with top i and tail σ, and the notation j|B to denote a buffer with top j
and tail B. The set A of dependency arcs contains the part of the output parse
that the system has constructed at each given point.

• The initial configuration is cs(w1 . . . wn) = 〈[], [1 . . . n], ∅〉, i.e., the buffer initially
holds the whole input string while the stack is empty.

• The set of terminal configurations is Ct = {〈σ, [], A〉 ∈ C}, i.e., final configu-
rations are those where the buffer is empty, regardless of the contents of the
stack.

• The set T has the following transitions:

Shift 〈σ, i|B,A〉 ⇒ 〈σ|i, B,A〉
Reduce 〈σ|i, B,A〉 ⇒ 〈σ,B,A〉

Left-Arcl 〈σ|i, j|B,A〉 ⇒ 〈σ, j|B,A∪{j l→ i}〉
only if @k | k → i ∈ A (single-head)

Right-Arcl 〈σ|i, j|B,A〉 ⇒ 〈σ|i|j, B,A∪{i l→ j}〉
only if @k | k → j ∈ A (single-head)

The Shift transition is used to read words from the input string, by moving the
next node in the buffer to the top of the stack. The Left-Arc transition creates
a leftward dependency arc from the first node on the buffer to the topmost node on
the stack and pops the stack. The Right-Arc transition builds a rightward depen-
dency arc from the topmost node on the stack to the first node on the buffer and
pushes the first node on the buffer onto the stack. Finally, the Reduce transition
is used to pop the topmost node from the stack when we have finished building arcs
to or from it.

Figure 3 shows a transition sequence in the arc-eager transition system which
derives the labelled dependency graph in Figure 2.

Note that the arc-eager parser is a linear-time parser, since each word in the input
can be shifted and reduced at most once, and the number of arcs that can be built by
Left-Arc and Right-Arc transitions is strictly bounded by the number of words
by the single-head constraint. Besides, the arc-eager algorithm by Nivre [31] is not
able to parse non-projective syntactic structures. In order to solve that, the arc-eager
parser by Nivre and Nilsson [37] implements a pseudo-projective transformation,
which projectivizes the non-projective structures so that the arc-eager parser can
handle them.

564 D. Fernández-González, C. Gómez-Rodŕıguez, D. Vilares

Transition Stack (σ) Buffer (B) Added Arc
[ROOT0] [This1, . . . , tree5]

Shift [ROOT0, This1] [is2, . . . , tree5]

LASBJ [ROOT0] [is2, . . . , tree5] (2, SBJ, 1)

RAROOT [ROOT0, is2] [a3, . . . , tree5] (0, ROOT, 2)

Shift [ROOT0, is2, a3] [dependency4, tree5]

Shift [ROOT0, is2, a3, dependency4] [tree5]

LANMOD [ROOT0, is2, a3] [tree5] (5, NMOD, 4)

LADET [ROOT0, is2] [tree5] (5, DET, 3)

RAPRED [ROOT0, is2, tree5] [] (2, PRED, 5)

Reduce [ROOT0, is2] []

Reduce [ROOT0] []

Figure 3. Transition sequence for parsing the sentence in Figure 2 using the arc-eager
parser (LA=Left-Arc, RA=Right-Arc)

4.2 Reverse Arc-Eager Parser

In order to reduce the amount of errors produced in the rightmost side of the de-
pendency tree, we apply a reverse strategy on the arc-eager parser like that of
Nilsson [29]. The reverse arc-eager parser is a right-to-left dependency parser that
analyses a sentence in reverse order. The main advantage of this approach is that it
improves the accuracy of arcs located in the rightmost side of the dependency tree,
as well as those with certain lengths.

The reverse arc-eager variant is defined with the same transition system as the
original arc-eager parser with the difference that, in the initial configuration, the
sentence is put in reverse order. Concretely, the initial configuration cs(w1 . . . wn) =
〈[], [1 . . . n], ∅〉 in the arc-eager transition system is changed into an initial configu-
ration where the sentence is inverted in the buffer: cs(wn . . . w1) = 〈[], [1 . . . n], ∅〉.

Figure 4 describes the transition sequence followed by the reverse arc-eager
parser to analyze the sentence in Figure 2. The result is the dependency tree in
Figure 5. Note that the dependency graph obtained is the reverse of the one which
appears in Figure 2, except for the dummy root arc, which is not affected by our
reversing process. Therefore, the results in this paper are not influenced by the
effect of placing the dummy root at the end of the sentence, recently studied by
Ballesteros and Nivre [4].

5 COMBINING THE ARC-EAGER AND THE REVERSE
ARC-EAGER PARSERS

While the arc-eager parser makes more mistakes in the rightmost side of the graph
due to error propagation, the reverse version achieves better precision on the arcs

Improving the Arc-Eager Model with Reverse Parsing 565

Transition Stack (σ) Buffer (B) Added Arc
[ROOT0] [tree1, . . . , This5]

Shift [ROOT0, tree1] [dependency2, . . . , This5]

RANMOD [ROOT0, tree1, dependency2] [a3, . . . , This5] (1, NMOD, 2)

Reduce [ROOT0, tree1] [a3, . . . , This5]
RADET [ROOT0, tree1, a3] [is4, This5] (1, DET, 3)

Reduce [ROOT0, tree1] [is4, This5]
LAPRED [ROOT0] [is4, This5] (4, PRED, 1)

RAROOT [ROOT0, is4] [This5] (0, ROOT, 4)

RASBJ [ROOT0, is4, This5] [] (4, SBJ, 5)

Reduce [ROOT0, is4] []
Reduce [ROOT0] []

Figure 4. Transition sequence for parsing the sentence in Figure 2 using the reverse arc-
eager parser (LA=Left-Arc, RA=Right-Arc)

ROOT0 tree1 dependency2 a3 is4 This5

ROOT

SBJ

PRED

NMOD

DET

Figure 5. Dependency tree obtained by applying the reverse arc-eager parser on the En-
glish sentence in Figure 2

created on the rightmost part of the tree. Furthermore, we have observed that some
arcs with certain lengths tend to be correctly built more often by the reverse parser
than by the arc-eager parser. Therefore, a combination of parsers is a logical next
step.

5.1 Parser Combination System

In this section, we introduce a combination system that takes advantage of the
strengths of each parser and discards their weaknesses. Concretely, the developed
combination system is applied on the dependency trees obtained by the parsers
after the parsing process. This system builds a new dependency tree by selecting
the arcs from one dependency tree or the other according to a certain strategy. The
combination strategies that we use are:

Position-based strategy: This strategy uses the position of dependents in the
sentence to distinguish which arcs are selected from the first parser and which
from the second parser. This approach is based on the idea that each parser

566 D. Fernández-González, C. Gómez-Rodŕıguez, D. Vilares

is good at certain positions of the graph. For instance, if the first parser is
good at doing the leftmost arcs, whose dependents are located from position 1
to 4, and the second parser obtains a higher accuracy on the rest of the arcs,
then the combination system will trust the first parser to build the dependency
graph until position 4, and use the dependency tree of the second parser to
complete the output. In this case, we will say that the combination is done with
a reliability parameter p = 4.

Length-based strategy: This combination technique selects the arcs built by the
first parser or the second parser depending on their length. There are some
parsers that create arcs with a certain length more accurately. For example, if
the first parser builds long arcs with a higher accuracy than the second parser,
then the combination of both parsers will trust the first parser to build long arcs
and will use the arcs created by the second parser to complete the rest. In that
case, if we assume that long arcs are those with the length higher than 15, we
say that this combination has a reliability parameter l = 15.2

In both strategies, firstly, it is necessary to identify the order of the parser
combination: which is the first parser and which is the second parser. This is
because the result is not the same if we combine the arc-eager parser plus the
reverse variant as if we use the configuration with reverse arc-eager plus the original
version. Secondly, the reliability parameters must be selected. In the example
described above, only one parameter divides the set of arcs by assigning a certain
kind of arcs to a parser. In the case of the position-based strategy, the parameter p
divides the sentence into two parts: the first part is done by the first parser and the
other by the second parser. On the other hand, the parameter l of the length-based
technique divides the set of arcs in such a way that those with length lower than l
are created by the first parser and those with higher length by the second parser.

Note that a huge amount of arcs of both parsers can coincide, but it is in
a small set of arcs where parsers differ. In the same way that parsers differ in
the arcs created, they can build the same arcs but assign a different label to the
same dependency link. When that happens, the combination system applies the
strategies described above to decide which parser we should trust to choose the
correct label. For instance, suppose that both parsers create the same arc but they
assign a different label to each arc and suppose that the dependent of these arcs is
situated before p; then if we apply a position-based strategy with a parameter p, the
label used in the new output arc is the label of the arc created by the first parser
and not the one assigned by the second parser.

The implementation of the position-based and the length-based strategies is
described in Figure 6.

2 Note that, when each parser assigns a different head to the same node, the length
of the arcs created by each parser on that node may be different. Therefore, during the
combination process, we trust the length of the arcs produced by the first parser to decide
whether the arcs are longer than the reliability parameter l or not.

Improving the Arc-Eager Model with Reverse Parsing 567

Note that this combination process can produce dependency graphs with cycles,
which we do not consider desirable because we wish to obtain dependency forests,
which must satisfy the acyclicity constraint. As we will see in Section 6.3, the
presence of cycles using our approach is significantly low. However, in case that
a cycle is present in the final dependency tree of a given sentence, the combination
process is undone for this sentence and the output obtained by the original arc-
eager parser is chosen as the final dependency tree. This is because, in general, the
arc-eager parser obtains higher scores than the reverse version.

5.2 Example

Using the combination system defined in Section 5.1, we combine the arc-eager and
the reverse arc-eager parsers. Concretely, we detail an artificial example in Figure 7
where the position-based strategy is used to undertake the combination.

Firstly, in Figure 7 a) we present the dependency tree returned by the reverse
arc-eager parser after analyzing a sentence. Since the reverse parser outputs a de-
pendency tree with nodes in reverse order, we have to invert them in order to con-
tinue with the combination process. The dependency graph obtained after applying
an inverter process is shown in Figure 7 b). Note that the analysis made by the re-
verse parser presents two incorrect arcs: the two leftmost arcs ROOT0 → This1
and This1 → is2. Secondly, Figure 7 c) presents the dependency tree obtained
by the original arc-eager parser. In this tree, there are also two mistakes: the
incorrect rightmost arc dependency4 → a3 and the incorrect label DET in arc
tree5 → dependency4. Notice that this example tries to remark that the arc-eager
parser has less accuracy in rightmost arcs, whilst the reverse variant is worse at cre-
ating leftmost arcs. Finally, the Figure 7 d) shows the resulting dependency graph
after combining the dependency trees in Figure 7 b) and Figure 7 c). Concretely, the
combination system uses the position-based strategy with a reliability parameter
p = 2 and the combination order is arc-eager + reverse. This means that we trust
the arc-eager dependency tree (Figure 7 c)) to assign head nodes to words located
before and at position 2 (ROOT0 → is2, is2 → This1 and is2 → tree5), and we
complete the new graph with arcs tree5 → dependency4 and tree5 → a3 provided
by the reverse dependency tree (Figure 7 b)). Since we rely on the reverse parser
to build the tree5 → dependency4, the correct label of this arc is taken from the
reverse arc-eager dependency tree. As we can see, the output in Figure 7 d) solves
all the mistakes made by both parsers.

6 EXPERIMENTS

In this section, we evaluate the performance of the reverse arc-eager parser and the
parsers obtained by combining the pseudo-projective arc-eager parser by Nivre and
Nilsson [37], implemented in MaltParser [35], and its reverse version, using each of
the combination strategies described in Section 5.

568 D. Fernández-González, C. Gómez-Rodŕıguez, D. Vilares

Combination_method(dep_tree_1, dep_tree_2):combined_dep_tree

begin

for all dependency_tree_nodes

do

if head_node_1 =/= head_node_2

then

if strategy(head_node_1,dependency_tree_node) <= parameter

then

create_arc(head_node_1,dependency_tree_node,label_node_1)

else

create_arc(head_node_2,dependency_tree_node label_node_2)

else

if label_1 =/= label_2

then

if strategy(head_node_1,dependency_tree_node) <= parameter

then

create_arc(head_node_2,dependency_tree_node,label_node_1)

else

create_arc(head_node_2,dependency_tree_node,label_node_2)

else

create_arc(head_node_2,dependency_tree_node,label_node_2)

done

find_and_process_cycles(combine_dep_tree)

end

Figure 6. Generic algorithm that combines two dependency trees for a given sentence
(dep tree 1, dep tree 2) and builds a new output (combined dep tree); where
the method strategy returns either the position of the dependent or the length of
the arc defined by the nodes head node 1 and dependency tree node depending
on the strategy used (position-based or length-based, respectively), parameter
is either p or l depending on the strategy followed, dependency tree nodes is the
set of nodes of the input dependency trees (note that, since the sentence analyzed
is the same, the dependency trees 1 and 2 have the same nodes), head node X and
label X determines the head node and the label assigned by a parser X (1 or 2) to
the current node of the dependency tree (dependency tree node) to create an arc,
and the function create arc() builds an arc in the output dependency tree with
a certain head and label. Finally, the method find and process cycles() is in
charge of detecting the arcs involved in a cycle on the resulting combination output
and solving them by trusting only the original arc-eager parser on that sentence.

Improving the Arc-Eager Model with Reverse Parsing 569

ROOT0 tree1 dependency2 a3 is4 This5

ROOT

SBJ

PRED

NMOD

DET

a)

ROOT0 This1 is2 a3 dependency4 tree5

ROOT
SBJ

PRED

NMOD

DET

b)

ROOT0 This1 is2 a3 dependency4 tree5

ROOT

SBJ

PRED

DETDET

c)

ROOT0 This1 is2 a3 dependency4 tree5

ROOT

SBJ

PRED

NMOD

DET

d)

Figure 7. a) Dependency tree of an English sentence analyzed by the reverse arc-eager
parser. b) Dependency tree obtained by inverting the output of the reverse parser
in Figure 7 a). c) Dependency tree derived by the original arc-eager parser. d)
Combination of the reverse arc-eager dependency tree in Figure 7 b) and the arc-
eager dependency tree in Figure 7 c) using the position-based strategy with p = 2.

570 D. Fernández-González, C. Gómez-Rodŕıguez, D. Vilares

In addition, we also provide a comparison between our approaches and two
widely-used parsers: the pseudo-projective arc-eager parser by Nivre and Nilsson [37]
and the maximum spanning tree parser by McDonald et al. [28].

Finally, and in order to test our approach more deeply, we provide further exper-
iments on two different transition-based parsers: the pseudo-projective arc-standard
parser [32], also using MaltParser, and the beam-search-based implementation of the
arc-eager parser provided in ZPar [48]. In both cases we combine the original parser
with its reverse variant following the two available strategies.

To undertake these experiments, we use the following datasets: Arabic [19],
Chinese [11], Czech [18], Danish [23], German [8], Portuguese [1], Swedish [30] and
Turkish [38, 2] from the CoNLL-X shared task,3 and the English WSJ corpus from
the Penn Treebank [24] with the same dependency conversion and split as described
in Zhang and Nivre [49]. To measure accuracy, we employ the following standard
evaluation metrics:

Labelled Attachment Score (LAS): The proportion of tokens (nodes) that are
assigned both the correct head and the correct dependency relation label.

Unlabelled Attachment Score (UAS): The proportion of tokens (nodes) that
are assigned the correct head (regardless of the dependency relation label).

In our results, we show LAS and UAS without considering punctuation as a scoring
node.

6.1 Greedy Arc-Eager Parser Results

Table 1 shows the results obtained by the reverse arc-eager parser with respect to
the original arc-eager parser by Nivre and Nilsson [37].

For our experiments, we used classifiers from the LIBSVM [10] and LIBLIN-
EAR [15] packages. Concretely, in order to reduce the training time on larger
datasets, we employ the LIBLINEAR package for Chinese, Czech, English and Ger-
man; and for the rest of languages, we use SVM classifiers from the LIBSVM package.
Feature models were optimized for each language.4

Note that, unlike the reverse arc-eager parser by Nilsson [29], our version was
specifically tuned for each language independently from the original version, by
performing feature optimization using the training set. This allows for a fairer
comparison between the original and the reverse parsers, since training the reverse

3 These treebanks have been chosen for their representativity, since they cover a wide
range of language families (Germanic, Romance, Semitic, Sino-Tibetan, Slavic, and Tur-
kic); annotation types (e.g. pure dependency annotation in the case of Danish, dependen-
cies extracted from constituents in the case of Chinese, or from discontinuous constituents
in German); and degrees of non-projectivity (ranging from the highly non-projective Czech
and German treebanks to the fully projective Chinese dataset).

4 For replicability, all the feature models are available at http://www.grupolys.org/

~cgomezr/exp/.

Improving the Arc-Eager Model with Reverse Parsing 571

parser with feature models originally optimized for the standard one could introduce
a bias against the former. As we can see, the reverse version has worse performance
than the standard one on all datasets, except in the Czech language dataset.

Table 2 and Table 3 detail the scores attained by the combination of the arc-
eager and reverse arc-eager parsers using the position-based and the length-based
strategies, respectively, in comparison to the original arc-eager parser by Nivre and
Nilsson [37]. In both combination strategies, the reliability parameter and the com-
bination order were determined using exclusively the training dataset by applying
a 10-fold cross-validation process. This means that 10 different training-development
set pairs were obtained from the original training dataset to undertake the cross-
validation process.

Arc-Eager Reverse

Language LAS UAS LAS UAS

Arabic 67.19 78.42 66.83 78.50
Chinese 87.04 90.78 85.41 89.05
Czech 79.68 85.00 80.40 85.82
Danish 85.51 90.34 84.81 89.62
German 87.30 89.68 86.08 88.40
Portug. 88.04 91.40 86.24 90.18
Swedish 84.58 90.20 81.76 87.79
Turkish 65.80 75.74 65.58 75.94

English (WSJ) 89.09 90.34 88.01 89.14

Table 1. Parsing accuracy of the arc-eager parser (Arc-Eager) in comparison to the reverse
arc-eager parser (Reverse)

Arc-Eager PosComb

Language LAS UAS LAS UAS p Order

Arabic 67.19 78.42 67.60 78.74 15 ARC + REV
Chinese 87.04 90.78 87.06 90.80 18 ARC + REV
Czech 79.68 85.00 80.98 86.32 7 ARC + REV
Danish 85.51 90.34 85.51 90.46 34 ARC + REV
German 87.30 89.68 87.32 89.66 40 ARC + REV
Portug. 88.04 91.40 88.18 91.40 1 REV + ARC
Swedish 84.58 90.20 84.62 90.22 40 ARC + REV
Turkish 65.80 75.74 66.00 76.20 3 REV + ARC

English (WSJ) 89.09 90.34 89.12 90.37 1 REV + ARC

Average 81.58 86.88 81.82 87.13

Table 2. Parsing accuracy of the position-based combination (PosComb) of the arc-eager
parser (ARC) and its reverse variant (REV) in comparison to the original arc-eager
parser (Arc-eager). The parameter p was determined from the training dataset. For
each language, the table shows the value of p and the combination order (ARC+REV
or REV + ARC) that were used, obtained from the cross-validation process.

572 D. Fernández-González, C. Gómez-Rodŕıguez, D. Vilares

Arc-Eager LenComb

Language LAS UAS LAS UAS l Order

Arabic 67.19 78.42 67.56 79.44 2 REV + ARC
Chinese 87.04 90.78 87.06 90.80 19 ARC + REV
Czech 79.68 85.00 80.88 86.22 5 REV + ARC
Danish 85.51 90.34 85.79 90.68 2 REV + ARC
German 87.30 89.68 87.42 89.68 1 REV + ARC
Portug. 88.04 91.40 88.04 91.40 0 REV + ARC
Swedish 84.58 90.20 84.60 90.20 40 ARC + REV
Turkish 65.80 75.74 66.20 76.12 1 REV + ARC

English (WSJ) 89,09 90,34 89,09 90,34 0 REV + ARC

Average 81.58 86.88 81.85 87.21

Table 3. Parsing accuracy of the length-based combination (LenComb) of the arc-eager
parser (ARC) and its reverse variant (REV) in comparison to the original arc-eager
parser (Arc-Eager). The parameter l was determined from the training dataset. For
each language, the table shows the value of l and the combination order (ARC+REV
or REV + ARC) that were used, obtained from the cross-validation process

The results show that the use of the parser combination system with any strategy
improves over the scores of the arc-eager parser on all of the nine datasets tested.
The only cases where the combination of parsers does not outperform the score of
the arc-eager parser is in the English and Portuguese datasets using the length-based
strategy. But even in those cases, the results of the parser combination system are
the same as with the arc-eager baseline.5 The LAS and UAS averages show that the
length-based strategy achieves a higher increment in scores than the position-based
strategy. However, in some languages the position-based approach has a better
performance.

Further, to put the obtained results into context, we provide the comparison
of the parser combination to the arc-eager parser and another well-known parser.
In order to show the best results of the combination of the original and reverse
arc-eager, we configure them with the best strategy for each language. Concretely,
Table 4 compares the accuracy of the parser combination system to the maximum
spanning tree parser by McDonald et al. [28] and the original pseudo-projective
arc-eager parser by Nivre and Nilsson [37]. Note that the arc-eager and the max-
imum spanning tree parsers were the two top performing systems in the CoNLL
2006 shared task [9]. For each dataset, the strategy followed to obtain the best
score is shown. As we can see, the combination of the arc-eager parser with
its reverse variant outperforms the score of these two widely-used parsers in all
datasets.

5 In fact, the scores in this case are identical to the baseline because the chosen value
for the l parameter is 0, meaning that we trust the first parser on all dependency links
and the second parser on none.

Improving the Arc-Eager Model with Reverse Parsing 573

Arc-Eager MSTParser BestCombination

Language LAS UAS LAS UAS LAS UAS Strategy

Arabic 67.19 78.42 66.91 79.34 67.56 79.44 Length-based
Chinese 87.04 90.78 85.90 91.07 87.06 90.80 Length-based
Czech 79.68 85.00 80.18 87.30 80.98 86.32 Position-based
Danish 85.51 90.34 84.79 90.58 85.79 90.68 Length-based
German 87.30 89.68 87.34 90.38 87.42 89.68 Length-based
Portug. 88.04 91.40 86.82 91.36 88.18 91.40 Position-based
Swedish 84.58 90.20 82.55 88.93 84.62 90.22 Position-based
Turkish 65.80 75.74 63.19 74.67 66.20 76.12 Length-based

Table 4. Parsing accuracy of the best combinative configuration detailed in Table 2 and
Table 3 in comparison to the arc-eager parser (Arc-Eager) and the maximum span-
ning tree parser (MSTParser) on eight datasets form the CoNLL 2006 shared task

6.2 Results with the Arc-Standard Model and with Beam Search

Before proceeding to a more in-depth analysis of the results of applying our parser
combination approach to the arc-eager parser, we test the generality of the approach
by performing experiments with a different transition system and with a different
search strategy, to see whether it also produces gains in accuracy.

Table 5 shows the results obtained by the greedy pseudo-projective arc-standard
parser [32] and its reverse variant, using MaltParser in the same way as in the
arc-eager model experiments of Section 6.1. Table 6 shows analogous results for
the variant of the arc-eager parser implemented in the ZPar system [48], which
uses global learning and beam search to provide state-of-the-art accuracy, at the
cost of being computationally more expensive than greedy search. These beam
search experiments were performed with the default settings and feature models of
ZPar, but performing the pseudo-projective transformation on the training data and
undoing it on the output parses in order to handle the non-projective treebanks in
the same way as in the greedy implementations.

On the one hand, the original arc-standard algorithm is only outperformed by
its reverse version in the Arabic and Czech datasets. Taking into account these
results and those of the reverse arc-eager model in Table 1, we can clearly see
that the reverse strategy by itself is beneficial for the Czech dataset in greedy
transition-based parsing. On the other hand, the reverse variant of the beam-search
parser improves over the original algorithm in five out of nine datasets: it seems
that the beam-search parser takes more advantage of this strategy than the greedy
parsers.

Table 7 and Table 8 present the accuracy attained by the combination of the
arc-standard and the reverse arc-standard parsers following the position-based and
the length-based strategies, respectively, in comparison to the original arc-standard
parser [32]. In this case, the length-based strategy also achieves slightly higher
scores than the position-based technique according to the LAS and UAS averages.

574 D. Fernández-González, C. Gómez-Rodŕıguez, D. Vilares

Arc-standard Reverse

Language LAS UAS LAS UAS

Arabic 66.69 78.40 67.03 77.66
Chinese 86.22 90.08 84.99 89.58
Czech 80.92 86.72 81.96 87.52
Danish 84.55 89.72 84.35 89.48
German 86.92 89.36 86.38 88.90
Portug. 87.38 90.86 87.12 90.78
Swedish 83.05 88.77 81.94 88.31
Turkish 65.52 75.82 65.15 75.34

English (WSJ) 88.81 90.10 88.79 90.00

Table 5. Parsing accuracy of the pseudo-projective arc-standard parser (Arc-standard) in
comparison to the reverse arc-standard parser (Reverse)

ZPar Reverse

Language LAS UAS LAS UAS

Arabic 66.95 77.66 65.33 77.09
Chinese 88.27 92.39 88.31 92.41
Czech 84.16 89.66 82.70 88.70
Danish 86.51 91.30 86.03 90.84
German 90.24 92.45 90.26 92.47
Portug. 88.70 92.53 89.28 92.81
Swedish 85.44 90.86 85.20 90.84
Turkish 65.52 76.00 66.26 76.78

English (WSJ) 91.45 92.50 91.46 92.53

Table 6. Parsing accuracy of the beam-search parser (ZPar) in comparison to its reversed
version (Reverse)

However, it is in the length-based strategy where the combination process seems to
be less universally useful, since in three out of nine datasets it does not outperform
the original version. In spite of that, it is worth highlighting the good scores obtained
in general by the position-based and length-based combinations, especially on the
Arabic, Czech and English datasets. In case of the English language, the length-
based strategy allows the arc-standard parser to achieve an accuracy on par with
the original arc-eager parser (Table 1), which was better without the combination
approach.

Table 9 and Table 10 detail the accuracy obtained by the combination of the
original and reversed beam-search parsers following the position-based and the
length-based strategies, respectively, in comparison to the original beam-search ZPar
parser [48]. As we can see, even though the global learning model and beam-search
decoding used in this system reduce error propagation with respect to the greedy
algorithms [50], our combination approach still provides clear benefits in terms of

Improving the Arc-Eager Model with Reverse Parsing 575

Arc-Standard PosComb

Language LAS UAS LAS UAS p Order

Arabic 66.69 78.40 67.88 78.42 11 ARC + REV
Chinese 86.22 90.08 86.22 90.08 25 ARC + REV
Czech 80.92 86.72 82.26 87.70 7 ARC + REV
Danish 84.55 89.72 84.89 89.86 5 REV + ARC
German 86.92 89.36 86.94 89.40 1 REV + ARC
Portug. 87.38 90.86 87.38 90.86 0 REV + ARC
Swedish 83.05 88.77 83.13 88.69 1 REV + ARC
Turkish 65.52 75.34 65.66 76.00 9 ARC + REV

English (WSJ) 88.81 90.10 88.84 90.12 1 REV + ARC

Average 81.12 86.59 81.47 86.79

Table 7. Parsing accuracy of the position-based combination (PosComb) of the arc-
standard parser (ARC) and its reverse variant (REV) in comparison to the original
arc-standard parser (Arc-Standard). The parameter p was determined from the
training dataset. For each language, the table shows the value of p and the com-
bination order (ARC + REV or REV + ARC) that were used, obtained from the
cross-validation process.

accuracy. In this case, the position-based combination attains higher scores in LAS
and the length-based strategy obtains better scores in UAS according to the LAS
and UAS averages.

Arc-Standard LenComb

Language LAS UAS LAS UAS l Order

Arabic 66.69 78.40 67.86 78.86 3 REV + ARC
Chinese 86.22 90.08 86.22 90.08 20 ARC + REV
Czech 80.92 86.72 82.06 87.50 6 REV + ARC
Danish 84.55 89.72 84.95 90.02 4 REV + ARC
German 86.92 89.36 86.92 89.36 0 REV + ARC
Portug. 87.38 90.86 87.38 90.86 0 REV + ARC
Swedish 83.05 88.77 83.05 88.77 0 REV + ARC
Turkish 65.52 75.34 65.90 76.30 2 REV + ARC

English (WSJ) 88.81 90.10 89.09 90.31 3 REV + ARC

Average 81.12 86.59 81.49 86.90

Table 8. Parsing accuracy of the length-based combination (LenComb) of the arc-standard
parser (ARC) and its reverse variant (REV) in comparison to the original arc-
standard parser (Arc-Standard). The parameter l was determined from the training
dataset. For each language, the table shows the value of l and the combination order
(ARC + REV or REV + ARC) that were used, obtained from the cross-validation
process.

576 D. Fernández-González, C. Gómez-Rodŕıguez, D. Vilares

ZPar PosComb

Language LAS UAS LAS UAS p Order

Arabic 66.95 77.66 67.52 78.18 15 ZP + REV
Chinese 88.28 92.39 88.33 92.41 12 ZP + REV
Czech 84.16 89.66 84.34 89.72 30 ZP + REV
Danish 86.51 91.30 86.57 91.18 14 ZP + REV
German 90.24 92.45 90.48 92.63 1 ZP + REV
Portug. 88.70 92.53 88.94 92.59 9 REV + ZP
Swedish 85.44 90.86 85.68 91.10 2 ZP + REV
Turkish 65.52 76.00 66.22 76.74 25 REV + ZP

English (WSJ) 91.45 92.50 91.49 92.55 14 ZP + REV

Average 83.03 88.37 83.29 88.57

Table 9. Parsing accuracy of the position-based combination (PosComb) of the beam-
search parser (ZP) and its reverse variant (REV) in comparison to the original
beam-search parser (ZPar). The parameter p was determined from the training
dataset. For each language, the table shows the value of p and the combination
order (ZP + REV or REV + ZP) that were used, obtained from the cross-validation
process.

6.3 Analysis

It is clear that combination of parsers makes sense when one of them can correctly
analyze some structures that the other cannot and vice versa.

When we combine the arc-eager parser with the reverse arc-eager parser, we

ZPar LenComb

Language LAS UAS LAS UAS l Order

Arabic 66.95 77.66 66.77 78.26 1 REV + ZP
Chinese 88.28 92.39 88.57 92.56 1 ZP + REV
Czech 84.16 89.66 84.16 89.66 0 REV + ZP
Danish 86.51 91.30 86.55 91.34 1 REV + ZP
German 90.24 92.45 90.52 92.65 1 REV + ZP
Portug. 88.70 92.53 89.10 92.69 3 REV + ZP
Swedish 85.44 90.86 85.64 91.08 1 ZP + REV
Turkish 65.52 76.00 66.70 77.06 2 REV + ZP

English (WSJ) 91.45 92.50 91.51 92.59 1 REV + ZP

Average 83.03 88.37 83.28 88.65

Table 10. Parsing accuracy of the length-based combination (LenComb) of the beam-
search parser (ZP) and its reverse variant (REV) in comparison to the original
beam-search parser (ZPar). The parameter l was determined from the training
dataset. For each language, the table shows the value of l and the combination
order (ZP + REV or REV + ZP) that were used, obtained from the cross-validation
process.

Improving the Arc-Eager Model with Reverse Parsing 577

expect the reverse approach to build arcs that the original version is not able to.
This is, in fact, what happened in our experiments. For instance, Figure 8 shows
the precision relative to dependent position in the sentence for the arc-eager parser
(Arceager) and the reverse arc-eager parser (Reverse) on the Czech dataset. We
can see that the precision of the reverse parser is higher than the obtained by the
arc-eager parser from position 8 to the end of the sentence (the rightmost arcs).
Thus, we can use a position-based strategy with p = 7 and order ARC + REV to
take advantage of this phenomenon. Indeed, this is what appears in Table 2 for the
Czech dataset.

2 4 6 8 10 12 14
70

75

80

85

90

95

Sentence Position

D
e

p
e

n
d

e
n

cy
 P

re
ci

si
o

n

 Arceager
 Reverse

Figure 8. Dependency arc precision relative to position in the sentence, for the arc-eager
parser (Arceager) and the reverse arc-eager parser (Reverse), on the Czech dataset

Note that there are two languages (Portuguese and Turkish) in Table 2 where
the combination order is REV + ARC instead of ARC + REV. This means that the
reverse parser obtains better accuracy on the leftmost arcs than on the rightmost
ones, which is more unusual. Concretely, in these languages the reverse parser
improves the score obtained by the arc-eager parser in arcs originating from the
root node 0 (the leftmost arcs). For instance, the reverse parser achieves a 94.03 %
of precision in arcs created from the root node in the Turkish dataset, whilst the
arc-eager obtains 86.97 % precision in the same language and doing the same task.
Therefore, if we combine both parsers with a position-based strategy with a low

578 D. Fernández-González, C. Gómez-Rodŕıguez, D. Vilares

p = 3 and order REV + ARC, we will use the strength of the reverse parser on
creating root arcs (usually situated between nodes 1 and 3) in the Turkish dataset,
as shown in Table 2.

In addition to offering improvements at some positions in the sentence, the
reverse arc-eager parser improves over the original version on arcs with a certain
length. For instance, the reverse parser obtains better accuracy on short arcs (length
lower than 5) in the Czech dataset, whilst the original parser achieves better scores
on long arcs. This is shown in Figure 9. Note that, although the reverse parser also
performs better on very long arcs (length larger than 25), it is more important to
take advantage of it in the short arcs because the proportion of short arcs is higher
than that of very long ones. Therefore, a length-based combination with parameter
l = 5 and order REV + ARC is the proper configuration to obtain the best results,
and that was the one selected by cross-validation on the training set and described
in Table 3.

0 5 10 15 20 25 30 35
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Dependency Length

D
e

p
e

n
d

e
n

cy
 P

re
ci

si
o

n

 Arceager
 Reverse

Figure 9. Dependency arc precision relative to predicted dependency length, for the arc-
eager parser (Arceager) and the reverse arc-eager parser (Reverse) on the Czech
dataset

Finally, we have to mention that our combinative approach is less sensitive to
cycles than other strategies, such as voting. This is probably because we are work-
ing with a single transition-based algorithm (in our main experiments, the arc-eager
parser). Other combinative approaches likely suffer from a high number of cycles
due to joining parsers of different kinds. The percentage of sentences of the tree-
bank where a cycle is created during our combination process is shown in Table 11.
Although the table focuses on the greedy arc-eager parser, the parsers of Section 6.2

Improving the Arc-Eager Model with Reverse Parsing 579

yield similar figures. As we can see, the percentage of sentences with cycles is signif-
icantly low and the length-based strategy is more prone to present cycles than the
position-based technique. This is because the position-based combination takes one
part of the output graph from the first parser and the other part from the second
one, in that way, each part of the graph taken does not present inner cycles (al-
though there could be cycles spanning both parts of the graph at once). However,
the length-based combination creates the output by choosing arcs individually from
each parser regardless of the position, and therefore it has a tendency to cause more
cycles.

Language % Position-Based % Length-Based

Arabic 2.74 17.81
Chinese 0.00 0.00
Czech 1.37 7.40
Danish 0.00 2.17
German 0.00 0.56
Portug. 1.39 0.00
Swedish 0.00 0.00
Turkish 0.32 1.28

English 0.82 0.00

Average 0.74 3.25

Table 11. Percentage of sentences of each language that presented a cycle during the com-
bination process using the position-based (% Position-Based) or the length-based
(% Length-Based) strategies with the arc-eager parser

7 DISCUSSION

We presented an optimized version of the reverse arc-eager parser introduced by
Nilsson [29]. This is obtained by applying a reverse strategy on the pseudo-projective
arc-eager parser by Nivre and Nilsson [37], which makes this parser analyze a given
sentence in reverse order: from right to left. We found out that the reverse arc-eager
parser can correctly handle some syntactic structures that the original parser cannot.
Initially, we expected a better accuracy in the reverse variant on the rightmost
arcs of the dependency graph as predicted by Nilsson [29]. However, we noticed
that in some languages, such as Turkish, the reverse arc-eager parser performed
better on the leftmost arcs of the graph. In addition to this, we discovered that
the reverse variant produced better results than the arc-eager parser on arcs with
certain lengths.

To take advantage of these findings, we introduced a parser combination sys-
tem, that is able to integrate the dependency trees output by two different parsers
into a new dependency tree that gathers the best of each one. We present two dif-
ferent strategies to undertake the parser combination: the position-based strategy,
which combines the models regarding the position of the arcs in the sentence, and

580 D. Fernández-González, C. Gómez-Rodŕıguez, D. Vilares

the length-based combination, which integrates two parsers taking into account the
length of the arcs. We use this combination system to improve the arc-eager parser
by combining it with its reverse variant.

The results obtained show that this approach with any of both strategies pro-
duces improvements in the arc-eager parsing accuracy on all of the nine datasets
used in the experiments and is even able to outperform widely-used dependency
parsers. Moreover, we also showed that this combination process can be success-
fully applied to different dependency parsers such as the arc-standard parser [32],
and different search strategies and learning models such as the global learning and
beam search used in the ZPar parser [48].

In addition, our combination system does not add any extra time complexity
and allows the parallel execution of a parser and its reverse version. Therefore, by
applying this approach on a single parser, more accuracy is achieved in the same
amount of time as if we use this parser in a regular way.6 Thus, our technique is
especially useful in settings where parsing speed is important, so that combination
approaches that incur significant speed penalties are not desirable.

Furthermore, the combination method presented in this article interferes neither
in the learning nor in the parsing process, but is used in a post-parsing step. This
means that it can be applied on any dependency parser, regardless of its nature,
because it does not depend on each parser’s characteristics.

As future work, this system can be extended by adding new combination strate-
gies such as combining two (or more) parsers, where each one is good at doing cer-
tain part of the dependency tree; developing a new direction-based strategy, which
trusts one parser on building the leftward arcs and uses the other parser to create the
rightward arcs; or implementing combination strategies with a range of reliability
parameters, in that way, the combination could be more specific.

Acknowledgements

This research has been partially funded by Spanish Ministry of Economy and Com-
petitiveness and ERDF (projects TIN2010-18552-C03-01, TIN2010-18552-C03-02,
FFI2014-51978-C2-1-R, FFI2014-51978-C2-2-R), Ministry of Education (FPU Grant
Program AP2010-1730 and FPU13/01180) and Xunta de Galicia (CN 2012/008,
Rede Galega de Procesamento da Linguaxe e Recuperación da Información, Rede
Galega de Recursos Lingǘısticos para unha Sociedade do Coñecemento, and an
Oportunius program grant).

6 Using the position-based combination, it is even possible to execute the reversed and
the original arc-eager parser in a sequential way, while still spending roughly the same
amount of time as with a single parser. To achieve that, one parser would analyze one
portion of the dependency graph until position p and the other parser would create the
other part of the graph.

Improving the Arc-Eager Model with Reverse Parsing 581

REFERENCES

[1] Afonso, S.—Bick, E.—Haber, R.—Santos, D.: “Floresta Sintá(c)tica”:
A Treebank for Portuguese. Proceedings of the 3rd International Conference on
Language Resources and Evaluation (LREC 2002), ELRA, Paris, France, 2002,
pp. 1968–1703.

[2] Atalay, N. B.—Oflazer, K.—Say, B.: The Annotation Process in the Turkish
Treebank. Proceedings of EACL Workshop on Linguistically Interpreted Corpora
(LINC-03), ACL, USA, 2003, pp. 243–246.

[3] Attardi, G.—Dell’Orletta, F.: Reverse Revision and Linear Tree Combination
for Dependency Parsing. NAACL-Short 09, 2009, pp. 261–264.

[4] Ballesteros, M.—Nivre, J.: Going to the Roots of Dependency Parsing. Com-
putational Linguistics, Vol. 39, 2013, No. 1, pp. 5–13.

[5] Bloomfield, L.: Language. University of Chicago Press, 1933.

[6] Bohnet, B.—Kuhn, J.: The Best of Both Worlds – A Graph-Based Completion
Model for Transition-Based Parsers. In: Daelemans, W., Lapata, M., Màrquez, L.
(Eds.): Proceedings of the 13th Conference of the European Chapter of the Associa-
tion for Computational Linguistics (EACL), ACL, 2012, pp. 77–87.

[7] Bohnet, B.—Nivre, J.: A Transition-Based System for Joint Part-of-Speech Tag-
ging and Labeled Non-Projective Dependency Parsing. Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Language Processing and Computa-
tional Natural Language Learning (EMNLP-CoNLL ’12), ACL, 2012, pp. 1455–1465.
http://dl.acm.org/citation.cfm?id=2390948.2391114.

[8] Brants, S.—Dipper, S.—Hansen, S.—Lezius, W.—Smith, G.: The Tiger
Treebank. Proceedings of the Workshop on Treebanks and Linguistic Theories,
September 20–21, 2002, Sozopol, Bulgaria. http://www.coli.uni-sb.de/~sabine/
tigertreebank.pdf.

[9] Buchholz, S.—Marsi, E.: CoNLL-X Shared Task on Multilingual Dependency
Parsing. Proceedings of the 10th Conference on Computational Natural Language
Learning (CoNLL), 2006, pp. 149–164.

[10] Chang, C. C.—Lin, C. J.: LIBSVM: A Library for Support Vector Machines. 2001.
Software available on: http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[11] Chen, K.—Luo, C.—Chang, M.—Chen, F.—Chen, C.—Huang, C.—
Gao, Z.: Sinica Treebank: Design Criteria, Representational Issues and Implemen-
tation. In: Abeillé, A. (Ed.): Treebanks: Building and Using Parsed Corpora, Chap-
ter 13, Kluwer, 2003, pp. 231–248.

[12] Chomsky, N.: Three Models for the Description of Language. IRE Transactions on
Information Theory IT-2, 1956, pp. 113–124.

[13] Ding, Y.—Palmer, M.: Synchronous Dependency Insertion Grammars: A Gram-
mar Formalism for Syntax Based Statistical MT. Proceedings of the Workshop on
Recent Advances in Dependency Grammar, 2004, pp. 90–97.

[14] Eisner, J. M.: Three New Probabilistic Models for Dependency Parsing: An Explo-
ration. Proceedings of the 16th International Conference on Computational Linguistics
(COLING), 1996, pp. 340–345.

582 D. Fernández-González, C. Gómez-Rodŕıguez, D. Vilares

[15] Fan, R. E.—Chang, K. W.—Hsieh, C. J.—Wang, X. R.—Lin, C. J.: LIBLIN-
EAR: A Library for Large Linear Classification. Journal of Machine Learning Re-
search, Vol. 9, 2008, pp. 1871–1874.

[16] Fishel, M.—Nivre, J.: Voting and Stacking in Data-Driven Dependency Parsing.
In: Jokinen, K., Bick, E. (Eds.): Proceedings of the 17th Nordic Conference of Com-
putational Linguistics (NODALIDA 2009), NEALT Proceedings Series, Vol. 4, 2009,
pp. 219–222.

[17] Gómez-Rodŕıguez, C.—Nivre, J.: Divisible Transition Systems and Multiplanar
Dependency Parsing. Computational Linguistics, Vol. 39, 2013, No. 4, pp. 799–845.

[18] Hajič, J.—Panevová, J.—Hajičová, E.—Panevová, J.—Sgall, P.—
Pajas, P.—Štěpánek, J.—Havelka, J.—Mikulová, M.: Prague Dependency
Treebank 2.0. CDROM CAT: LDC2006T01, ISBN 1-58563-370-4. Linguistic Data
Consortium, 2006.

[19] Hajič, J.—Smrž, O.—Zemánek, P.—Šnaidauf, J.—Beška, E.: Prague Arabic
Dependency Treebank: Development in Data and Tools. Proceedings of the NEMLAR
International Conference on Arabic Language Resources and Tools, 2004.

[20] Hall, J.—Nilsson, J.—Nivre, J.—Eryiğit, G.—Megyesi, B.—Nils-
son, M.—Saers, M.: Single Malt or Blended? A Study in Multilingual Parser
Optimization. Proceedings of the CoNLL Shared Task of EMNLP-CoNLL 2007, 2007,
pp. 933–939.

[21] Huang, L.—Sagae, K.: Dynamic Programming for Linear-Time Incremental
Parsing. Proceedings of the 48th Annual Meeting of the Association for Computa-
tional Linguistics (ACL ’10), ACL, 2010, pp. 1077–1086. http://portal.acm.org/
citation.cfm?id=1858681.1858791.

[22] Koo, T.—Collins, M.: Efficient Third-Order Dependency Parsers. Proceedings of
the 48th Annual Meeting of the Association for Computational Linguistics (ACL ’10),
2010, pp. 1–11.

[23] Kromann, M. T.: The Danish Dependency Treebank and the Underlying Linguis-
tic Theory. Proceedings of the 2nd Workshop on Treebanks and Linguistic Theories
(TLT), Växjö University Press, Växjö, Sweden, 2003, pp. 217–220.

[24] Marcus, M. P.—Santorini, B.—Marcinkiewicz, M. A.: Building a Large An-
notated Corpus of English: The Penn Treebank. Computational Linguistics, Vol. 19,
1993, pp. 313–330.

[25] Martins, A.—Smith, N.—Xing, E.: Concise Integer Linear Programming For-
mulations for Dependency Parsing. Proceedings of the Joint Conference of the 47th

Annual Meeting of the ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP (ACL-IJCNLP), 2009, pp. 342–350.

[26] McDonald, R.—Nivre, J.: Characterizing the Errors of Data-Driven Depen-
dency Parsing Models. Proceedings of the 2007 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL), 2007, pp. 122–131.

[27] McDonald, R.—Nivre, J.: Analyzing and Integrating Dependency Parsers. Com-
putational Linguistics, Vol. 37, 2011, pp. 197–230.

Improving the Arc-Eager Model with Reverse Parsing 583

[28] McDonald, R.—Pereira, F.—Ribarov, K.—Hajič, J.: Non-Projective Depen-
dency Parsing Using Spanning Tree Algorithms. Proceedings of the Human Language
Technology Conference and the Conference on Empirical Methods in Natural Lan-
guage Processing (HLT/EMNLP), 2005, pp. 523–530.

[29] Nilsson, J.: Transformation and Combination in Data-Driven Dependency Parsing.
Ph.D. Thesis, Växjö University, 2009.

[30] Nilsson, J.—Hall, J.—Nivre, J.: MAMBA Meets TIGER: Reconstructing
a Swedish Treebank from Antiquity. In: Henrichsen, P. J. (Ed.): Proceedings of the
NODALIDA Special Session on Treebanks, 2005.

[31] Nivre, J.: An Efficient Algorithm for Projective Dependency Parsing. Proceedings of
the 8th International Workshop on Parsing Technologies (IWPT), 2003, pp. 149–160.

[32] Nivre, J.: Algorithms for Deterministic Incremental Dependency Parsing. Compu-
tational Linguistics, Vol. 34, 2008, pp. 513–553.

[33] Nivre, J.: Algorithms for Deterministic Incremental Dependency Parsing.
Computational Linguistics, Vol. 34, 2008, No. 4, pp. 513–553. http://www.

mitpressjournals.org/doi/abs/10.1162/coli.07-056-R1-07-027.

[34] Nivre, J.—Hall, J.—Nilsson, J.: Memory-Based Dependency Parsing. Proceed-
ings of the 8th Conference on Computational Natural Language Learning (CoNLL-
2004), ACL, 2004, pp. 49–56.

[35] Nivre, J.—Hall, J.—Nilsson, J.: Maltparser: A Data-Driven Parser-Generator
for Dependency Parsing. Proceedings of the 5th International Conference on Language
Resources and Evaluation (LREC), 2006, pp. 2216–2219.

[36] Nivre, J.—McDonald, R.: Integrating Graph-Based and Transition-Based De-
pendency Parsers. Proceedings of the 46th Annual Meeting of the Association for
Computational Linguistics (ACL), 2008, pp. 950–958.

[37] Nivre, J.—Nilsson, J.: Pseudo-Projective Dependency Parsing. Proceedings of
the 43rd Annual Meeting of the Association for Computational Linguistics (ACL),
2005, pp. 99–106.

[38] Oflazer, K.—Say, B.—Hakkani-Tür, D. Z.—Tür, G.: Building a Turkish
Treebank. In: Abeillé, A. (Ed.): Treebanks: Building and Using Parsed Corpora.
Kluwer, 2003, pp. 261–277.

[39] Sagae, K.—Lavie, A.: Parser Combination by Reparsing. Proceedings of the Hu-
man Language Technology Conference of the NAACL, Companion Volume: Short
Papers, 2006, pp. 129–132.

[40] Samuelsson, Y.—Eklund, J.—Täckström, O.—Velupillai, S.—Saers, M.:
Mixing and Blending Syntactic and Semantic Dependencies. Proceedings of CoNLL-
2008 Shared Task, 2008, pp. 248–252.

[41] Snow, R.—Jurafsky, D.—Ng, A. Y.: Learning Syntactic Patterns for Automatic
Hypernym Discovery. Advances in Neural Information Processing Systems (NIPS),
2005.

[42] Surdeanu, M.—Manning, C. D.: Ensemble Models for Dependency Parsing:
Cheap and Good? Human Language Technologies: The 2010 Annual Conference
of the North American Chapter of the Association for Computational Linguis-

584 D. Fernández-González, C. Gómez-Rodŕıguez, D. Vilares

tics (HLT ’10), ACL, 2010, pp. 649–652. http://dl.acm.org/citation.cfm?id=

1857999.1858090.

[43] Tesnière, L.: Éléments de Syntaxe Structurale. Editions Klincksieck, 1959.

[44] Titov, I.—Henderson, J.: A Latent Variable Model for Generative Dependency
Parsing. Proceedings of the 10th International Conference on Parsing Technologies
(IWPT), 2007, pp. 144–155.

[45] Yamada, H.—Matsumoto, Y.: Statistical Dependency Analysis with Support Vec-
tor Machines. Proceedings of the 8th International Workshop on Parsing Technologies
(IWPT), 2003, pp. 195–206.

[46] Zeman, D.—Žabokrtský, Z.: Improving Parsing Accuracy by Combining Diverse
Dependency Parsers. Proceedings of the Ninth International Workshop on Parsing
Technology (Parsing ’05), ACL, 2005, pp. 171–178. http://dl.acm.org/citation.
cfm?id=1654494.1654512.

[47] Zhang, Y.—Clark, S.: A Tale of Two Parsers: Investigating and Combining
Graph-Based and Transition-Based Dependency Parsing. Proceedings of the Con-
ference on Empirical Methods in Natural Language Processing (EMNLP), 2008,
pp. 562–571.

[48] Zhang, Y.—Clark, S.: Syntactic Processing Using the Generalized Perceptron
and Beam Search. Computational Linguistics, Vol. 37, 2011, No. 1, pp. 105–151.

[49] Zhang, Y.—Nivre, J.: Transition-Based Parsing with Rich Non-Local Features.
Proceedings of the 49th Annual Meeting of the Association for Computational Lin-
guistics (ACL), 2011.

[50] Zhang, Y.—Nivre, J.: Analyzing the Effect of Global Learning and Beam-Search
on Transition-Based Dependency Parsing. In: Kay, M., Boitet, C. (Eds.): COLING
(Posters), Indian Institute of Technology Bombay, 2012, pp. 1391–1400.

Daniel Fern�andez-Gonz�alez received his M.Sc. degree in computer science from the
University of Vigo (UVIGO) in 2010, and his Ph.D. degree in computer science from the
University of A Coruña (UDC) in 2015. He is currently working as a researcher at UDC,
but he was affiliated with UVIGO when this work was performed. His main research
interest is data-driven dependency parsing, especially transition-based parsing.

Carlos G�omez-Rodr��guez received his M.Sc. and Ph.D. degrees in computer science
from the University of A Coruña in 2005 and 2009, respectively, and is currently Associate
Professor in the same institution. His main research focus is on natural language parsing,
and he has authored a monograph and several dozens of papers in this field. His contribu-
tions include both theoretical and empirical work on constituency and dependency-based
parsing algorithms, as well as on applications of parsing to other natural language pro-
cessing tasks.

Improving the Arc-Eager Model with Reverse Parsing 585

David Vilares received his M.Sc. degree in computer science from the University of
A Coruña in 2012. He is currently Ph.D. student at the Computer Science Department of
the University of A Coruña. His research interests include sentiment analysis and natural
language processing.

