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Abstract. Software cognitive complexity refers to how demanding the mental pro-
cess of performing tasks such as coding, testing, debugging, or modifying source
code is. Achieving low levels of cognitive complexity is crucial for ensuring high
levels of software maintainability, which is one of the most rewardful software qual-
ity attributes. Therefore, in order to control and ensure software maintainability,
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it is first necessary to accurately quantify software cognitive complexity. In this
line, this paper presents a software metric to assess cognitive complexity in Object-
Oriented (OO) systems, and particularly those developed in the Java language,
which is very popular among OO programming languages. The proposed metric is
based on a characterization of basic control structures present in Java systems. Sev-
eral algorithms to compute the metric and their materialization in the Eclipse IDE
are also introduced. Finally, a theoretical validation of the metric against a frame-
work specially designed to validate software complexity metrics is presented, and the
applicability of the tool is shown by illustrating the metric in the context of ten real
world Java projects and relevant metrics from the well-known Chidamber-Kemerer
metric suite.

Keywords: Software cognitive complexity, basic control structures, Java, CK met-
ric suite

1 INTRODUCTION

IEEE refers to software quality as “the degree to which software possesses a desired
combination of attributes (e.g. reliability, interoperability)” [1]. In an ideal world, it
would be desirable to optimize all attributes, but in practice attributes may conflict
among themselves. This situation is commonly known as a trade-off. Thus, it is
necessary to assess and somehow to adjust the values these attributes take to deal
with such trade-offs. The main goal of software metrics is to allow software engineers
to assess software attributes and in turn to make modifications on the software based
on metrics values (i.e. measures). For example, in [28] some metrics for preventing
software defects were proposed, specifically those reported by customers when using
a software and those identified during customer acceptance testing.

In the early 80s, the software maintainability attribute motivated radical changes
in the way software was modeled, and concretely in the way source code elements
were organized to represent a computational solution to a set of requirements. The
widespread acceptance of the Object-Oriented (OO) programming paradigm backs
up the previous statement. Due to the popularity of OO notions, many OO program-
ming languages have been developed, such as Smalltalk, C++, and Java. Accord-
ingly, many software projects have been developed using such languages. Since it is
important to assess the maintainability of these software projects, several OO met-
rics that cover some inherent modeling features of the OO paradigm can be found
in the literature, which are listed in [17].

The complexity of OO source code is an attribute related to software main-
tainability [13]. Particularly, Kearney and his colleagues [14] state that complexity
relates to “the difficulty of performing tasks such as coding, debugging, testing, or
modifying a software”. Under this definition, complexity directly impacts on soft-
ware maintainability. Then, “complexity” should be understood as cognitive com-
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plexity, but for readability from now on we will use “complexity” and “cognitive
complexity” interchangeably.

Source code complexity has been commonly assessed by thirty-year old software
metrics such as Halstead’s complexity [10], McCabe’s cyclomatic complexity [19],
or variants such as Hansen’s measure of complexity [11]. Although all these met-
rics were designed for procedural programming and actually appeared before OO
languages, they can also be used to characterize OO source code and are still very
popular among software engineers. McCabe’s cyclomatic complexity metric bases on
common procedural control structures (e.g. IF-THEN-ELSE, WHILE, etc.) that are
also present in OO source code. Halstead’s metric bases on the number of operators
(method names, arithmetical operators) and the number of operands (variables, and
numeric/string constants), which also apply to object orientation. Lastly, Hansen
developed a paired metric that combines the McCabe’s complexity metric with op-
erators similar to that of Halstead’s.

Nowadays, however, many researchers claim that these metrics are not enough
to cope with today’s software. Consequently, some new metrics for measuring OO
software complexity have been proposed [3]. Particularly, [22] introduced a metric
for measuring the cognitive effort required to understand an OO software system.
The metric considers not only the basic control structures in source codes, but also
the inheritance relationships among classes and method calls. With regard to basic
control structures, [22] exploits the work of [24] – which describes a characterization
of ten basic control structures – to assess the effort introduced by the program
statements that control the flow of a program. The metric considers inheritance
relationships and intra/inter class method calls. Besides, a formulation to combine
the metric values of isolated control structures by taking into account inheritance and
method calls was presented, along with a preliminary evaluation involving a small
system developed in C++.

Moreover, this paper proposes a metric for assessing the complexity of OO pro-
grams written in Java, which is based on an extension of [24]. Concretely, we present
six new basic control structures, four of which have been designed to consider spe-
cial operators of the OO paradigm, while another two consider the Java language
operators for handling exceptions. This metric takes a more integral approach to
complexity measurement compared to similar recent metrics [3], which as stated by
their own authors are still under development (i.e. [4]) or are not designed to cap-
ture all the aspects involved in class design and implementation (i.e. [20]). Besides,
because of the huge amount of hours per man manually calculating the proposed
complexity metric would require, and because manually computing metrics even
from small projects is an error prone task, this paper also presents a tool for auto-
matically gathering basic control structures from Java projects and calculating their
complexity. Therefore, the main contributions of this paper are:

• a complete characterization of basic control structures for OO/Java programs,

• a complexity metric that builds upon these basic control structures,

• an open source tool based on Eclipse for automatically computing the metric.
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The rest of the paper is organized as follows. The next section discusses the most
relevant related work. Section 3 presents the basic control structures for OO and
Java programs, and describes the proposed complexity metric for OO systems. Sec-
tion 4 describes a software tool, implemented as an Eclipse plug-in, for automati-
cally computing this metric from Java projects. Section 5 validates the metric using
the validation framework in [21], and illustrates the feasibility of the tool with ten
real world Java projects from the Apache Software Foundation. The section also
compares our metric with relevant metrics from the well-known Chidamber and Ke-
merer’s metric suite. Future research directions are described in Section 6. Lastly,
concluding remarks are presented in Section 7.

2 BACKGROUND AND RELATED WORK

This section starts by revisiting some concepts of the OO paradigm and Java. Then,
we present a conceptualization and examples of basic control structures for Java.

2.1 Particularities of the OO Paradigm in the Context of Java

By definition, an object is a class instance. A class is a “blueprint” defining
the attributes and operations (methods from now on) for instances of that class.
An OO system consists of one or more classes plus objects communicating among
them via message exchange (i.e. method calls). New classes (a.k.a. the children)
may be defined by inheriting attributes and method definitions from an existing class
(a.k.a. the base class or parent class), thus conforming a class hierarchy. Then, in-
herited attributes and methods can be accessed from children classes. For example,
if a child class C inherits the definition of a method s from a parent class S, then s
may be called from methods defined in C.

Inheritance is a mechanism commonly combined with abstract methods. Con-
trarily to concrete methods, an abstract method lacks implementation. When a class
has at least one abstract method, it is called abstract and cannot be employed for
instantiating objects. Only children classes providing implementations for the defi-
nitions of all inherited abstract methods can be employed for creating objects. When
a child method provides an implementation for an abstract method, it is said that
the former overrides the latter. Although abstract classes cannot be employed for
the instantiation of objects, they can be used in method signatures and variable/-
attribute definitions. At run-time, these elements must be instantiated using one of
the available children inheriting the abstract classes.

The Java language complements the OO paradigm with exception handling,
a mechanism that allows developers to handle situations that fall outside the ex-
pected or normal execution flow of program. In Java, the exception handling mech-
anism consists of a try block, a catch block, and optionally a finally block. A try
block is the set of statements whose execution must be monitored for exception oc-
currences. A catch block, which is associated with each try block, is a sequence of
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catch clauses. Each catch clause defines the type of exception it is able to handle,
and contains a block of code that is executed when an exception of that type is
caught. Lastly, each try statement can have a finally block, which is always executed
irrespective of an exception has occurred or not.

Another interesting feature of the Java language are anonymous classes. An ano-
nymous class is a local class without a name, which can be included as part of
a larger expression such as a method call. Then, anonymous classes are defined
and instantiated in a single succinct expression using the new operator. Moreover,
developers declare an anonymous class exactly in the statement where the class is
needed.

For the purposes of this paper, it is worth describing the Java package arrange-
ment mechanism. This mechanism allows developers to include many classes in an
individual file, commonly a zipped .jar file (Java ARchive), which is useful for dis-
tributing and reusing such classes. A jar file may contain both Java source code files
and Java bytecode files, i.e. compiled source codes. Then, one or more jar files can
be imported from any Java program and, in turn, class definitions present in the jar
file can be employed to instantiate objects or to act as the base class for new classes.
In the rest of the paper we will refer to those classes in a jar file as “library classes”.
When a jar file only contains Java bytecode – but not source code – we will refer to
it as a “closed library”.

2.2 Software Engineering Metrics for Measuring Java and OO Systems

In [18] the authors present a new approach for detecting non-cohesive classes in Java.
They state that if two different clients of a class have very different client views
of the class they are using, it can be assumed that the class does not implement
a maximally cohesive set of features. To detect this kind of lack of cohesion, the
authors propose the LCIC (Lack of Coherence In Clients) metric that measures how
coherently the clients use a given class. The metric bases on the hypothesis that
a class is cohesive when all clients use the same features of the class, i.e. clients have
a similar view of the class. Otherwise, the class might have unnecessary features, or
it might implement several different abstractions [18].

The work also presents a prototype for automatically gathering the metric from
Java source files. The prototype parses Java source files, and builds a model rep-
resenting class attributes and methods. Built models are persisted using an XML
database, which is then queried during metric computation [18]. This prototype has
been employed for assessing the LCIC metric from three open source projects. The
experiments show preliminary results about the relationship between the LCIC met-
ric and possible code refactorings that are known to improve cohesion. Concretely,
the authors analyze the LCIC metric for several classes before and after performing
well-known refactorings over them.

Beyond the Java arena, one of the most recognized efforts to assess complexity
in OO systems is the metric suite developed by Chidamber and Kemerer [7], which
is popularly known as the “CK metric suite”. The suite consists of six individual
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metrics: Weighted Methods per Class (WMC), Depth of Inheritance Tree (DIT),
Number of Children (NOC), Coupling Between Object classes (CBO), Response
For a Class (RFC), and Lack of COhesion in Methods (LCOM). The WMC met-
ric counts the methods of a class. The DIT metric is defined as the maximum
inheritance path from a class to the uppermost class in the hierarchy. The NOC
metric counts the number of classes in a class hierarchy. The CBO metric counts
how many methods or attributes defined by other classes are accessed by a given
class. The RFC metric counts the methods that can potentially be executed in
response to a message received by an object of a given class. The LCOM metric
measures how well the methods of a class are semantically related to each other.
Interestingly, all the metrics in the CK metric suite are straightforward and simple
to compute.

On the other hand, the CK metric suite does not cover the aggregated complex-
ity of a class due to all the measured factors, namely number of methods, classes
hierarchical depth and cardinality, coupling and cohesion. The internal architecture
of a class in terms of object orientation and the relationships due to inheritance in
the class hierarchy, along with the involved complexities, are also ignored. Lastly,
CK metrics counts only the number of methods coupled with other classes, ignoring
their complexities.

The lack of the above features in the CK metric suite motivated the work pre-
sented in [22], which introduces a new metric suite that complements the CK metric
suite. The core idea of the former metric suite is to look inside method statements
for inferring the control flow of a block of code and hence better assess complexity.
To do this, method statements are categorized under the concept of basic control
structures. The next section focuses on describing this concept in detail.

Other similar metrics in line with the suite presented in [22] are Extended
Weighted Class Complexity (EWCC) and Average Complexity of a program due
to Inheritance (ACI). EWCC [4] is an indicator of class complexity due to inher-
itance that is very close to [22], but as the authors of the EWCC metric assert,
the metric bases upon formulae that are not well-defined yet [3]. This makes the
metric immature from a practical standpoint. Moreover, ACI [20] has been also pro-
posed recently. To determine class complexity, ACI considers the complexities of the
classes inherited by a class together with the complexities of the methods defined by
this latter. Method complexity is computed by using classical metrics (e.g. CK) and
does not consider the kind of method being called (e.g. local, third-party library,
polymorphic, etc.). Like the core formalisms underpinning the metric presented
in this paper, the ACI metric has been validated by means of Weyuker’s prop-
erties [30], a theoretical validation framework for complexity metrics that defines
desirable mathematical properties to which a software engineering metric should
adhere.

Another work close to ours is [9], in which the authors propose a class com-
plexity metric based on three submetrics: Total Method Call Complexity (TMCC),
Total Data Call Complexity (TDCC) and Control Flow Complexity (CFC). TMCC
considers the complexity due to non-polymorphic (i.e. static methods) and poly-



Assessing Cognitive Complexity in Java Systems 503

morphic (i.e. object) method calls. At the same time, the depth of inheritance trees
is considered. Similarly, TDCC computes the complexity due to accessing static
and instance data members, which also takes into account member hierarchical re-
lationships. Lastly, CFC is self-descriptive and is computed using the McCabe’s
cyclomatic complexity metric. A major difference between [9] and our work is that
we define a more integral approach to compute CFC, and besides we propose a way
of calculating complexity at the system-level.

In a different direction, as discussed in [5], several authors conceive that the use
of a single metric suite is not enough to assess a certain software quality attribute,
and claim that quality should be derived from aggregating several related metrics
and metric suites. For this purpose, software quality prediction models have been
extensively used, which exploit classic machine learning techniques (e.g. C4.5 trees)
and other artificial intelligence algorithms (e.g. genetic algorithms and ant colony
optimization). Rather than proposing new metrics, the efforts in this area aim to
improve the accuracy of these models. Building accurate prediction models is in
general difficult due to lack of data in the software engineering domain. Therefore,
prediction models built for a particular software do not accurately perform when
used with metric values from another software [5].

From these models, the work in [29] uses a genetic algorithm to improve a model
accuracy in identifying components whose maintainability could be compromised.
The approach relies on the coupling, cohesion, inheritance, complexity and size met-
rics from the CK suite that are more likely to improve the performance of predictive
models according to the author’s experiments. Notice that since we propose an al-
ternative way of measuring complexity, our work – as well as other works in that
direction – complements [29] since our work represents another metric upon models
can be built.

2.3 Basic Control Structures

Category Basic Control Structure(s) Weight

Sequence Sequence 1

Branch If-then-[else] 2

Branch Case 3

Iteration For-do, Repeat-until, While-do 3

Embedded component Function call 2

Embedded component Recursion 3

Concurrency Parallel, Interrupt 4

Table 1. Basic control structures and weights presented in [24]

When analyzing source code complexity it is important to consider individual
class-level metrics such as number of methods, number of messages, and number
of different classes. The internal complexities of these classes are equally impor-
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Listing 1. Basic control structure based weight: Example

1 short a=b ;
2 short c=d ;
3 i f ( a<c ) {
4 d=a ;
5 t h i s . f ( ) ;
6 } e l s e {
7 a=c ;
8 }

tant [10]. Shao and Wang [24] proposed a software metric that associates an indi-
vidual weight to every basic control structure in a system. As defined by the authors,
“Basic control structures are a set of essential flow control mechanisms that are used
for building logical software architectures” [24], and basic control structures can be
employed to characterize internal control flows in a source code. Then, the authors
establish a weight for each basic control structure so that the higher the associated
weight the higher its complexity. Basically, the idea is that a set of program state-
ments arranged in a sequence is more understandable than those that, for example,
are branched in two or more control flows. Table 1 summarizes the basic control
structures identified by the authors and their associated weights [24]. Moreover,
as explained in [2], the values for these individual discrete weights were obtained
from empirical studies on cognitive informatics. These studies allowed the author
to establish an ordered ranking of the identified basic control structures based on
a measure (i.e. weights) of the human effort necessary to capture the structure of
different basic control structures. All weights are relative to the Sequence basic
control structure, which is assumed to be the less effort-demanding basic control
structures.

For the sake of exemplification, we will analyze the weight W for the code
shown in Listing 1, which is equal to 1 + 2 ∗ [2] = 5, where 1 is for the sequence
(lines 1–2, which are conceived as a single block) and 2 is for the if branch structure
(lines 3–7). There is a call to a local method inside the if body (line 5), adding 2
to the calculation. Notice that since there are nested structures, we multiply the
weights instead of summing them up. This procedure is repeated for each individual
system module (e.g. functions, procedures, and methods) and in turn summed, in
order to assess the complexity of the entire system.

As shown in Table 1 the basic control structures proposed in [24] covers a wide
range of control structures present in programs developed in various paradigms and
languages. However, some basic control structures that are commonly used in OO
source code have not been included in the previous set and deserve to be analyzed.
For example, some loose points that this paper discusses is whether the cognitive
effort of a call to an abstract method and a call to a concrete method are the equal,
and whether a call to inherited methods should be treated different than calling
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methods from other class hierarchies, or as proposed in [22] whether class attributes
should be considered when computing class complexity. Therefore, we argue that
the basic control structures from [24] are not enough for assessing the complexity of
Java-based OO software systems.

3 NEW BASIC CONTROL STRUCTURES AND METRIC SUITE
FOR ASSESSING THE COMPLEXITY OF JAVA SYSTEMS

In our view, the cognitive complexity of an entire OO system is calculated by aggre-
gating the individual complexities of classes [22]. In the same line, method complex-
ities are calculated by analyzing the complexity of each code statement in terms of
basic control structures, while computing the complexity of a class consists mainly
on calculating method complexities along with the class inheritance relationships.

In accordance with the basic control structures categorization presented in [24],
in an OO method there are control structures belonging to the following categories:
Sequence, Branch, Iteration, Embedded component and Concurrency. Particularly,
we propose to extend the Embedded component category for differentiating specific
conditions under which a method can be called. We established weight factors for
methods calls according to whether the method is local or non-local. When a called
method definition is owned by the same class of the calling object or by one of
its parent/child classes, the call is on a local method. Instead, we refer to non-
locally defined methods to those methods whose definition belongs to another class
in a different hierarchy than that of the calling class. Indeed, since sometimes classes
are packaged into libraries for reuse purposes, and the source code of third-party
libraries may not be available, we also discriminate called methods belonging to
closed library classes. We will refer to these methods as external.

Lastly, abstract methods can be also called and the cognitive effort associated
with calling them is somehow determined by the complexities of the available imple-
mentations of those methods. Concretely, an abstract method m from an abstract
class S having C concrete children, means that there are C alternative implementa-
tions for sending the message m to a variable of type S. Then, the effort required to
understand, modify, or test that method call is different from the one required for
calling a local method and as such it should be differentiated.

To sum up, our extension to the Embedded component category of [24] (see row 8
of Table 1) bases on differentiating and determining the cognitive effort required to
understand a call to a local method (i.e., when it is defined by the same class or
class hierarchy than the caller method), a call to a non-local method (i.e. methods
defined in a different hierarchy than that of the calling class), a call to an external
method, and a call to an abstract method of a polymorphic object. In summary,
our first extension to [24] focuses on the Embedded components category and covers
the next basic control structures:

1. calling local methods;

2. calling non-local methods;
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3. calling external methods (i.e. those present in closed libraries); and

4. calling abstract methods.

Second, we propose that the Sequence and Branch categories of basic control
structures shown in [24] should be extended to be applicable to programs in Java,
for accounting the effects of exception-handling constructs and exception occur-
rences. The rationale of this decision is that throwing an exception disrupts the
normal control flow of a program, and thus increases the complexity of the code.
Assuming that no catch block is declared, a try block, which must be accompa-
nied with a finally block, is conceptually equivalent to a common sequence control
structure. This is because assuming that no exception occurs, by default neither
a try block nor a finally one alter the normal control flow. Despite this similitude
between try/finally control structures and sequences, the former deserves having
a different cognitive weight since understanding try/finally structures requires at
least to be familiar with the semantics of the Java exception handling mechanism.
Besides, flow disruption may occur. On the other hand, one or more catch blocks
added to the try block mean that a program flow may be further branched due
to potential exceptions. Therefore, catch*[catch] blocks should be given a different
weight.

Category Basic Control Structure Weight

Embedded component

Call to a local (including super) method 2
Call to a non-local method m 2 + Wm

Call to a method m of an external library 3
Call to an abstract method a, for which
a0, . . . , an override a

I + f(Wax)

Sequence Try-finally (no catch block) 2

Branch catch *[catch] 3

Table 2. OO and Java basic control structures introduced in this paper

Table 2 shows the six new basic control structures introduced in this paper,
which have been characterized using the basic control structure taxonomy defined
in [24]. The third column of the Table presents the associated weighs for each new
basic control structure. As the reader can see, two weights have been defined in
terms of symbolic variables.

The weight of calling local methods is 2, which is derived from the weight given
to the Function call basic control structure in [24]. As explained, this encompasses
methods defined in the calling class or in parent classes of the former. On the other
hand, the weight of non-local methods is defined as 2 +Wm. This is because in [24]
Function calls structures have a weight of 2 (because of the call itself), and non-
local methods complexity (Wm, Equation (1)) is calculated and then summed [22].
Note that the weight of non-local methods is in fact 2 + Wm with Wm = 0. This
is since the weight of locally defined methods is omitted [22], and the cognitive
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effort of the target method is not accounted directly in its weight but in the met-
rics explained below, which take into account hierarchical relationships. Further-
more, the weight of calling a method of an external closed library is 3, since it is
a Function call, plus a symbolic weight of 1 due to the effort of understanding the
signature of the method being called. Recall that for closed libraries the source
code is not available, and thus Wm cannot be computed as we do for non-local
methods.

The weight associated with calling an abstract method is defined in terms of
those methods that override it. The associated weight is the sum of the weights
of all overriding methods (SUM(Wax)), their average (AV G(Wax)), the maximum
weight (MAX(Wax)) or the minimum weight (MIN(Wax)). The software engineer
who analyzes the complexity of a system should select among these alternatives
to determine the weight of the basic control structure. For example, the second
alternative (i.e. AV G(Wax)) could be selected provided the dispersion of complexities
among overriding methods is not large, otherwise the average would not be not
significant enough from a probabilistic standpoint.

The weight associated with a try block and optionally a finally block (without
considering potential catch blocks) is defined as 2, and a weight of 3 is given to
the list of catch blocks associated to a try-[finally] block. Even when try/finally has
in essence a sequential structure, it allows the code to abruptly jump to the finally
block in case of exceptions, so we weight similarly to the If-then-[else] basic control
structure. On the other hand, a list of catch blocks can be viewed as a Case basic
control structure: depending on the type of the exception, a different code block is
executed.

Cognitive weights are used to measure complexities of methods once their basic
control structures have been identified. Equation (2) formally defines the complex-
ity of a single method (MC). We consider that any method comprises a Sequential
basic control structure that represents its entire body and at the same time q linear
basic control structures contained in the Sequential basic control structure (meth-
odsBCSs). Then, the complexity of a method is defined as two plus the sum of
cognitive weights of a list of arbitrary basic control structures recursively, since each
basic control structure may in turn consist of layers of nested basic control struc-
tures. At each layer, again, the linear basic control structure weights are summed.
In Equation (1), W (BCSj) is the cognitive weight of the involved basic control
structures as established in Tables 2 and 1.

MC ′(BCSs) =

q∑
j=1


W (BCSj) BCSj = branch, iteration

∗MC ′(innerBCSs(BCSj)) try/finally catch*[catch],

W (BCSj) otherwise,

(1)

MC = log2(1 + [1 + MC ′(methodBCSs)]). (2)

The Weighted Class Complexity (WCC) metric goes one step beyond and com-
putes the complexity of an entire class. The following equations calculate the
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Weighted Class Complexity (WCC) of a class with m methods:

WCC ′ = AC +
m∑
i=1

MC ′i, (3)

WCC = log2(2 + WCC ′). (4)

WCC’ is the sum of all the method complexities of a class, and the Attribute Com-
plexity (AC) metric that reflects the complexity due to attributes. Class complexity
due to data members is the total number of attributes of the class. Attributes are
not local to one method but to every instance of a class, and can be accessed from
several methods. Accordingly, the attribute complexity of a class (AC) is given by
AC = a, where a is the total number of attributes. Finally, for calculating the
complexity of the entire system, we have to consider not only the complexity of all
the classes, but also the relationships among them. That is, we are giving emphasis
on the inheritance property because classes may be either parent or children classes
of others. In the case of a child class, it inherits the features from its parent class.
By considering this OO property, we propose to calculate the code complexity of
an entire system as follows. If the classes belong to disjoint hierarchies or are in
the same hierarchical level of a class hierarchy, their individual WCC values are
summed. On the other hand, the weights of classes belonging to the same class
hierarchy are multiplied. Formally, if there are d levels of hierarchy depth in the
OO code and level j has c classes, then the Code Complexity (CC) of the system is
given by:

CC = log2

(
1 +

d∏
j=1

[
c∑

k=1

WCC ′jk

])
. (5)

In general, it is known that class hierarchies are a potential source of complexity
in OO systems and therefore many software metrics based on the structure of class
hierarchies have been proposed [25]. Intuitively, the deeper a class is in a hierarchy,
the more the potential code reuse. However, this makes the cognitive effort to
reason about class behavior from the code much higher. From the perspective of
complexity, similarly to recent related metrics [20], we basically penalize depth in
class trees.

The unit of CC, Code Complexity Unit (CCU), is defined as the cognitive weight
of the simplest system, i.e. a system having a single class with no attributes nor
inheritance, including a single method having only a sequential structure (sequential
structure in basic control structure terminology). In other words, the MC ′ of this
method is 1, the WCC ′ of the mentioned class is 1, hence CC = log2(1 + 1) = 1.
In the same line, MCU (Method Complexity Unit) and WCCU (Weighted Class
Complexity Unit) are also defined to measure and compare individual method and
class complexities.

Four more metrics can be derived by averaging the values of the above presented
metrics. At the class-level, dividing the sum of complexities of all the methods
of a class by the total number of methods in that class results in the Average
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Method Complexity of a class. The Average Method Complexity at a system-level
is computed summing all MC values and dividing the result by the total number
of methods. Similarly, the Average Number of Attributes (i.e. Average AC) per
class at a system-level is computed summing all AC values and diving the result by
the total number of classes. Lastly, Average WCC represents the average weighted
complexity of classes, which is derived from summing individual WCC values and
dividing the sum by the total number of classes.

The next section describes a tool for automatically computing CC for Java
programs.

4 AN ECLIPSE PLUG-IN FOR AUTOMATICALLY ASSESSING
THE COMPLEXITY OF JAVA SYSTEMS

We have designed an Eclipse plug-in called ccm4j 1 (Code Complexity Metric for
Java). ccm4j is organized around a pipeline-like architecture, resembling the one
commonly found in compilers. The main components of ccm4j are shown in Figure 1.
The ccm4j architecture imposes a strict relationship order by which a filter (or phase)
runs only after the previous one has completely finished its task. Moreover, there is
a shared data structure among the three phases, which will be explained below. As
shown in Figure 1, ccm4j has three phases, namely Parsing, Complexity Calculation,
and Consolidation. Below, the most relevant details of each phase are explained.

Parsing Complexity Calculation Consolidation

Source Model

MC Report

WCC Report 

CC Report

[...]

Source

Code

Figure 1. Architecture of ccm4j

4.1 Parsing Phase

During this phase, ccm4j parses the source code of the Java project being ana-
lyzed. The goal of the parsing phase is to build a representational model from the
source code, which is suitable for later processing. To do this, ccm4j relies on the
Eclipse Java Development Tools (JDT) framework, which provides APIs to access
and manipulate Java source code. One of the provided APIs is called the Abstract
Syntax Tree (AST), which is conceptually similar to the XML Document Object
Model (DOM). DOM defines a standard way for representing and manipulating
XML documents. A DOM is a tree-structured representation in memory of an XML
document.

1 ccm4j home page, https://code.google.com/p/ccm4j/
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For parsing, ccm4j takes advantage of the ASTParser provided by the Eclipse
JDT framework. The ASTParser builds an AST tree in memory capable of resolving
variable bindings for each method statement while providing type information for
them.

The ccm4j plug-in identifies declared classes and anonymous ones. With respect
to method bodies, for each method ccm4j supplies the ASTParser with theirs state-
ments, and creates a data structure indexed by method signatures. Basically, this
structure contains a reference to each method AST, in which not only the implemen-
tation of that method can be found, but also information needed by the Complexity
Calculation phase to compute method complexity. Then, this initial structure is
used as input to the next two phases.

4.2 Complexity Calculation Phase

At this phase, ccm4j traverses the source model constructed in the previous phase,
and calculates the weights of the basic control structures of each method, i.e. the
MC’ of each available method. This is the most resource demanding phase, since
for calculating method complexities the tool needs to completely analyze the AST
of each method. Besides processing the structure of methods, this phase also needs
to handle recursion and to determine external invocations. This is because, as
described in Section 3, the weight of any given method depends on the weights of
the external methods called. To avoid processing the same method multiple times,
the tool consults the source model built in the Parsing phase from a cache. Then,
the first time a method is processed, the method entry in the model structure is
associated with its complexity value, a.k.a. weight.

To compute the complexity of a particular method the ccm4j tool relies on the
well-known Visitor OO pattern. The Eclipse framework provides an implementation
of the Visitor Pattern to inspect the AST of a code block statement by statement.
This support provides default implementations for processing all types of source
code fragments and automatically step in nested structures such as code blocks and
conditional statements, allowing us to redefine only those framework hooks for which
a special action needs to be taken. This greatly simplified the implementation of
the ccm4j tool.

The ccm4j tool handles two different types of recursive methods calls. The most
simple recursive functions are those that involve only one method, calling itself in
loop. We refer to this type of recursive call as a “local recursive call”. For example,
a method to sum the first n elements of an array, as shown in Listing 2, has a local
recursive call. During the computation of the complexity of the sum method, ccm4j
accounts an If-then-[else] basic control structure (according to Table 1 its weight
is 2) and a Recursion basic control structure (its weight is 3). To solve this case
ccm4j identifies whether the callee method is the same that the caller one or not,
i.e. is a local call, before computing the complexity for the callee method.

Recursion can also be found in the form of cyclic calls involving N methods, for
example if A.a() calls B.b(), B.b() calls C.c(), and C.c() calls A.a(). We refer to this
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Listing 2. Simple recursive method

1 i n t sum( i n t a r r [ ] , i n t n ) {
2 i f ( n == 0)
3 return 0 ;
4 e l s e
5 return a r r [ n−1] + sum( a r r , n − 1 ) ;
6 }

type of recursive calls as “complex recursive calls”. For calculating the weight of
complex recursive calls, ccm4j uses an algorithm that receives a yet-non-computed
method as input. The algorithm relies on a stack for keeping account of methods
for which complexity has been already computed. The main steps of the algorithm
are:

1. Push the method being analyzed onto a stack.

2. For each basic control structure present in the body of the method:

(a) If it is a function call, check if the target method is already on the stack.

i If the target method is not in the stack, go to step 1 using it as input.
ii If the target method is already on the stack, meaning that there is a loop,

assign to it the constant weight associated with recursion, and go to
step 2.

3. Pop the method from the stack.

The algorithm analyzes each basic control structure of a given method until a method
call is detected. At step 2(a), the algorithm checks whether the complexity of the
called method has been computed or not. The algorithm uses a stack to determine
whether it is not necessary to go forward and process the called method, or it is
necessary to process it. Once all the basic control structures of the given method
have been analyzed, the method is removed from the stack.

The algorithm shown below exemplifies calculating the complexity of the method
is even, which has been deliberately defined in terms of another recursive method
is odd to introduce complex recursive calls (see Listing 3). Figure 2 shows from top
to bottom the steps the algorithm performs to compute the complexity of the is even
method, and the state of the stack during the execution at each step. Note that we
are assuming that is even and is odd are defined in different classes.

This kind of complex recursive calls are often found in OO systems, and even
some OO design patterns encourage them. An example of complex recursive calls
is found in the well-known Composite OO design pattern. The Composite design
pattern allows developers to treat a group of objects as a whole, since these expose
the same interface that a single instance would expose. In Figure 3 a materializa-
tion of this design pattern is shown. The CompositeGraphic.draw() method leads to



512 M. Crasso, C. Mateos, A. Zunino, S. Misra, P. Polvoŕın

Listing 3. Mutually recursive methods: A canonical example

1 boolean i s e v e n ( i n t n ) {
2 i f ( n == 0)
3 return true ;
4 e l s e
5 return i s o d d (n−1);
6 }
7
8 boolean i s o d d ( i n t n ) {
9 i f ( n == 0)

10 return f a l s e ;
11 e l s e
12 return i s e v e n (n−1);
13 }

cost(is_even)

1 + 2 * (2 + cost(is_odd))

1 + 2 * (cost(is_even))

is_even

is_even
is_odd

StackMC'=1 + 2 * (2 + 1 + 2 * 2)=15

2 is_even is on the stack  =>  

     return recursion factor (e.g., 2) 

<<empty>>

Figure 2. Complexity of mutually recursive methods

a situation where one implementation of an abstract method recursively calls the
same method.

In order to exemplify how ccm4j deals with this situation, let us assume that
the complexity of both Line.draw() and Text.draw() methods is 1, and the composite
implementation is the one shown in the text box on the right side of Figure 3. Then,
by using the average strategy for weighting abstract methods (see Table 2 row 5) the

Graphic

+draw()

Line

+draw()

Text

+draw()

CompositeGraphic

+draw()

draw(){

  for(Graphic child:children)

    child.draw()

}

Figure 3. Mutual recursion in a hierarchy tree. The Composite Pattern example
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complexity (MC ′) of Graphic.draw() is (1+1+(1+3∗3))/3 = 4. Since Graphic.draw()
is already on the method stack when processing CompositeGraphic.draw(), the asso-
ciated cost of that call is the recursion factor, e.g. 3. Once the tool has computed the
method complexity for all available methods, during the next phase the computed
complexity values are aggregated to consolidate the MC, WCC and CC values.

complexity(Graphic.draw)

average (complexity(Line.draw),  complexity(Text.draw), complexity(CompositeGraphic.draw))

1 1

sequence + loop * complexity(Graphic.draw)

1 3 3

MC' = average(1,1,10) = 4

Figure 4. Cost of recursion in the Composite pattern

4.3 Consolidation Phase

This last phase uses the method complexities obtained in the Complexity Calculation
phase to calculate the metrics. To do this, these complexity values are augmented
with the class hierarchy relationships and the cost introduced by each disjoint hier-
archy to calculate WCC. Besides, ccm4j aggregates data to obtain the total Code
Complexity (CC) of the Java project under analysis. Finally, during this phase,
the ccm4j tool produces a report as three Comma-Separated Values (CSV) files.
Each CSV file stores tabular data in plain-text format with the MC, WCC, and CC
values.

The MC output file has a row for each available method and five columns. The
first column, “id”, provides a unique identifier for each row. The second column,
“method”, contains the method signature. The third column, called “weight”, con-
tains the MC value for that method according to Equation (2). The column “weight
expression” shows the weights summed or multiplied that produce the MC’ value.
The last column, called “external calls” indicates the number of external meth-
ods that are called from that method. For example, Table 3 shows the output for
a method from the Apache Lenya project.

id method MC complexity expression external calls

1 WorkflowUtil#invoke 4.524 1 + (6) + 3 * [ +2 + [3]] 4

Table 3. MC output example

The WCC output file consists of rows representing analyzed classes and six
columns. The “id” column provides a unique identifier for each row. The second
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column is the class name, whereas the third column represents the parent class of
that class. The other three columns contain class metrics, namely the number of
methods, the number of attributes, and the resulting WCC (Equation (4)), respec-
tively.

Finally, the CC output file has one row for each class hierarchy and six columns.
As in the other files, the first column is the identifier. The second column is called
“hierarchy” and contains the name of the class at the top of each separate class
hierarchy. The third column is the CC value (Equation (5)). The fourth column
contains the number of classes while the fifth one represents the depth of the hier-
archy, respectively. Finally, the sixth column contains the CC expression. Table 4
presents an example of this output file.

Id hierarchy CC number
of classes

depth complexity
expression

15 org.apache.lenya.cms.rc.RCMLEntry 7.139 3 2 10∗(+9 + 5)

Table 4. CC output example

5 PROPOSED METRICS AND TOOL: VALIDATION
AND PRACTICAL EVALUATION

Next, we describe the validation of the metrics, and we illustrate and evaluate the
ccm4j tool. The former task (Section 5.1) was performed using a recent valida-
tion framework specifically designed for evaluating software complexity metrics [21].
The aim was to complement the validation of the proposed metrics already done via
Weyuker’s properties [3]. We also evaluated the computational resources consumed
by ccm4j on real Java projects, and illustrated the usage of the metrics for assess-
ing complexity in classes from these projects (Section 5.2). The aim is to assess
whether ccm4j is viable from a practical perspective and to show how to interpret
the underlying metrics and related metrics.

5.1 Metric Validation

The framework in [21] was recently proposed to fulfill the need of validating software
complexity metrics practically. Given that most validation frameworks up to now
are based on measurement theory, it has been argued that other aspects should be
considered when validating complexity metrics [21, 15]. Particularly, the framework
prescribes a set of guidelines to assess the usefulness of a software complexity metric.
Since our metrics are backed up with a tool, usefulness in practice is of utmost
importance to our goals. Moreover, in this section we focus on the CC metric, since
the framework is designed to validate system-level complexity metrics.

These guidelines come in the form of nine desirable properties which metrics
should adhere to. To better explain the guidelines in the context the CC metric,
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we include other classical complexity metrics, namely statement count, Halstead’s
complexity [10] and McCabe’s complexity [19]. The desirable properties analysis is
shown below:

Property 1: The measure should be simple, which states that computing the
metric should not involve complex mathematical functions, i.e. it should be com-
puting resource-friendly. First, statement count clearly satisfies this property.
McCabe’s complexity does not heavily depend on the size of the system, and
it is calculated from the graph that represents the control flow of the system.
Halstead’s uses simple formulas to compute system length, volume and effort.
Finally, the calculation of CC is simple as well, since counting the variables
used in its formulation is not difficult. In fact, resources consumption when
computing CC on real Java projects is acceptable (see next subsection).

Property 2: The measure should be language independent. Statement
count and Halstead’s complexity depend on the verbosity and the operators
of the programming language, respectively, and hence these metrics do not sat-
isfy the property. Moreover, McCabe’s complexity and CC are based on control
flow structures and basic control structures present in many languages. Even
when CC is conceptually designed for OO languages, assuming no inheritance
(i.e. depth = 1) is analogous to computing the metric on a number of procedural
modules as McCabe’s complexity does.

Property 3: The metric should be developed on a proper scale. This means
that there is always a need for a scale upon which comparison of two measures of
the same metric is done. For statement count and Halstead’s metric, there is not
precise information on this issue [21]. For McCabe’s complexity, an empirical
discretization of the metric has been derived, which classifies systems into four
categories (simple, less complex, complex, and highly complex). On the other
hand, CC is based on a logarithmic scale, which allows different CC values to
be compared.

Property 4: Metrics in metrics/measures should be consistent. Often one
metric is not sufficient to consider the goals of the software project. Besides,
when several metrics are proposed, lower or higher values should consistently
have the same meaning across all metrics in the suite. Statement count, Mc-
Cabe’s complexity and CC do not propose a suite, and hence they should be
used in conjunction with other metrics. Halstead’s effort, on the other hand,
takes a more high-level view of software complexity, and consistently considers
other well-known aspects of systems, namely length, size, volume and effort [6].

Property 5: The metric should have a foundation that can be explained,
which means that the reliability of a metric is poor if its values are not relative
to some fundamental unit. For the case of statement count, this unit is program
size (1 line is the smallest possible size). Halstead’s complexity estimates number
of bugs and effort to fix/develop the software. McCabe’s complexity measures
control flow complexity w.r.t. the simplest control flow possible. Finally, CC
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takes into account cognitive effort in CCU units (i.e. 1 CCU is the least possible
complex system cognitively speaking).

Property 6: The metric should output positive numbers. Statement count,
Halstead’s complexity and McCabe’s complexity give positive numbers [21]. The
CC metric is computed by feeding a logarithmic function with a positive com-
plexity value, which is obtained from multiplying and adding class complexity
values. These values are based on the number of attributes and method com-
plexities. Method complexities are computed by multiplying and adding basic
control structure complexity values, which are positive numbers. Therefore, CC
always gives positive numbers.

Property 7: The metric should differentiate between the complexities of
the basic program constructs. Statement count and Halstead’s complexity
cannot clearly make this distinction. McCabe’s metric computes complexity
basing on the control flow of the system and not on the structure of the available
constructs. CC computes complexity by considering the logical structure of
program building blocks.

Property 8: The metric should differentiate between a sequence of the
same construct and a nesting of them or an equivalent construct.
Note that this property is not satisfied either by statement count, Halstead’s
complexity or McCabe’s complexity, because they cannot distinguish among
different constructs. Under CC, each basic control structure has its own weight.
Having the same or equivalent basic control structures in sequence results in
a sum of cognitive weights, but having so in nested structures implies multiplying
cognitive weights.

Property 9: The metric should consider the modular complexity by a) the
complexity should be affected by the addition, deletion and replace-
ment of a module, and b) the complexity should reflect the interaction
among the modules. With respect to a), it is clear that statement count and
Halstead’s complexity satisfy the property: the effort changes upon adding,
deleting or replacing a module. However, this is not always the case with Mc-
Cabe’s complexity: adding a module with the same cyclomatic complexity as
a module already present in the system does not affect the overall complexity.
With CC, however, adding/deleting or replacing a class directly affects the as-
sociated complexity factor in the CC formula, and thus the property is satisfied.
On the other hand, b) is satisfied by all metrics, since interactions between mod-
ules account for more statements, effort, cyclomatic entry points, and method
weights in the respective metrics.

Table 5 summarizes the properties satisfied by the analyzed metrics. CC is the one
that satisfies the most. Then, according to the guidelines in [21], CC qualifies as
a useful complexity metric in practice.
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Property Statement
Count

Halstead’s
Complexity

McCabe’s
Complexity

CC

1 yes yes yes yes

2 no no yes yes

3 no no yes yes

4 no yes no no

5 yes yes yes yes

6 yes yes yes yes

7 no no no yes

8 no no no yes

9 yes yes no yes

# of satisfied
properties

4/9 5/9 5/9 8/9

Table 5. Assessment of complexity metrics against the framework in [21]

5.2 Tool Evaluation and Illustration

We have evaluated ccm4j via ten open source Java projects from the Apache Software
Foundation. Then, we computed the MC, WCC, and CC metrics, and assessed the
demanded computational resources. The main goal of the performed experiment
was to verify that ccm4j was able to process all the basic control structures and
characteristics found on large, real life software projects, such as anonymous and
inner classes, complex recursion patterns, multiple top level class declaration per
source file, closed libraries usage, and exception handling mechanisms. In addition,
we wanted to verify whether the ccm4j tool was feasible to be employed in an
ordinary workstation in terms of resource consumption. In other words, we want
to assess the amount of memory and CPU time needed to run ccm4j on real-life
projects, and if these values are between manageable bounds. Finally, once the
metrics were computed for each employed project, we used the results for identifying
complex methods and classes, and comparing it with CK metrics.

The next subsection describes the experiments performed. Subsection 5.2.2
presents the performance results. Subsection 5.2.3 discusses the achieved complexity
results.

5.2.1 Experimental Data and Settings

For the experiment ten projects from the Apache Software Foundation were em-
ployed. All the projects were downloaded from their official Web sites. Once
a project was downloaded, all its dependencies were satisfied until the project was
fully compiled. In this context, a dependency is a jar file required by the project to
compile.

Table 6 presents a structural description of the projects, including their CC val-
ues. The employed projects have more than 100 classes. Regarding the hierarchical



518 M. Crasso, C. Mateos, A. Zunino, S. Misra, P. Polvoŕın

Project CC Lines # of class Avg. # of classes Avg. hie- # of # of
of code hierarchies per hierarchy rarchy depth types methods

Commons-
collections 33.605 23 713 200 1.915 1.260 417 3 461

Commons-
math 75.861 81 803 507 1.553 1.666 924 7 084

CXF 33.087 47 222 444 1.341 1.115 709 5 153

Httpclient 33.840 17 814 178 1.315 1.146 314 1 751

Jgroups 56.306 73 156 500 1.456 1.098 800 7 836

Lenya 46.431 8 548 106 1.217 1.123 214 1 216

Log4j 50.968 20 631 202 1.431 1.134 308 2 090

Struts 55.115 23 198 165 2.370 1.157 424 2 854

Wicket 88.977 74 531 528 1.890 1.199 1 169 7 431

Xerces-J 72.305 71 027 182 2.231 1.214 570 5 788

Table 6. Project description

arrangement of their classes, all projects have an average Depth of Inheritance Tree
(DIP) above 1. The number of methods of each project is quite varied, ranging
from 1 216 to 7 836. At the same time, as described in the previous paragraph, the
employed projects are heterogeneous not only from the functional and structural
perspectives, but also from a technological one. For example, Lenya runs as a Web
application on top of a Java Servlets engine, whereas Log4j and Xerces-J are li-
braries used by other projects that need logging facilities or processing XML files,
respectively. In the same line, CXF and JGroups are used in distributed applica-
tions.

The two tables in the Web data at http://tinyurl.com/ngu3adj show the
top 5 most complex classes and top 5 most complex methods in terms of WCC
and MC, respectively. There were not significant differences between WCC val-
ues within the same project, with the exception of Wicket, JGroups and particu-
larly Lenya. In this latter case, the complexity of the PageEnvelopeModule class
at least doubles the complexity of any class in the project. Its most complex
method, getAttribute(String, Configuration, Map), accounts for a big percentage of
the total complexity of the class. Then, we looked inside this method code and ob-
served that the cause for it being so complex is that it is basically a very deep
chain of nested if-else blocks. On the other hand, in Httpclient, Jgroups and
Xerces-J more than one method from the same class are in the top 5 method
list.

The laptop used for the tests included a Core 2 Duo SU7300 processor running
at 1.3 GHz with 4 GB of RAM. Note that the employed hardware represents the low
end of the hardware usually available on the marketplace for software development.
Lastly, the Java Virtual Machine (JVM) started to launch Eclipse was set with the
parameters -XX:MaxPermSize=1024m -Xms256m -Xmx1024m.
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5.2.2 Resource Consumption Analysis

We measured the runtime and memory consumption of the ccm4j tool when an-
alyzing three of the projects from Table 6. Basically, we took a small (Lenya),
a medium-sized (Log4j) and a large (Xerces-J) project in terms of lines of code to
ensure representativeness. First, we assessed the run time and memory demanded
by ccm4j when it was fresh started. In this context, the fresh start is used to
indicate that the tool is executed just after starting an Eclipse session. The per-
formance results obtained by averaging 10 fresh start executions of the tool on
each selected project was 11.83 seconds and [110–130] MB RAM (Lenya), 17.73 sec-
onds and [110–130] MB RAM (Log4j), and 38.32 seconds and [400–450] MB RAM
(Xerces-J). As the reader can see, the run time and memory demanded seems to be
influenced by the input project structural characteristics. The standard deviations
for the 10 averaged executions of each project was negligible. Xerces-J, the biggest
project, was the one that demanded significant resources.

Note that the normal workflow of a developer who is employing the tool includes:

1. calculating the metrics,

2. identifying complex methods or classes, and

3. modifying them to reduce their complexity.

We run the ccm4j tool with Xerces-J and, in turn, analyzed the MC metric re-
sults to identify the most complex method. The identified method was scanCon-
tent(org.apache.xerces.utils.QName) from the UCSReader class (see the abovemen-
tioned Web data). Then, we commented the entire body of the method, and we
reproduced the experiment. We observed that the runtime for this second execution
moves downward from 42 seconds to 13.316 seconds. To study the reasons behind
this fall, we performed a second experiment. One possibility was that the fall oc-
curred because the identified method demanded a lot of resources for computing the
MC metric.

Another possibility was that the ccm4j tool experienced a “warm” effect pro-
duced by both the disk cache and the Just In Time (JIT) compiler of the JVM. To
test this possibility we executed 10 times the ccm4j tool for each project, but during
the same Eclipse session. The results are shown in Figure 5. As the reader can see,
the demanded run time has a peak at the fresh start execution of all projects, but
then it falls and stabilizes around a lower value. Specifically, by averaging the exe-
cution times from the third to the last run, Lenya run time was 2.86 seconds, Log4j
3.98 seconds, and Xerces-J 11.804 seconds. It is worth noting that the projects were
not modified at all between each run.

5.2.3 Complexity Results Analysis

In order to compare our complexity metrics with the well-known CK metrics, we
designed an experiment consisting on measuring the effectiveness of spotting the
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Figure 5. Effects of JIT and disc cache on tool execution time

most complex classes in each project with our plug-in and at the same time using
CK metrics. For gathering CK metrics, we used ckjm (http://www.spinellis.gr/
sw/ckjm).

As suggested earlier, the typical use of our plug-in includes spotting complex
methods or classes first. Finding complex classes also involves identifying their most
complex methods afterwards. Thus, in this experiment we took the opposite direc-
tion: we first spotted the top 5 most complex methods of each project and then we
took the ordered list of classes (i.e. L) in which they were declared. To ensure better
system coverage, for Httpclient, Jgroups and Xerces-J more methods were considered
so the resulting 5-element lists contained no duplicate class names. For example,
from the most complex methods in http://tinyurl.com/ngu3adj, it follows that
LCXF = [ClientImpl$2, ClientImpl$2$1, ClientImpl, OneWayProcessorInterceptor,
AttachmentDeserializer].

Then, for each project p, we obtained five lists containing all the classes sorted
by WMC, DIT, RFC, CBO and WCC in decreasing order, i.e. LWMCp, LDIT p,
LRFCp, LCBOp and LWCCp. Then, for each class name in Lp the index (or
position) in the lists was separately computed. These results are shown in the
tables at http://tinyurl.com/l2adzaw as Index∗ columns with cell values in the
form [start position-end position], meaning that all classes in this range have the
same metric value. For example, the ClientImpl$2 class of the CXF project, when
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sorting classes by decreasing WMC, is in the [453–558] position according to its
IndexWMC . In other words, 106 classes in the project have WMC=3. As a corollary,
start position=end position means that only one class has a particular metric value
(see for example ClientImpl and IndexWMC). Finally, LWCCp has discrete values,
since no duplicate values for WCC were found when considering several decimal
places. Below we provide a per-metric analysis of these results.

As seen in the CK and WMC tables, using WMC to spot the potentially com-
plex classes was in general ineffective. Basically, WMC assumes that the weight of
each method is one, while in MC, and indirectly in WCC, the internal structure of
methods is considered a central factor. For example, in CXF, the highest ranked
class from Lp according to WMC is ClientImpl, whereas the rest appear much lat-
ter in LWMCp. Moreover, although the WMC metrics may calculate the same
value for two similar codes, WCC obtains different results since it considers method
structures in more detail.

DIT represents the maximum length in the class hierarchy tree from the node
associated to a class to the root of the tree. Hence, DIT values vary from class to
class depending on the level of classes in the hierarchy. Most DIT values range from 0
to 2, and therefore they provide very limited information about the complexity of
classes. Then, it is difficult to assess class complexity by just considering DIT.

Moreover, the RFC metric is defined as the total number of methods that can
be potentially executed in response to a message sent to a class. This includes all
the methods available in the class hierarchy. RFC is important since as it increases,
the effort required for testing increases as well [23]. RFC tended to spot more
classes (see for example Xerces-J) because it is a more ellaborated metric compared
to WMC and DIT. Still, RFC only calculates the number of methods in response
to a message but our metrics also consider the complexity of the called methods.
We believe that considering not only the number of methods, but also the whole
structure of methods takes into account valuable information about the complexity
of the code.

Furthermore, CBO quantifies the interactions between objects by taking into
account the number of other classes to which a class is coupled. Broadly, CBO has
a significant impact on complexity in terms of modularity, maintenance, and testing
of a system. In the analyzed projects, the effectiveness of CBO for spotting classes
was slightly better than that of RFC. Note that one class might have CBO = 1
meaning that it interacts with only one class, but the former might include a high
number of messages to that class, which makes the code intuitively more complex.
On the other hand, our metrics consider the number of message calls to other classes
plus the weight of the called methods.

All in all, the complexity factors evaluated by our metrics can be to some extent
also evaluated by WMC, DIT, RFC and CBO, but it is clear that none of these
metrics is designed to consider of all these factors simultaneously. This shows that
our metrics do not directly compete with the analyzed CK metrics, but we aim
at offering another approach to quantify complexity in OO code by aggregating
several factors that are known to affect overall complexity. Another interesting
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result is that there is a high correspondence between MC and WCC values in the
analyzed projects, which is ideal in some cases (i.e. Httpclient, JGroups and Wicket),
whereas for other projects all classes appear within the top 10 most complex classes.
This means that ranking system methods by decreasing MC quickly leads to the
most complex classes, and vice versa, which accelerates the task of system-wide
identification of the most complex code pieces to refactor or document.

6 FUTURE WORK

We are planning to extend our set of basic control structure in order to account for
Java concurrency constructs (e.g. synchronized statements) and concurrency facil-
ities such as the Thread, Executor and Callable classes from the Java concurrency
framework. As for the WCC metric itself, we will study how to better deal with
class attributes in terms of complexity. One starting point is to take into account
data-type abstractness in the current metric to reflect polymorphic variables. Intu-
itively, the cognitive effort necessary to understand primitive data-types, and more
concrete versus abstract non-primitive data-types should be weighted differently. In
principle, this will require considering and weighting several factors, namely compo-
sition and inheritance relationships between data-types, cardinalities, Java generics,
and so on. Particularly, it is known that the problem of determining whether ab-
stract modeling (like OO data-types) leads to more cognitive effort than concrete
modeling concepts or vice versa, at least in the engineering domain, depends on
the learning style of users [8]. Lastly, another element from the Java language
to consider are annotations. Upon compiling a project, annotations are processed
by certain compiler plug-ins called annotation processors, which can create addi-
tional Java source files/resources or even modify the annotated Java code itself.
Therefore, this mechanism might alter the program code, which impacts the WCC
metric.

We will also do a research on weighting those classes for which the developer
has no source code. A call to a library method whose implementation is unknown
is associated with a weight that, while configurable, is the same for all external
libraries calls regardless of the signature of the called method. We believe that
there is room for refinement on this weighting schema, which is worth to be in-
vestigated. As discussed in [12], an interface by itself requires developers’ effort
to be used, so that simpler libraries interfaces are preferable over complex ones to
reduce the overall system complexity. Then, we can combine the weight employed
for calling closed external libraries with interface complexity metrics like those pre-
sented in [27]. Though these interface complexity metrics are specially designed
for interfaces described in the Web Services Description Language (WSDL), their
underpinnings may be applied to interfaces written in Java as well.

Moreover, we are extending the ccm4j tool by following the approach to vi-
sualize multiple metrics presented in [16], to provide a graphical layout of classes
complexities as a complement of the current spreadsheet based output. This visual
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approach is called Polymetric views [16]. The polymetric views approach represents
a lightweight software visualization technique enriched with software metrics infor-
mation, whose goal is to help developers to understand the structure and detect
problems of a software system related to quality attributes. We are adapting the
polymetric views approach to our complexity metrics to increase the overall compre-
hensibility of a system for both maintenance and new developments activities, while
easing the identification of more complex methods and classes by rapidly spotting
the most complex methods/classes. An appropriate combination of metrics and re-
lationships visually shape methods and classes so that it is easier to identify which
ones require more effort to understand, test, and maintain.

id, WCC=1

id, WCC

Keys:

Non-filled boxes represent external classes.

Grayscale gradient represents the WCC metric.

A class width represents its number of methods, 

while height is derived from its number of attributes.

139, 296 140, 19

141, 2147987574

142, 128

143, 106

145, 143

144, 144 146, 45196 148, 10

229, 1

Figure 6. Using polymetric views for depicting the WCC metric of a class hierarchy

We have developed a proof of concept to realize our idea and demonstrate its
feasibility. Figure 6 shows the result of displaying a class hierarchy from the Lenya
project. Gray-scale boxes represent project classes. The color of these boxes de-
pends on the normalized WCC metric results among all the classes of the project.
Light gray is used for denoting classes with low WCC metric, whereas the darker
a box the higher the WCC of the class it represents. The area of a box is de-
termined by the number of attributes and methods of a class. As the reader can
see, this type of diagram allows the developer to quickly figure out that classes 141
and 146 are the more complex of the hierarchy, while the complexity for class 141
is concentrated in fewer methods because of the dimensions of its respective box.
In fact, the class 141 is PageEnvelopeModule, which, as mentioned earlier, has the
getAttribute(String, Configuration, Map) method whose complexity is much higher
than any of the others methods in the same project. This means that if a developer
wants to reduce the overall hierarchical complexity she/he may choose to modify
the smaller class in order to introduce as fewer changes as possible.

Finally, we plan to study MC, WCC, and CC metrics for predicting software
quality attributes. Different software engineering metrics can be employed for pre-
dicting situations such as whether bugs will be reopened or not, or whether a class
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will have a propensity for bugs or not (e.g. [26]). In principle, we will analyze the
statistical correlation among the metrics and different aspect of classes.

7 CONCLUSIONS

There is an incessant necessity for measuring software quality attributes in OO sys-
tems so as to ensure software maintainability and properly focus efforts in projects.
This paper presented a set of software metrics that measure software cognitive com-
plexity based on a set of basic control structures for characterizing Java-based OO
source code. Additionally, this paper described an automatic tool for gathering these
metrics, which is implemented as a plug-in for Eclipse. As a complement to a pre-
vious theoretical validation of the underpinnings of the metrics, we show that the
system-level metric of the proposed set (i.e. the CC metric) satisfies eight out of nine
of the practical properties for software complexity metrics identified in [21]. This
shows the practical validity of the metric and, together with a theoretical evaluation
performed via Weyuker’s properties, suggests that the CC metric can be considered
in real development scenarios.

The identified set of basic control structures to materialize the MC and indi-
rectly WCC and CC covers a wide range of programming constructs for Java, one of
the most popular OO programming languages. Complementary experimental eval-
uation reported in this paper provides further evidence on the feasibility of using
the proposed approach to assess real-world Java projects. These experiments show
that our tool can be executed using a low-end personal computer in the order of sec-
onds. Also, based on real projects, we have shown that our metrics can be useful in
practice to assess complexity in a more ellaborated way since our metrics aggregate
factors that are known to individually affect complexity. In fact, the experiments
have also shown that such factors are not simultaneously captured by popular CK
metrics such as WMC, DIT, RFC and CBO.
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