
Computing and Informatics, Vol. 32, 2013, 573–593

ASPECT-ORIENTED MODELING: APPLYING
ASPECT-ORIENTED UML USE CASES
AND EXTENDING ASPECT-Z

Cristian Vidal Silva

Business Informatics Administration
Universidad de Talca
Talca, Chile
e-mail: cvidal@utalca.cl

Rodrigo Saens, Carolina Del Ŕıo

Business Administration
Universidad de Talca
Talca, Chile
e-mail: {rsaens, cadelrio}@utalca.cl

Rodolfo Villarroel

Escuela de Ingenieŕıa Informática
Pontificia Universidad Católica de Valparáıso
Valparáıso, Chile
e-mail: rodolfo.villarroel@ucv.cl

Communicated by Valentino Vranić

Abstract. Considering predominant aspect-oriented software development (asym-
metric AOSD), this paper discusses the application of aspect-oriented UML use case
diagrams and formal language AspectZ to part of a classic AOSD case study, the
Health-Watcher software system. In addition, this article proposes an extension of
AspectZ to reach a new property for asymmetric AOSD which reacts after a schema
successfully finishes, or not, showing messages for that situation, with an implicit
join point; and a way for generalizing similar operations in a system using AspectZ.

574 C. Vidal Silva, R. Saens, C. Del Rı́o, R. Villarroel

Thus, the main goal of this article is to show the application of and differences
between asymmetric aspect-oriented formal and non-formal modeling, and to high-
light potential advantages of aspect-oriented formal modeling over aspect-oriented
non-formal modeling. First, this article describes the main concepts of the classic
AOSD paradigm focusing on problems unsolved by previous forms of software devel-
opment and resolved by AOSD. Second, by applying aspect-oriented UML use case
diagrams, this paper highlights the use of dominion classes and extend-relationships.
Considering the Health-Watcher case study and an asymmetric AOSD approach,
this study found that using extend-relationships in UML use cases does not com-
pletely follow the basic principles of the prevailing AOSD approach in which a base
element does not know about aspects, whereas an extending use case must explicitly
know its extension points. Third, this article shows a formal modeling of the case
study using AspectZ. Moreover, extensions of this aspect-oriented formal language
are proposed and applied to the same case study to show their practical proper-
ties for modeling. These extensions allow showing success or error messages, and
inserting or not a new item in a set of elements to take care of invalid situations.

Keywords: AOSD, UML, aspect-oriented UML use cases, aspects, AspectZ, sche-
ma

1 INTRODUCTION

AOSD represents a software development paradigm that gives a solution to present
problems, defined as tangling and scattering, common to traditional software de-
velopment paradigms, including the object-oriented software development (OOSD)
paradigm. These problems do not allow achieving a complete modularization in the
software development process. In other words, it is not possible to reach a complete
separation of concerns [1].

According to a recent study about a symmetric aspect-oriented approach [2],
the dominant AOSD approach is defined as asymmetric. In addition, that article
indicates that currently there is an academic tendency to study and apply the sym-
metric version of AOSD. In addition, the study [2] mentions that asymmetric AOSD
distinguishes between base elements and external elements or aspects whereas in the
symmetric form of AOSD that distinction does not exist because each entity of the
system is considered to be an aspect. Nowadays, the main principle of asymmetric
AOSD as accepted by industry and academia is to have base and aspect elements
where the former do not know of the existence of aspects, and aspects clearly know
the circumstances for their occurrence. This article focuses on formal and non-
formal modeling of asymmetric AOSD along with potential extensions of the used
languages – AspectZ and UML, respectively. Furthermore, possible advantages of
formal modeling with respect to non-formal modeling are presented.

AOSD presents its bases so that a complete separation of concerns is achieved
in each activity of the software development process – requirements specification,

AO Modeling: Applying AO UML Use Cases and Extending Aspect-Z 575

analysis, design, implementation, and maintenance [3]. AOSD, from its beginning,
has allowed a substantial advantage in the last two mentioned activities of the soft-
ware development process, implementation and maintenance, because AOSD was
introduced by a version of an object-oriented programming language and as a new
programming paradigm with respect to the existing languages at that time: AspectJ,
an extension of Java, and aspect-oriented programming (AOP) [4].

AOSD, as a software development paradigm, deals with each activity of the
software development process. In addition, AOSD can be seen as an extension of
the object-oriented software development (OOSD) paradigm.

Because UML is an object-oriented modeling language by default [1], and since
AOSD is considered to be an extension of OOSD relative to aspect-oriented software
modeling, UML use cases have already been extended and used to model asymmetric
AOSD requirements [1, 2, 5].

Assuming that AOSD involves all the activities of the software development
process, and considering that there are already studies that adapt and extend object-
oriented modeling to AOSD [1, 2, 5, 6, 7], there is little evidence of work extending
formal languages to support AOSD: AspectZ [8], and Alloy [9]. This study presents
modeling of the Health-Watcher system [10] using UML use case diagrams and
the aspect-oriented formal language AspectZ. In addition, comments about aspect-
oriented UML use cases are given along with extensions of AspectZ.

This article presents an application of formal and non-formal asymmetric aspect-
oriented modeling, even though, in practice, the use of both modeling techniques
in the software development process is not explicitly required. Furthermore, formal
techniques are not usually considered for noncritical systems. According to several
studies [3, 5, 13], the use of formal methods requires spending more time to obtain
and model system requirements, and that is necessary only for critical systems.

According to a classic reference about Z formal language and its application [11],
using formal methods in the requirements stage of developing a software system
usually implies spending more time defining the main elements of the system along
with their activities, restrictions and relationships. Undoubtedly, by using formal
methods a consistent math model can be produced, therefore contradictions in a for-
mal model are easier to find than with the use of non-formal modeling techniques.
Definitely, for software systems that require knowing the functionalities and re-
strictions, working with formal requirements specification is completely necessary.
Therefore, spending time to gain knowledge of the system in the first stages of the
software development process is essential.

AspectZ represents an extension of the formal language Z. Using Z, all opera-
tions and restrictions of the modeled software system are specified and analyzed,
and often more attention is paid to special conditions and events than to the appli-
cation of business logic [11]. On the other hand, AspectZ modeling schemas highly
concentrated on business logic allow including aspect-schemas for special situations.

Software is always created after obtaining the user requirements. Assuming
that M represents a user requirement, to model M traditional software development
paradigms often consider special situations associated with M, such as its restrictions

576 C. Vidal Silva, R. Saens, C. Del Rı́o, R. Villarroel

and consequences, before modeling the essence or center of M. As a result, M is
always modeled involving different mingled functionalities. For example, current
software usually requires a login to get permission to perform an action with it,
therefore that action is considered a special situation when a non-identified user
wants to get access, and therefore this situation is modeled.

According to various studies [1, 4, 5, 7, 11], mainly due to the nearly complete
separation of concerns, AOSD clearly allows putting attention on business logic to
reach a complete modularization to avoid mingled system solutions. Undoubtedly,
it is possible to identify and model each base requirement and crosscutting concern
in the early phases of the software development process.

Certainly, formal modeling puts more attention on requirements from the early
software development phases, and mixing AOSD and formal modeling enables an
early identification of concerns.

This article is organized as follows: Section 2 presents UML use cases and As-
pectZ for AOSD; Section 3 describes the case study, and presents the application
of UML use cases for a part of the case study; Section 4 presents an AspectZ for-
mal specification for the case study with extensions of this aspect-oriented formal
language; and finally, Section 5 delivers the main conclusions and associated future
work.

2 UML USE CASES AND ASPECTZ

This section describes the main or global properties of UML use cases in Subsec-
tion 2.1, and of AspectZ in Subsection 2.2. Specifically, Subsection 2.1 shows how
to express crosscutting concerns as extendrelationships in UML use case diagrams,
and Subsection 2.2 describes the main elements of AspectZ and their relationship
to the original Z language.

2.1 UML Use Cases

The UML use case diagram is a fundamental tool for identifying requirements in
OOSD. In that AOSD is an extension of OOSD, the UML use cases application is
desirable in AOSD because, as a software modeling tool, UML use cases allow for
early crosscutting concerns identification represented by means of alternative flows
or extend-relationships [1].

It is important to consider that UML use cases do not represent only a technique
for requirements modeling. UML use case diagrams are a software engineering tech-
nique that completely directs the software development process [1, 5]. Identifying
crosscutting concerns is very relevant in the software development process because
early identification also allows early validation. In this way, UML use case diagrams
are a useful tool for asymmetric AOSD.

Figure 1 presents a simple modeling example using UML use cases for a login
information system. This figure shows that an extend-relationship (� extend �)

AO Modeling: Applying AO UML Use Cases and Extending Aspect-Z 577

allows modeling crosscutting concerns. According to a UML reference [12], an ex-
tending use case provides an additional behavior to augment the behavior of a base
or extended use case, and the extending use case knows when it must react or add
the new behavior to the base case. Moreover, when an extending use case finishes,
it notifies the base use case which resumes its execution from the point where it was
suspended. Thus, with a graph or text, an extend-relationship in a UML use case
diagram captures the nature of aspects in asymmetric AOSD.

As an additional issue, the existence of an extend-relationship in a UML use case
diagram clearly represents a crosscutting concern because the behavior of an extend-
ing use case is not directly a part of a base or extended case.

According to UML references [1, 5, 13], due to the fact that UML use cases
allow capturing and modeling user requirements, and identifying crosscutting con-
cerns represented by extend-relationships, aspect-oriented UML use case diagrams
permit the early identification and modeling of crosscutting concerns in the user
requirements phase.

UML use cases allow knowing and modeling user requirements in order to make
advances in the desired behavior of a software system [1, 5, 12, 13]. In addition, there
are arguments that UML use case diagrams allow modeling inclusion and inheritance
relationships as extend-relationships [5, 12]. Therefore, from an abstract point of
view, it is possible to model a complete software system using the aspect-oriented
approach and UML use cases with extend-relationships.

User

System

Login

<<extend>>

Fig. 1. UML use cases for a login information system [1, 5]

For an effective use of aspect-oriented UML use cases, it is necessary to identify
the domain of the system which is represented by a dominion class diagram [1,
5, 13]. A dominion class diagram of a software system identifies global classes and
their system-wide relationships to know the overall scope of the system, its functions,
and restrictions [1, 5]. Therefore, it is advisable to identify the dominion classes of
a software system before modeling it with UML use cases, but this is not absolutely
necessary for every system.

Clearly, the extension of UML use case diagrams allows modeling with an asym-
metric AOSD view. For a symmetric AOSD approach [2] it indicates and exemplifies

578 C. Vidal Silva, R. Saens, C. Del Rı́o, R. Villarroel

the use of peer UML use cases in which there is no difference between aspects or
modules of the system.

2.2 AspectZ

AspectZ is an extension of the Z language which was originally based on the models
theory [14, 15]. AspectZ, like the Z language [11], uses schemas to represent the
properties and operation of a software system; however, AspectZ adds new concepts
to support asymmetric aspect-oriented modeling. AspectZ, like the Z language, uses
base, initial, and operation schemas for a software system’s formal specification and
aspect-schemas are also included to indicate properties and behavior to be added
in referenced operation schemas. Figure 2 shows and describes an original AspectZ
schema.

SchemaName
Declaration

Spec; ...; Spec

Declaration ::= BasicDecl; ...; BasicDecl
BasicDecl ::= Ident, ..., Ident: Expr

| ∆SchemaRef
| ΩSchemaRef
| PointcutDecl

SchemaRef ::= SchemaName Decoration[Renaming]
PointcutDecl ::= PointcutIdent : P(Ident: Expr)
Spec ::= Predicate | Advice
Advice ::= [insert | replace] PointcutName : Predicate

Fig. 2. Original AspectZ schema [8]

Supporting the main ideas of asymmetric AOSD, AspectZ allows dividing a tra-
ditional Z schema between base and crosscutting elements so that obtaining a se-
paration of concerns for these schemas is possible [5]. Using AspectZ, an operation
schema is a model that considers only its main steps, and additional details or
special situations are modeled by aspect-schemas. Clearly, thanks to early aspects
detection, AspectZ allows a complete modularization at the first stage of the soft-
ware development process, the requirements analysis phase [8, 15]. The main new
elements of AspectZ are the use of the W symbol in aspect-schemas to refer to opera-
tion schemas, declaration of pointcut to refer to join points, and the use of the Insert
and Replace keywords to indicate whether an aspect-schema behavior is added prior
to the indicated schema operation or the aspect-schema behavior modifies a certain
element of the referenced schema.

Furthermore, the use of a schema to indicate the initial state of a system, ge-
nerally used to establish initial values for attributes of the system, is supported by
AspectZ as it is in the traditional language Z [15].

AO Modeling: Applying AO UML Use Cases and Extending Aspect-Z 579

Definitely, AspectZ permits working with the main concepts of asymmetric
AOSD because base operations do not deal with aspects and associated concerns.
Aspect-schemas clearly know when they must react and include behavior and prop-
erties in base elements in the software system.

3 CASE STUDY AND APPLYING ASPECT-ORIENTED
UML USE CASES

Section 3.1 gives an overall description of the Health-Watcher system, and that part
of the Health-Watcher system which is the case study. In addition, Section 3.2
presents the UML use case models for the case study with graphical notations and
textual descriptions for each use case in the model. It is important to note that
Figures 3 to 28 are aspect-oriented UML use case or AspectZ models of the case
study or proposed extensions of AspectZ, and they have been created for this article.

3.1 Case Study: Health-Watcher System

Health-Watcher is a public health software system [10]. Health-Watcher represents
an example of a software system that shows the advantages of the AOSD paradigm
and its application. Next, some of the Health-Watcher system requirements are
described and used in Sections 3.2 and 4 to present aspect-oriented UML use cases
and AspectZ models, respectively.

Health-Watcher is a public system available without restriction for two main
users-actors [10]:

• Attendant: health system employee.

• Citizen: any person who wishes to interact with the system.

Health-Watcher supports citizen queries; a citizen can ask for information within
the Health Guide and for Specialty Information.

This article uses the requirements associated with the Health Guide [10] in which
there are two queries:

1. Which health units take care of a specific specialty?

2. What are the specialties of a particular health unit?

Directly, there is a relationship between units and specialties. Moreover, unit and
specialty have two attributes, Code and Description.

Due to the identification of dominion classes of the described part of the Health-
Watcher system a simpler definition of the associated UML use cases diagram is
supplied. Clearly for this case study, as Figure 3 shows, there are two classes, Unit
and Specialty.

These requirements will be used in the next sections to model aspect-oriented
UML use cases and AspectZ.

580 C. Vidal Silva, R. Saens, C. Del Rı́o, R. Villarroel

Unit Specialty

Fig. 3. UML dominion class diagram of a considered part of the Health-Watcher system

In the Health-Watcher system, it is supposed that Attendant will provide infor-
mation to the system while Citizen will seek information related to queries.

3.2 Aspect-Oriented UML Use Case Models
of the Health-Watcher System

Section 2 presented a description of UML use case diagrams adapted to asymmetric
AOSD where the main difference with traditional UML use case diagrams is the use
of extend-relationships for any relationship.

Figure 4 presents the UML use cases diagram for analysing considered require-
ments of the Health-Watcher system applying asymmetric aspect-oriented modeling.

Validate_U Validate_S Validate_EQ

Unit Specialty Specialty_Query

<<extend>> <<extend>> <<extend>>

Specialty_Unit

<<extend>> <<extend>>
<<extend>>

Validate_UQ

Unit_Quey

<<extend>>

<<extend>>

Attendant

Citizen

Validate_SU

<<extend>>

Fig. 4. UML use cases diagram of a considered part of the Health-Watcher system

Figure 4 presents many extend-relationships which allow connecting the base
cases to external situations or additional behavior. For example, an Attendant and
Citizen access the base use case Specialty Unit for different purposes: an Attendant
actor is in charge of managing the current information of Unit and Specialty and

AO Modeling: Applying AO UML Use Cases and Extending Aspect-Z 581

has access to queries as well, meanwhile a Citizen actor asks for information about
Specialty and Unit only. Clearly, Figure 4 does not show what operations are reach-
able for each actor, Citizen or Attendant. However, a textual description of each
use case gives those details. Thus, without a doubt the use of both graphical nota-
tion and textual descriptions are necessary in a UML use case model for a complete
explanation and understanding of its elements.

Figures 5, 6, 7, and 8 show the specification of Specialty Unit, Validate SU, Unit,
and Validate U use cases, respectively. Figures 9 and 10 present the specification
for Specialty Query and Validate SQ use cases.

Clearly, the use case Unit should present extension points for each additional
operation over the current Units which is not detailed in this article. Here, only
Validate U is considered to validate the operations in the Unit set.

Use Case: Specialty Unit

Basic Flow → The Use Case starts when a user, Citizen or Attendant, desires to reg-
ister information or get information.

1. User gets in the system.
2. User indicates his or her operation.
3. Use Case finishes .

Extension Points:
E1. User Gets in. This extension point occurs on the step 1.
E2. Attendant Chooses Unit. This extension point occurs on the step 2.
E3. Attendant Chooses Specialty. This extension point occurs on the step 2.
E4. Citizen Choose Specialty Query. This extension point occurs on the step 2.
E5. Citizen Choose Unit Query. This extension point occurs on the step 2.

Fig. 5. Textual specification of the Specialty Unit use case

Furthermore, UML use case diagrams certainly allow introducing the base con-
cepts and ideas of asymmetric AOSD. However, extension points must be explicit-
ly indicated in the base case. This action is not part of the asymmetric AOSD
paradigm. The next section presents an AspectZ model for a part of the case study
shown in this section. AspectZ completely applies elements of AOSD preserving the
main ideas of the asymmetric AOSD paradigm.

4 APPLYING AND EXTENDING ASPECTZ

This section presents formal modeling of part of the Health-Watcher system, and
also gives extensions to this formal language and applies them to parts of the case
study as well. With these additional elements, AspectZ represents a more complete
aspect-oriented language than it was originally.

582 C. Vidal Silva, R. Saens, C. Del Rı́o, R. Villarroel

Use Case: Validate SU

Basic Flow → This extended flow occurs at a given extension point; when a user,
Citizen or Attendant, accesses the system and the user gets E1 (User gets in).

1. User presents his or her information.
2. If user is a valid Citizen, Use Cases Specialty Query and Unit Query are

enabled; Unit and Specialty are disabled.
3. If user is a valid Attendant, all Use Cases are enabled.
4. If user is not valid, the Base Case must finish.
5. Use Case finishes.

Extension Pointcuts → E1 = User gets in.
Extension Points:

Fig. 6. Textual specification of the Validate SU use case

Use Case: Unit

Basic Flow → This extended flow occurs at a given exten-
sion point, where the Attendant chooses Unit (E2).

1. Attendant indicates operation over the current set.
2. The Base Case must restart.
3. Use Case Finishes.

Extension Pointcuts → E2 = Attendant chooses Unit.
Extension Points:

E6. Validate Unit. This extension point occurs in step 1.

Fig. 7. Textual specification of the Unit use case

Use Case: Validate U

Basic Flow → This extended flow occurs at a given extension point,
when an Attendant chooses an invalid operation over the current
Units set (E6).

1. Indicate valid operations.
2. Show Error message.
3. The Base Case must restart.
4. Use Case Finishes.

Extension Pointcuts → E6 = Attendant chooses invalid operation.
Extension Points:

Fig. 8. Textual Specification of the Validate U use case

AO Modeling: Applying AO UML Use Cases and Extending Aspect-Z 583

Use Case: Specialty Query

Basic Flow → This extended flow occurs at a given extension point, when
a Citizen or Attendant chooses Specialty Query to find specialty work car-
ried out in a medical Unit (E4).

1. User Citizen or Attendant indicates Specialty information.
2. Set of Specialties is given.
3. The Base Case must restart.
4. Use Case Finishes.

Extension Pointcuts→ E4 = Citizen or Attendant chooses Specialty Query.
Extension Points:

E7. Validate SQ. This extension point occurs in step 1.

Fig. 9. Textual Specification of the Specialty Query use case

Use Case: Validate SQ

Basic Flow → This extended flow occurs at a given extension point, when a Citi-
zen or Attendant gives wrong Specialty information.

1. Indicate valid operations.
2. Show Error message.
3. Use Case Finishes.
4. The Base Case must restart.

Extension Pointcuts → E7 = Citizen or Attendant give wrong specialty information.
Extension Points:

Fig. 10. Textual Specification of the Validate SQ use case

4.1 Formal Modeling of a Part of the Health-Watcher System
Using AspectZ

AspectZ allows a complete separation of concerns [8, 15]. AspectZ, like language Z,
allows using basic and composed data types. Figure 11 shows the declaration of data
types used on the AspectZ specification for a part of the Health-Watcher system,
hereafter called Health Watcher.

Basic types Unit Code and Unit Description are declared to define the composed
type called Unit. Likewise, basic types Specialty Code and Specialty Description
to define the composed type Specialty are declared. There is an additional com-
posed type Health Unit which is declared using the basic types Unit Code and Spe-
cialty Code. The objective of Health Unit is to present a relationship between Unit
and Specialty. There are no multiplicity restrictions for this relationship. There is

584 C. Vidal Silva, R. Saens, C. Del Rı́o, R. Villarroel

also a data type for the type of query, Query Type, which can be 1 for Q1 (which
health units take care of a specific specialty?), and 2 for Q2 (What are the specialties
of a particular health unit?). Similarly, there is a data type to recognize the kind
of operation over the sets of Unit, Specialty, and Health Unit (1, 2, and 3, respec-
tively) where the possible operation is indicated by number after the number of the
affected set. The operation values are .1 for getting a new element, .2 to modify an
existing element, and .3 for deleting an existing element. For example, to identify
an operation creating a new Unit, the Input Type value is 1.1. In addition, there
is a data type for the kind of messages given after an operation, OK for successful
operations and Error for operations that are wrong or without effect.

///////Basic Data Types...
[Unit Code], [Unit Description]
Unit == Unit Code × Unit Description

[Specialty Code], [Specialty Description]
Specialty == Specialty Code × Specialty Description

Health Unit == Unit Code × Specialty Code

User == 1 | 2 **1 = Attendant, 2 = Citizen
Query Type == 1 | 2 **1 = Q1, 2 = Q2
Input Type == 1.1 | 1.2 | 1.3 | 2.1 | 2.2 | 2.3 | 3.1 | 3.2 | 3.3
∗ ∗ 1 = Unit → .1 = Input , .2 = Modify , .3 = Delete
∗ ∗ 2 = Specialty → .1 = Input , .2 = Modify , .3 = Delete
∗ ∗ 3 = HealthUnit → .1 = Input , .2 = Modify , .3 = Delete

Messag == OK | Error
Priority == Important | Medium | Low

Fig. 11. Basic and composed data types used in AspectZ specification

Figure 12 presents the base schema in which there are sets of Unit, Specialty,
and Health Unit, respectively. In the second part of the base schema, there is
an invariant indicating that for each element of HUs there is an element of Units
and an element of Specs.

Figure 13 shows the Begin schema or initial state of the Health Watcher system.
As shown, the second part of this schema indicates that the set HUs is empty at the
beginning, and this state agrees with the invariant defined in the base schema.

Next, Figure 14 shows a schema using original Z for the first Citizen query
operation, Q1.

Clearly, in this AspectZ specification, an aspect-schema can be used to identify
the given Query Type and Specialty Description, and if the conditions are respected
then R01 will finish successfully. However, this solution is not general because it

AO Modeling: Applying AO UML Use Cases and Extending Aspect-Z 585

Health Watcher
Units : PUnit
Specs : PSpecialty
HUs : PHealth Unit
Emps : PEmployee

∀ x ∈ HUs • (∃ y ∈ Units ∧ z ∈ Specs· y .Unit Code = x .Unit Code∧
z .Specialty Code = x .Specialty Code)

Fig. 12. Base schema of the Health Watcher system AspectZ specification

Begin
Health Watcher

HUs = ∅

Fig. 13. Initial schema of the Health Watcher system AspectZ specification

represents only a particular case (when the Query Type variable T? takes a certain
value). Figures 15 and 16 show the first attempt at modeling R01 using AspectZ
for the base and aspect-schema, respectively.

4.2 Extensions of AspectZ

According to a study about rules for applying formal methods [16], formal languages,
like Z and AspectZ, permit modeling and thinking of system operations more deeply
than other modeling techniques. Considering asymmetric AOSD ideas, for exam-
ple, it is possible to extend AspectZ to support messages at the end of an opera-
tion. There are two possible situations for each operation or schema: a successful
operation with an OK message and unsuccessful operation with an error message.
Therefore, the keyword After (similar to Insert and Modify) is included in AspectZ
to add Advice at the end of an operation schema where it is possible to evaluate two
cases: FINISH (valid preconditions and operation schema finishes) or NOT FINISH
(preconditions are not valid). It is necessary to use a special composition symbol ±
to indicate that a schema is woven in at the end. In that sense, the symbol ± is used
at the end of a composition. Accordingly, it is not completely necessary to identify
a join point because it would be at the end of the schema for a successful operation,
or where a schema precondition is not valid. Similarly, it is necessary to include
the keyword END to finish an operation. Figure 17 presents the aspect-schema for
a message after finishing successful or unsuccessful operations. Figure 18 shows the
integrated aspect for the first Citizen query using the aspect AspectMessage.

Figure 19 shows an original Z schema for the second Citizen query operation,
Q2. Similar to R01, for R02 there is an Aspect to validate T?. Figure 20 presents the
AspectZ base schema for the R02 operation. Figure 21 presents the aspect-schema
for the R02 operation schema, and Figure 21 shows the IntegratedR02 schema.

586 C. Vidal Silva, R. Saens, C. Del Rı́o, R. Villarroel

R01
ΞHealth Watcher
T? : Query Type
E? : Specialty Description
U ! : PUnit

T? = 1∧
U ! = {x : Unit , y : Health Unit , z : Specialty | (x ∈ Units ∧ y ∈ HUs ∧ z ∈ Specs) ∧
z .Specialty Description = E? ∧ y .Specialty Code = z .Specialty Code ∧
y .Unit Code = x .Unit Code • x}

Fig. 14. Z schema for the First Citizen query

R01
ΞHealth Watcher
E? : Specialty Description
U ! : PUnit

T? = 1∧
U ! = {x : Unit , y : Health Unit , z : Specialty |
(x ∈ Units ∧ y ∈ HUs ∧ z ∈ Specs) ∧
z .Specialty Description = E? ∧
y .Specialty Code = z .Specialty Code ∧ y .Unit Code = x .Unit Code • x}

Fig. 15. AspectZ base schema for the First Citizen query

After reviewing the Citizen queries, clearly considering them as an important
priority (Priority = Important), it is possible to define a Citizen Query schema as
Figure 18 illustrates.

After reviewing and proposing the mentioned AspectZ extensions as well as
examining the Health Watcher Java source code, there is a new proposal for extend-
ing AspectZ. Using AspectZ it is possible to individualize aspects for each element,
but in the Health Watcher source code there is only one general aspect for all the
associated classes. This aspect allows insertion operations: HDWDataCollection.
Following this idea, AspectZ is extended to allow only one general operation for
adding an element in a set with aspects to validate the presence of wrong situa-
tions such as required attributes with wrong values. Figure 23 shows a theoretical
Add Operation which represents all operations to add new items in a system set.

AspectR01
ΩR01
T? : Query Type
PointcutPC : {E? : Specialty Description}
InsertPC : T? = 1 ∧ ∗ ∈ {x : Specialty | x ∈ Specs • x .Specialty Description}

Fig. 16. AspectZ aspect-schema for the First Citizen query

AO Modeling: Applying AO UML Use Cases and Extending Aspect-Z 587

Figure 24 presents a schema to validate information. In this schema, Inserted Values
represents the set of all inserted values, function Required(x) indicates if x can be
Null or not, function ThereIsRelationship(x) shows if there is an established rela-
tionship of sets by means of the x type, function Type(x) gives the data type for
the value x, and function Relationship(x) indicates whether the value of x is a valid
value supporting an existing relationship. Those functions are shown in Figures 25,
26, 27, and 28, respectively. It is important to know that these functions must be
defined in AspectZ as additional functions because they are not directly a part of
the language.

AspectMessage
Ω(Schema1, Schema2, ..., SchemaN)
PointcutPC M
M ! : Message

AfterPC M : FINISH ∧M ! = OK ∨M ! = Error

Fig. 17. AspectZ AspectMessage schema

Citizen Query =̂ (R01 ∨ R02) ∧ Priority = Important
IntegratedR01 == (R01 + AspectR01)± AspectMessage

IntegratedR01
ΞHealth Watcher
E? : Specialty Description
U ! : PUnit
T? : Query Type
M ! : Message

(T? = 1 ∧ E? ∈ {x : Specialty | x ∈ Specs • x .Specialty Description})∧
(U ! = {x : Unit , y : Health Unit , z : Specialty | (x ∈ Units ∧ y ∈ HUs ∧ z ∈ Specs) ∧
z .Specialty Description = E? ∧
y .Specialty Code = z .Specialty Code ∧ y .Unit Code = x .Unit Code • x} ∧M ! = OK) ∨M ! = Error

Fig. 18. AspectZ IntegratedR01 schema

In the Aspect Add schema, there are three important elements necessary to be
included in the AspectZ formal language: function Required(x) detailed in Figure 25,
function ThereIsRelationship(x) detailed in Figure 26, and Relationship(x) detailed
in Figure 28. There is an indirect function Type(x) to reveal the associated data
type of the parameter x detailed in Figure 27.

Clearly, the Required(x) function gives the True value if x does not accept a Null
value by definition of the associated data type. Type(x) indicates the type of the
x attribute by definition. ThereIsRelationship returns True, if x represents a value
of an attribute which is related to another set – in other words, if there is a defined
relationship of the data type x, set of attributes Set*, and another data type, set

588 C. Vidal Silva, R. Saens, C. Del Rı́o, R. Villarroel

R02
ΞHealth Watcher
T? : Query Type
U ? : Unit Description
P ! : PSpecialty

T? = 2 ∧ E ! = {x : Specialty , y : Health Unit , z : Unit | (x ∈ Specs ∧ y ∈ HUs ∧ z ∈ Units) ∧
z .Unit Description = U ? ∧ y .Unit Code = z .Unit Code ∧
y .Specialty Code = x .Specialty Code • x}

Fig. 19. Z schema for the Second Citizen query

R02
ΞHealth Watcher
U ? : Unit Description
P ! : PSpecialty

E ! = {x : Specialty , y : Health Unit , z : Unit | (x ∈ Specs ∧ y ∈ HUs ∧ z ∈ Units) ∧
z .Unit Description = U ? ∧ y .Unit Code = z .Unit Code ∧
y .Specialty Code = x .Specialty Code • x}

Fig. 20. AspectZ base schema for the Second Citizen query

AspectR02
ΩR02
T? : Query Type
PointcutPC 2 : {U ? : Unit Description}
InsertPC 2 : T? = 2 ∧ ∗ ∈ {x : Unit | x ∈ Units • x .Unit Description}

Fig. 21. AspectZ Aspect-Schema for the Second Citizen query

IntegratedR02 == (R02 + AspectR02)± AspectMessage

IntegratedR02
ΞHealth Watcher
T? : Query Type
U ? : Unit Description
P ! : PSpecialty
M ! : Message

(T? = 2 ∧ x : Unit | x ∈ Units • x .Unit Description) ∧
(E ! = {x : Specialty , y : Health Unit , z : Unit | (x ∈ Specs ∧ y ∈ HUs ∧ z ∈ Units) ∧
z .Unit Description = U ? ∧ y .Unit Code = z .Unit Code ∧
y .Specialty Code = x .Specialty Code • x} ∧M ! = OK) ∨M ! = Error

IntegratedR02 == (R02 + AspectR02)± AspectMessage

IntegratedR02
ΞHealth Watcher
T? : Query Type
U ? : Unit Description
P ! : PSpecialty
M ! : Message

(T? = 2 ∧ x : Unit | x ∈ Units • x .Unit Description) ∧
(E ! = {x : Specialty , y : Health Unit , z : Unit | (x ∈ Specs ∧ y ∈ HUs ∧ z ∈ Units) ∧
z .Unit Description = U ? ∧ y .Unit Code = z .Unit Code ∧
y .Specialty Code = x .Specialty Code • x} ∧M ! = OK) ∨M ! = Error

Fig. 22. AspectZ IntegratedR02 schema

AO Modeling: Applying AO UML Use Cases and Extending Aspect-Z 589

Add Operation
∆Health Watcher
T? : Input Type
Key Val? : Unit Code
Field 1? : Field Type1
...
Field N ? : Field TypeN

T? = Value ∧ SetX ′ = SetX ∪ {(Key Val?,Field 1?, ...,Field N ?)}

Fig. 23. AspectZ Add Operation schema

Aspect Add
Ω(Add Op1, ...,Add OpN)
Set : Set1 | Set2 | ... | SetN
M ! : Message
PointcutPC : (SetX ′ = SetX ∪ {Values})
Insert PC : ∃ x ∈ Inserted Values | (Required(x) ∨ ThereisRelationship(x))∧

(x = ∅ ∨ (Relationship(x) = False)) •M ! = Error ∧ END

Fig. 24. AspectZ Aspect Add schema

of attributes Set**. Finally, Relationship(x) indicates, in the case that x is part
of a relationship, whether the value of x fits the established relationship among
sets.

Regarding ThereIsRelationship(x), it is necessary to define the function Type(x)
as Figure 27 shows.

It is important to indicate that the proposed extensions shown in Figures 25,
26, 27 and 28, which are applied in Figure 24 – Aspect Add (global schema), are
elements necessary to add in the AspectZ language. Possibly, these elements could
be members of a library to use in an AspectZ specification.

After applying AspectZ, clearly there is a complete symmetric aspect-oriented
understanding and model of the system, thus allowing to continue with asymmetric
aspect-oriented modeling and implementation. In addition, as this article shows,
using AspectZ does not require a high level of math skills, and by applying it a com-
plete separation of concerns can be obtained.

Required(x) =

{
True if x can not be Null
False if x can be Null

Fig. 25. Required(x) function

590 C. Vidal Silva, R. Saens, C. Del Rı́o, R. Villarroel

ThereIsRelationship(x) =





True if (Type(x) = Attri) ∧ (Attri ∈ Set∗) ∧
(Set∗ == Atr1× ...× AttrN) ∧{
∃ (Set∗∗ = Attr∗1 × ...×Attr∗N) ∧
∃ Attr∗j ∈ Set∗∗ | Attri = Attr∗j

}

False in other case

Fig. 26. ThereIsRelationship(x) function

Type(x) = {Type X , at the base case x is defined like x : Type X

Fig. 27. Type(x) function

5 CONCLUSIONS

AOSD permits modeling a software system and reaching complete modularization.
This study presents the application of the UML use cases and AspectZ languages
to a known asymmetric AOSD case study. Both tools allow modeling following the
main rules of asymmetric AOSD. However, on this point, aspect-oriented UML use
case diagrams do not completely respect the asymmetric AOSD paradigm due to
base use cases clearly knowing about the existence of their aspects, even though this
is a clear characteristic of textual representation of extend-relationships of UML
use case diagrams. Thus, using aspect-oriented UML use cases, base and aspect
functionalities are identified and modeled, base cases and extension cases respec-
tively, but they are not completely independent because aspects must be explicitly
indicated in each base or extended base case. On the other hand, AspectZ as an ex-
tension of the formal language Z respects asymmetric AOSD principles not respected
by aspect-oriented UML use cases.

It is relevant to argue that since the proposal of AspectZ, there has not yet
been an article mentioning the use or extension of this formal language. This article
proposes syntactic and semantic extensions of AspectZ to weave in aspect-schemas
at the end of base schemas which can be used to put messages in the specification
or similar operations, and a review including a conceptual extension to use only
one aspect-schema involving similar operations on the system-wide schema, to add
items to the system in this case. Likewise, updating and deleting information are
examples of using the idea of system-wide schemas.

Relationship(x) =





True if ThereIsRelationship(x) = True for (Set∗ ∧ Set∗∗) ∧ Type(x) ∈ Set∗∧
there is an Attr∗j ∈ Set∗∗ | x ∈ {Attr∗j}

False in other case

Fig. 28. Relationship(x) function

AO Modeling: Applying AO UML Use Cases and Extending Aspect-Z 591

Knowing that the main benefit of using formal modeling is discovering mistakes
in a software system for their correction and solution as early as possible in the
software development process, the main goal of this article was to discuss the ap-
plication of and giving extensions to the AspectZ formal language. Therefore, in
this article, after modeling part of the Health-Watcher system, it is not possible to
indicate whether this system presents mistakes in its modeling and implementation.
Nevertheless, the potential advantages of aspect-oriented formal modeling with res-
pect to non-formal modeling were mentioned where AspectZ adheres to the main
principles of asymmetric AOSD.

Considering ideas of including formal modeling in the software development
process, including a verification of consistency among models, a process of formal
refinement models will be essential to consider in the short-term. Thus, as a future
work the authors of this article are considering evaluating and defining steps for
an aspect-oriented formal refinement process with AspectZ.

In following up this work, the authors wish to use and extend AspectZ for defin-
ing more applications of the AOSD paradigm. In addition, ideas for producing
a public tool for AspectZ modeling and automatically generating source code from
an AspectZ specification are also part of the current goals of the authors. This goal
is similar to previous experiences using JAXB and ZML [17]. Using ZML and JAXB
as a base to produce a similar tool to produce AspectJ code from an AspectZ speci-
fication seems completely viable given that they share asymmetric AOSD principles
and take into consideration previous mentioned works [17].

Furthermore, to verify the correctness and validity of an AspectZ specification,
considering formal verification, as current research, one of the authors is working
on the translation of AspectZ specification to Alloy specifications to use the Alloy
analyzer tool [9] and verify correctness of AspectZ formal specifications.

Acknowledments

To Sharon Goulart for reviewing the English in this article, and giving assistance to
continue working and producing a publishable version of this paper. Definitely, we
continue being great friends and colleagues.

REFERENCES

[1] Jacobson, I.—Ng, P.: Aspect Oriented Software Development with Use Cases.
1st Edition, Addison Wesley Professional, New York, USA, 2004.

[2] Bálik, J.—Vranić, V.: Symmetric Aspect-Orientation: Some Practical Conse-
quences. Proceeding of NEMARA ’12, workshop on Next Generation Modularity Ap-
proaches for Requirements and Architecture, ACM, 2012, pp. 7–12.

[3] Pressman, R. S.: Software Engineering, a Practitioner’s Approach. McGraw-Hill
Higher Education, 5th edition, 2001.

592 C. Vidal Silva, R. Saens, C. Del Rı́o, R. Villarroel

[4] Laddad, R.: AspecJ in Action: Practical Aspect-Oriented Programming. Manning
Publications Co., London, England, 2003.

[5] Vidal, C.—Hernández, D.—Pereira, C.—Del Ŕıo, M.: Aspect-Oriented Mo-
deling Application. Información Tecnológica Journal, Vol. 23, 2012, No. 1, La Serena,
Chile, pp. 3–12.

[6] Skipper, M. C.: Formal Models for Aspect-Oriented Software Development. London
Imperial College, Thesis of Ph. D. in Computer Science, London, England, 2004.

[7] Li, G.: Identifying Crosscutting Concerns in Requirement Specifications – A Case
Study. Queen’s University, Thesis of Master in Computer Sciences, Kingston, Ontario,
Canada, 2009.

[8] Yu, H.—Liu, D.—Yang, J.—He X.: Formal Aspect-Oriented Modeling and Ana-
lysis by Aspect-Z. Proceedings of the 17th International Conference on Software Engi-
neering and Knowledge Engineering, SEKE ’2005, Taipei, Taiwan, Republic of China,
July 2005, pp. 124–132.

[9] Nakajima, J.—Tamai, T.: Lightweight Formal Analysis of Aspect-Oriented Mo-
dels. Proceedings of the 5th Aspect-Oriented Modeling Workshop In Conjunction with
UML 2004, Lisboa, Portugal, October 2004, pp. 120–127.

[10] Soares, S.—Laureano, E.—Borba, P.: Implementing Distribution and Persis-
tence Aspects with AspectJ. Proceedings of OOPSLA ’02 (Object-Oriented Program-
ming, Systems, Languages, and Applications), ACM New York, NY, USA, 2002,
pp. 174–190.

[11] Bowe, J.: Formal Specification and Documentation Using Z: A Case Study Ap-
proach. Revised Edition, International Thompson Computer Press (ITCP), London
South Bank University, England, 2003.

[12] Pender, T.: UML Bible. 1st Edition, John Wiley & Sons, Indianapolis, IN, USA,
2003.

[13] Ambler, S.: Agile Modeling: Effective Practices for eXtreme Programming and the
Unified Process. 1st Edition, John Wiley & Sons, New York, NY, USA, 2002.

[14] Vidal, C.—Andrades, M.: Formal Specification of a Digital Electrocardiograph
using Object-Z. Proceedings of the III Meeting of Quality on Informations and Com-
munication Technology, Cuba, February 2007.

[15] Vidal Silva, C.—Gutiérrez Castillo, C.—Hernández Bustos, D.—Meza
Torres, R.—López Lastra, L.: Aspect-Oriented Formal Modeling Using
Aspect-Z. Proceedings of the XXIII Chilean Computing Meeting, Curico, Chile,
November 2011.

[16] Bowen, J. P.: Ten Commandments of Formal Methods. . . Ten years later. IEEE
Computers, January 2006, pp. 40–48.

[17] Utting, M.—Toyn, I.—Sun, J.—Martin, A.—Son Dong, J.—Daley, N.—
Currie, D.: ZML: Support for Standard Z. Proceedings of ZB ’03, 3rd International
Conference on Formal Specification, Springer-Verlag, 2003, pp. 437–456.

AO Modeling: Applying AO UML Use Cases and Extending Aspect-Z 593

Cristian Vidal Silva is a Chilean Fulbright Scholar. He has
received his Computer Engineer degree from Catholic Univer-
sity of Maule, Chile, his M. Sc. in computer science from Univer-
sity of Concepcion, Chile, and currently he is a Ph. D. student
in computer science at Michigan State University, USA. He is
a Professor of business informatics administration at University
de Talca, Chile. His research and teaching areas include formal
modeling, aspect-oriented software development, and program-
ming.

Rodrigo Saens received his Ph. D. in economics from Univer-
sity of Connecticut, USA, his M. Sc. in applied economics, B. A.
in economics and B. A. in business administration from Pontificia
Universidad Católica de Chile. He is a Professor at Universidad
de Talca, Chile. His fields of interest include financial economics,
monetary economics, infonomics and agricultural economics.

Carolina Del R��o received her M. Sc. in organizational behav-
ior from the Universidad Diego Portales, Chile, and her B. A. in
business administration from Pontificia Universidad Católica de
Chile. She is a Professor at Universidad de Talca, Chile. Her
fields of Interest include organizational development, organiza-
tional behavior, strategic management and management infor-
mation systems.

Rodolfo Villarroel in an Associate Professor at Escuela de
Ingenieŕıa Informática at Pontificia Universidad Católica de Val-
paráıso, Chile. He received his Ph. D. in computer science from
Universidad de Castilla – La Mancha at Ciudad Real, Spain, and
his M. Sc. in computer science from Universidad Técnica Fede-
rico Santa Maŕıa, Chile. His research interests include security
in data warehouses and information systems, software process
improvement, and aspect-oriented modeling. He is the author of
several papers on data warehouses security and software process
improvement, and aspect-oriented modeling. He is a member of

the Chilean Computer Science Society (SCCC).

