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Abstract. With the recent advanced computing, networking technologies and em-
bedded systems, the computing paradigm has switched from mainframe and desktop
computing to ubiquitous computing, one of whose visions is to provide intelligent,
personalized and comprehensive services to users. As a new paradigm, Active Ser-
vices is proposed to generate such services by retrieving, adapting, and composing
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of existing service components to satisfy user requirements. As the popularity
of this paradigm and hence the number of service components increases, how to
efficiently retrieve components to maximally meet user requirements has become
a fundamental and significant problem. However, traditional facet-based retrieval
methods only simply list out all the results without any kind of ranking and do not
lay any emphasis on the differences of importance on each facet value in user re-
quirements, which makes it hard for user to quickly select suitable components from
the resulting list. To solve the problems, this paper proposes a novel personalized
facet-weight based ranking method for service component retrieval, which assigns
a weight for each facet to distinguish the importance of the facets, and constructs
a personalized model to automatically calculate facet-weights for users according
to their historical retrieval records of the facet values and the weight setting. We
optimize the parameters of the personalized model, evaluate the performance of the
proposed retrieval method, and compare with the traditional facet-based matching
methods. The experimental results show promising results in terms of retrieval
accuracy and execution time.

Keywords: Active services, component ranking, facet-weight, ubiquitous comput-
ing

1 INTRODUCTION

With the rapid development of software, hardware and computer network technolo-
gies, the computing paradigm has been changing radically in the recent 20 years.
It is a certain trend that the ubiquitous computing is replacing the mainframe and
desktop computing. Ubiquitous computing lays the emphasis on the seamless inte-
gration of human, computers as well as environment, and aims at providing ubiqui-
tous services to meet users’ intelligent, personalized and comprehensive requirements
anytime, anywhere and by any means. However, existing services and computing
paradigms are not flexible and powerful enough to meet users’ various requirements.
How to customize services dynamically according to users’ requirements has become
a hot research field in ubiquitous computing.

Active Services [1], as a new paradigm for ubiquitous service customization, has
been proposed recently to solve the above-mentioned problems and has achieved po-
pularity in today’s software development community due to the increasing complex-
ity of services, increasing costs of maintenance, and decreasing costs of underlying
hardware. It encapsulates existing resources such as services, programs and devices
into reusable service components. In the following parts of the paper, for simplifi-
cation purpose, we use component to denote service component. The paradigm of
Active Services makes use of these components distributed in the ubiquitous envi-
ronment, and generates new services to meet users’ personalized requirements with
the technology of Component-Based Software Development (CBSD) [2]. Therefore,
the process of developing ubiquitous services has changed to the combination of



Personalized Facet-Weight Based Ranking Method for Service Component Retrieval 493

existing components through retrieval, adaptation, composition of the components,
and testing of the developed services. Since all of these activities are influenced by
component retrieval, it becomes a critical process for service customization. In or-
der to keep high efficiency for generating ubiquitous services to satisfy users’ various
requirements, it is really important to retrieve the most suitable component quickly
and accurately among a large-scaled components repository.

There are extensive retrieval methods used for component repositories [3, 4,
5, 6, 7, 8]. Among them, the facet-based component retrieval method has been
proved to be an effective way for retrieving. The facet classification in component
repository was proposed by Prieto-Diaz and Freeman in 1987 [9]. A faceted scheme
consists of a group of facets that describe the essential features of components in an
objective and comprehensive way. Each facet classifies components from different
angles, and consists of a set of terms, called term space. The process of the facet-
based component retrieval method is to match each facet between user queries and
components. It has been widely applied by various component reuse organizations,
such as NATO [10] and REBOOT [11]. Most of these organizations use the tradi-
tional database query techniques in facet-based component repository. In order to
improve the efficiency of facet-based component retrieval method, many researches
have been taken [12, 13, 14]. Gibb [15] used XML to describe component facets
and applied XML-SQL as the searching language to achieve component retrieval
in their project. In [16], Wang proposed a tree matching algorithm for facet-based
component repository, which maps the component facets into a facet tree and the
query conditions into a query tree. These methods have improved and expanded
the facet-based component retrieval method by adopting efficient structure of facet
scheme. However, they still have two disadvantages:

1. these retrieval methods usually simply list out all the results without any kind
of ranking;

2. user requirements can only be expressed by the selected values on each facet,
but the differences of importance on each facet value are ignored.

These two problems lead to the scenario that users have to view the detailed informa-
tion of all the listed components to determine which one satisfies their requirements,
which is of low efficiency in component retrieval. Then in [17], Yang set weight for
six fixed facets and proposed a mathematical model of weighted ranking algorithm.
Furthermore, Xie [18] designed an intelligent component retrieval model - FWRM,
which changes the facet-weight itself dynamically by genetic algorithm, and uses
risk minimization-based component sampling method to solve the insufficiency of
training data. These two methods solve the ranking problem of component retrieval,
and give efficient ways to calculate the facet weight; but they do not consider in cal-
culating the facet-weight the differences of user’s private retrieval habits, interests
and understanding of the facet terms, which is far away from the target of providing
ubiquitous and on-demand services with high efficiency. So it is important and ne-
cessary to distinguish the importance of each facet value for each user and to define
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a formula to calculate the matching degree to rank the components in the resulting
list.

In this paper, we propose a personalized facet-weight based ranking method for
component retrieval. We formally specify the components and user queries under
facet classification space in the form of vectors, and assign a facet-weight on each
facet for a user to decide which facet value in his query is more important. The
user’s setting of facet-weights provides more information of his requirement, and
helps rank the components with finer granularity. Furthermore, the user’s setting
of facet-weight is proved to be related to his query on each facet, so it is possible
to extract user’s retrieval habits and interests from his historical retrieval sequence
of facet values and facet-weights. According to the historical records, we construct
a personalized model. The model is used to automatically calculate weights for users
when it brings forward new retrieval facet values, so that the user will save much
time in facet-weight setting. The experimental results optimize the parameters of the
personalized model for the best facet-weight vector, and prove that the personalized
facet-weight based component retrieval method performs better in retrieval accuracy
and takes shorter time to find the target component.

The rest of this paper is organized as follows. Section 2 defines the facet vec-
tors and the facet matching degree, introduces the facet-weight based component
retrieval method, and then gives an example. Section 3 describes the personali-
zed model and the facet-weight calculation based on the model. We describe our
experimental results and analysis in Section 4 and conclude the work in Section 5.

2 COMPONENT RANKING METHOD BASED ON FACET-WEIGHT

In this section we describe the definitions of the facet vectors for components and
user queries, as well as the definitions of the facet matching degree and the facet-
weight. Then we introduce the ranking formula based on facet-weight for component
retrieval.

2.1 Facet Vector and Facet Matching Degree

The key idea of facet classification is to accurately classify components so as to
reflect the essence of components. Current component repositories usually employ
a group of facets to classify their components. Prieto-Diaz and Freeman [9] take
Function, Object and Medium as facets in their system, while the Jade Bird Com-
ponent Library System [19] contains the facets of Application Domain, Component
Function, Component Type, Programming Language and Running Platform. Gene-
rally, we assume that there are n facets to describe a component, and each facet
contains a limited set of facet terms.

Definition 1 (Facet Vector). The facet-based structure of component repository is
defined as a vector F' = (fi, fo, ..., fn) in which fi = (fi1, fio,--., fin,). fi is the
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ith facet to describe component, n; is the number of facet values under f;;, and f;;
represents one of the facet terms under f;.

Generally, the structure of facet-based component repository is tree-styled and
hiberarchical. However, in the construction of the Facet Vector, we only choose
the terms of lowest level of a facet, because these terms are enough to reflect the
characters of components and user requirements.

The values on each facet of a component are described by component providers,
according to the properties of the component and the facet space of the target
repository. So the component can be described as Component Vector, based on
Facet Vector.

Definition 2 (Component Vector). Under the vector space of facet F , each com-
ponent can be defined as ¢ = (¢1, 63, . .., ), in which ¢ is a vector generated by all
the facet values under the i*" facet f;, defined as follows:

1 if C'related to f;; j

0 otherwise =1,2,...,n

G = ( 0,15 Ci 2y - - ~aCi,ni)>C7ﬁ,j = {

For example, suppose that there are 5 facet values under the facet of running
platform: winXP, win2k, linuz, Uniz, others. Then the facet value vector of this
facet should be defined as j_i = (winX P, win2k, linuz, Unix, others). If a com-
ponent is supposed to run on linuz, its vector of this facet is (0,0,1,0,0); and
if a component is supposed to run on winXP and win2k, its vector is obviously
(1,1,0,0,0).

A user query is brought forward on the foundation of facet classification scheme
of the component repository; so it can also be formally defined based on Facet Vector,
same as the structure of Component Vector.

Definition 3 (User Query Vector). Under the vector space of facet F, each user
query can be defined as ¢o = (qo.1, @02, - - - » Gon), in which @y, is a vector generated
by all the user required values on the " facet f;, defined as follows:

1 if user selects f;;
0 otherwise.

—

Go; = (Q0,i,1,90,i,25 - - - > Q0jins ) Q0,ij = { =12

N/ 173

Based on the definition of Component Vector and User Query Vector, the Facet
Matching Degree (FMD) indicates how similar two vectors are under a facet. It
reflects the similarity and relevancy between a component and a user query, or two
user queries. As both the Component Vector and User Query Vector are following
the same structure, we use the inner product to calculate the FMD. Assuming that
¥;; and 7 ; are two vectors from the j' facet of o; and v, then the FMD of
and v ; is defined as.

nj
FMD(UZ'J, 771%]‘) = ﬁi_j . 1_)’ij = Z Vil * Ukgl- (1)
=1
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2.2 Component Ranking Formula

On the basis of the Facet Vector based definitions of components and user queries,
the Facet Matching Degree indicates the similarity on each facet; but if the FMD
of each facet is directly and simply added together, the difference of importance of
those facets can not be distinguished. In the process of component retrieval, differ-
ent users usually emphasize different facets in their requirements, according to the
requirement content, personal habits, etc. For example, when selecting a component
for calculator of java applet, users may think the matching on facet of Component
Function and Component Type is more important than that of Application Domain.
So it is necessary to set a weight for each facet to differentiate the user’s view on the
facet values. Users are able to define the weights of each facet themselves, according
to what their requirements really are.

As it is supposed there are n facets to describe components, the number of
weight in a facet-weight vector should also be n. It is defined as follows.

Definition 4 (Facet-Weight). A Facet-Weight vector is defined as wy = (wo,1, wo 2,
.. ,Wop). W, represents the weight of Facet Matching Degree on the ith facet f;.
The vector wy is normalized such that:

n
Z wgf =1.
i=1

Then the General Matching Degree (GMD) between user query gp and compo-
nent ¢ is defined as the weighted sum of matching degrees on all facets:

GMD(CTm E) = ZFMD(%,i> @) * Wo, - (2)

i=1

Equation (2) reflects how much the component ¢ satisfies the user query ¢. The
larger the resulting number is, the closer is the relationship between them, especially
on the facets with high weight. So we can calculate the GMD between ¢, and each
component € in the repository, and sort components by their GMDs.

An example is presented in Figure 1 to demonstrate the process of component
ranking based on facet-weight and its advantage comparing with traditional facet-
based matching method. The user has proposed facet values on five facets as his
query, and the two different components satisfy the most part of the user query.
Component 1 satisfies the user query except “Book hotel” and “View map” on
Component Function facet, while component 2 satisfies user query except “Book
hotel” on Component Function facet and “ActiveX EXE” on Component Type facet.
We can calculate the FMD on each facet between user query and component. If
the FMD of each facet is simply added together, the GMD between the user query
and the two components are the same. Without the information of which facets the
user emphasizes, traditional facet matching method can not distinguish these two
components; but after the user set a weight for each facet as (0.8,0.3,0.3,0.3,0.3),
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Fig. 1. Comparing example between facet matching and facet-weight matching methods
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it is clear that the user indicates the matching of Component Function facet is the
most important in his current requirement. According to Equation (2), we can figure
out that the GMD of Component 1 is 2.3, smaller than the GMD of component 2,
which is 2.8. Actually we can see that component 2 satisfies more user needs, and
it should be laid in front of component 1 in the retrieval result.

3 PERSONALIZED FACET-WEIGHT CALCULATION

There are two kinds of significant information which influence the setting of facet-
weight in the process of component retrieval: user requirements and user customs.
So generally, if two retrieval queries from a user are similar, he will usually set
similar facet-weight vectors on them. For example, a user searching for a video
player component will usually focus on matching of the Component Function facet,
while if he needs a chatting tool component, he is likely to emphasize matching of
the Component Type facet. Therefore, it is useful to capture how a user’s retrieval
history is related to his weight setting, and create a personalized model to identify
and learn his interests and habits on component retrieval. The personalized model
helps calculate weight of each facet, according to user’s current query. It could
efficiently improve accuracy in generating and ranking the retrieval results.

3.1 Personalized Modeling and Facet-Weight Calculation

In our component retrieval system, constructing user’s personalized model is used
to calculate facet-weights for the user’s current query. To achieve the goal, it is
necessary to collect the user’s historical information of component retrieval, and
extract the user’s common interests and habits on setting facet-weights for his query.
So here we define two kinds of information to create the user personalized model for
facet-weight calculation.

1. User’s historical retrieval records. User’s historical operations of component
retrieval directly contain the information of user interests and habits, especially
the relationship between the query vector and the corresponding facet-weight
vector. So we define a retrieval log for each user, restoring his historical retrieval
records. However, not all of the user’s historical retrieval records are inserted
into the log. If the component user wants is not in top 10 of the resulting list,
this retrieval operation will be regarded as an invalid one and will not be restored
in the log, because there must be something wrong in the setting of user query
or facet-weights, and wrong records may lead to failure in personalized facet-
weight calculation. Here each record item in the log is defined as r; = (¢;, w;) in
which ¢; = (Gi1, G2, - - - Gin) is the user query vector of the i*! record item, and

Wi = (w1, Wiz, ..., w;,) is the facet-weight vector of the i*" record item.

2. Fading value. Each record in the user retrieval log is sorted by its access time.
New records are put behind the old ones. User’s interests and habits will change
with time and user’s latter query and weights setting are better than earlier ones
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in reflecting user’s interests and habits. So we define a fading factor €, which is
a constant parameter and 0 < € < 1. Based on the fading factor, facet value for
the i* record is defined as s; = €™*, in which m is assumed as the number of
records. When i = m, s; = s,, = 1 means the latest record needs no fading; and
when i = 1,8; = 8,1 = €™ ! means the oldest record gets the smallest fading
value.

Historical

Current Query ' | Weight Vectors
< Qo> I ! r===="5

|
| |
|_/v < imilarity of qo-q : <wi> :
[ | .
i ! | ! | | Personalized
1<qi> —T»CSimilarity of qo-q : <w2> i Facet-Weight

Historica:l < Q2> [

| |
b [T | I | < Wima>
Query | | [ —— O |
Vectors! ™" i T imilarity of qo-gpr———)! < wm> i I
1
|
|

g | |
L
Calculate the Multiply each weight Add the results together
similarity vector with similarity and normalize the vector

and fading factor
Fig. 2. Process of personalized facet-weight calculation based on historical retrieval records

The key idea behind personalized facet-weight calculation is to highlight user’s
weights setting of similar historical queries and recent retrieval records. We still
assume that the user’s new retrieval query is ¢ = (Go.1, @2, - - - » Go,n) and the number
of user’s historical records is m. Figure 2 shows the process of how to calculate the
personalized facet-weight on the basis of historical retrieval records. It can be divided
into three steps:

Step 1: Calculate the similarity between user’s current query and each record in
the retrieval log, based on the definition of FMD. If one of the user’s retrieval
queries in the past is much closer to the user’s current query, its corresponding
facet-weights setting on each facet will certainly be of higher reference value.

Step 2: Change the facet-weight vector of each record by multiplying the corre-
sponding similarity calculated in (1) and the fading value into every element of
the facet-weight vector.

Step 3: Add all the updated facet-weight vectors from (2) together, and normalize
the resulting vector to calculate the final facet-weight vector. Therefore, the
calculating formula of personalized facet-weight Wyma = (Wrmd—1, Wrmd—2; - -
Wrmd—n) 18 described as follows:

9

u_frmd = Z (Z FM.D ((To_j, (7”)> © S U_;L (3)

i=1 \j=1

The final facet-weight vector is not normalized and will not influence the order
of retrieval results. However, it is still necessary to normalize the facet-weight vector
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before inserting it as well as the user query vector into the user retrieval log, and
the normalized facet-weight vectors are easy for users to understand and adjust.

Equation (3) can be regarded as a raw model for facet-weight calculation. The
process of facet-weight calculation requires comparing and integrating the current
user query with all the historical queries and facet-weights. With the accumulation
of log records over time, the storage spending will be exhausted and the computa-
tional complexity will significantly increase; so it is necessary to make the model
independent with the number of historical records, while reserving the essential
characters on the user’s setting of queries and weights.

Here we derive the raw model based on Equation (3), and extract a user person-
alized model for facet-weight calculation. The ¢ weight of the facet-weight vector,
assigned as wymq_¢, can be calculated and deduced as follows:

Wymd—t = Z (Z FMD q0]7qL])> © St Wiy

i=1 \j=1
n
- Z (Z (Z o, %,yl)) © 8 Wiy
i=1 \j=1
m n n;
= Z (Z (Zqojl qi,5,1 wzt)) - S;
i=1 \j=1 \i=1
n nj m
= Z < <Z qo,5,0 * 5,0 " Wit * S7>>
j=1 \I=1 \i=1
j
= Z( do,j! - (qu,jl Wit - Sz))
j=1 \i=1

j=1 i=1
Define a new vector u; = (U1, U2, .. ., Upy,) in which:
m
J= D g Wi si. (4)
i=1

Thus, we have the following modified formula:

n

m n
Wrmd—t = Z (q%,j : (Z q_'i,j s Wit Sz)) Z qO,] Ut,] (5)
i=1 j=1

J=1

According to the deduction above, we extract the personalized model U =
{@;,t =1,2,...,n} in which the ¢'® element 1; is a vector independent in calculating
the weight of the ¢ facet. Figure 3 shows the process of personalized facet-weight
calculation after personalized model extraction. We can see that the personalized
model U has no relationship with the number of records in user retrieval log. So
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after the process of modeling, the used records could be deleted from log, so as to
save the storage spending for user retrieval log; and the computational complexity
of facet-weight is greatly reduced from O(mno) to O(no), in which o is the total
number of all facet terms, n and m are still the number of facets and the number of
user’s historical retrieval records, respectively.

. i Historical .
Historical Weight Fading | Current Query |
Query Vectors |, .o i factor I < Qo> I -
e e | | Personalized
L <qi> ! < wi> ! @ | Facet-Weight
} < Q2> | i <W2> | : P ) | < Wimd >
| I | @ ersonalized |
_— A N — Model U !
! ! |
i <qm>i i <w,1.>i @ <Ui><Uz2> < Un> :
|
Create Personalized Model by Directly calculate the
historical records and fading factor facet weight vector

Fig. 3. Process of personalized facet-weight calculation after personalized model extraction

3.2 Incremental Update

A user’s personalized model U is not constant, because the user keeps on searching
components and new records of facet values and weights are expected to be updated
and inserted, which are more important in reflecting user’s interests and habits. So it
is necessary to incrementally update the user’s personalized model by inserting user’s
new queries and weights setting into the model. The incremental one or more records
have the same structure as the ones that are taken to construct the personalized
model U. So we execute the same steps to construct the model’s incremental part
U’ and add U’ to the original model U to achieve the user’s personalized model
update. Incremental update process includes two steps:

Step 1: Generally, assuming that the original personalized model U is constructed

based on m historical retrieval records, R = {ry,7s,...,rm} and p new records,
R' = {rm41,Tm42s - - -, Tmep} are going to be added into the model. According
to the newer p records, we then construct the incremental part U’ = {Ji,t =
1,2,...,n} in which the j™ element of uz is
m—+p
Wip= Y i wissi (6)
i=m+1

As the number of historical records has been changed to m + p, the formula of
fading factor should be also changed to s; = €™+~
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Step 2: Integrate each vector u_i of U’ to its corresponding vector w; of original

model U with vector addition operation, which results in Upew = {@new—t,t =
1,2,...,n}. The 5™ element of @pew—¢ i Upew can be deduced and proved as
follows:
m-+p
Umew—t,j = Z GQij - Wit~ Si
i=1
m+p
= D G Wi Sit Y, Gy Wi S
i=1 i=m+1
m m+p
_ - m+p—i - m~+p—i
= D G wig- €T Y Gy wig - €
i=1 i=m+1
m m-+p
_ - m—i - m4p—i
= @Y G wig €T Y Gy wig €™
i=1 i=m+1

= €p . ’ljt,’j + u/t,j-

The deduction proves the additive property of the proposed personalized mo-
del U, so the proposed incremental update mechanism can be applied to maintain
the model, rather than just recalculate the model based on all new and old records.
Obviously, this process makes the personalized model computationally more efficient
and promising.

4 EXPERIMENT RESULTS

In this section we discuss the conducted experiments to evaluate our proposed
method and analyze the corresponding results. We first describe our experimen-
tal setup in Section 4.1. Then in Section 4.2, we find the proper parameters of
the personalized model for the best facet-weight vector, and compare our proposed
method with other existing methods.

4.1 Experimental Setup

We have implemented the proposed facet-weight based component ranking and per-
sonalized facet-weight calculation methods according to user’s historical retrieval
records, named PWCRS (Personalized Weight Based Component Retrieval System)
(Microsoft .NET 2003 + SQL2000). We collect 2000 components from some public
repositories such as Active-X [19], Alphaworks [20] etc. All of these components
are classified by our facet classification scheme, which is defined based on Jade Bird
Component Library System [21].

The experiments separate the users into three groups. Fach group consists of
10 users. All the users know about the knowledge of component reuse to a cer-
tain extent, and what they should do is to search 10 components, whose abstract



Personalized Facet-Weight Based Ranking Method for Service Component Retrieval 503

introductions have been shown to them. Users of group 1 take the traditional com-
ponent retrieval method based on facet matching, which means all the facets have
the same weights. Users of group 2 propose retrieval queries on each facet and
set the weight of each facet themselves, using facet-weight based component re-
trieval method to search 10 target components. Users of group 3 are experienced
in operating PWCRS, and each of them has used the system to retrieve more than
200 components. Our system has stored their historical retrieval records and con-
structed personalized models for each of them; so the users of group 3 will take the
advantage of the automatically calculated facet-weights, i.e. the self-defined ones. If
they are not satisfied, they can reset the facet-weight vectors.

There are three metrics to evaluate the efficiency of each group: Awverage Re-
trieval Time (ART), Average Target Position (ATP), and Average Deviation (AD).

Average Retrieval Time is defined as the average time of all users’ whole re-
trieval process on searching one component, including the processes of user
query requesting, component matching, and target component positioning in
the resulting list. The statistics of ART among the three groups can be used
to compare the time cost of the three methods. The shorter ART is, the higher
the efficiency is.

Average Target Position is defined as the average position of target component
in the resulting list among all users. For one target component, different user
requirements and different retrieval methods will obviously result to different
positions of the resulting list. The smaller ATP is, the more likely the target
component is selected.

Average Deviation is defined as the average distance of difference between
real weight vector and ideal weight vector of target component among all
the users. The ideal weight vector means the one that leads to the maximal
GMD of current user query ¢y and target component Cy,., which is wigeqs =
arg max( GMD(¢o, Car)). The closer to the ideal weight vector, the better the
target component is in the resulting order. The formula of AD can be defined
as follows:

(wo,i - widealfi)z- (7)
=1

(2

AD(’Uyo, wideal) = $

4.2 Results and Analysis

First, it is very important to figure out how the parameters influence the facet-weight
in the personalized facet-weight calculation. There are two parameters: the number
of historical retrieval records m and fading factor e. Obviously, the change of these
parameters will merely influence ART, because the time of component matching is
independent with them. So, we just seek for the relationship between ATP and
these two parameters, in order to figure out a suitable group of parameters m and €
for the best ATP. Users of group 3 directly achieve these tasks, and experimental
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results are shown as Figures 4 and 5. In Figure 4, the number of historical re-
trieval records m is statistically set as 120. In Figure 5, the fading factor € is set
to 0.95. The connected lines in both figures depict the average resulting values of
the 10 users. The point above the average value indicates the maximal position of
target component, while the point below the average value indicates the minimal
position of target component.

0.65 0.7 0.75 0.8 0.8 0.9 0.95 1 e

Fig. 4. The relationship of ATP and the fading factor

Fig. 5. The relationship of ATP and the number of records

Figure 4 shows that fading factor e = 0.95 makes the best calculation of facet-
weight vector, which leads to the lowest ATP and all the target components are
in top 10 of resulting lists. If the fading factor is set bigger or smaller, the target
component will fall down in the resulting lists, much harder to be found out. In
Figure 5, we can see that ATP goes smaller when number of historical retrieval
records is set larger, and will be limited to a steady value when m > 120.
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We then test and compare the results on AD among the three groups of tradi-
tional component retrieval method based on the facet matching, facet-weight based
component retrieval method, and the personalized facet-weight based component
retrieval method. Users of group 3 take the number of historical retrieval records
m = 120 and the fading factor ¢ = 0.95. The ideal weight vector W4y for current
query ¢o and target component ¢, can be calculated. The #' element of Wigeq
should be:

FMD(q_E),ta 5ta7’7t)
Vi) FMD(Go.i, Grar—i)?

Group 1 users do not use facet-weights, so the facet-weight vector in the cor-
. . 1 1 il X
responding experiment can be regarded as (n72,n72,...,n72). The facet-weight
vectors of group 2 users are defined by users themselves, while those in group 3
are calculated by the personalized model. According to the definition of AD in
formula 7, the ADs of the three groups on each target component are shown in
Figure 6.

(8)

Wideal -t =

—o— Groupl —#—Group2 —&— Group3
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Fig. 6. Comparison of AD on different retrieval methods

The results shown in Figure 6 indicate that user defined facet-weight vectors
are much closer to the ideal weight vector than the proportioned weights, and the
calculated weights are nearly the same as what users really set. We can also see
that the AD of group 2 and group 3 are very stable, while that of group 1 fluctuates
much in different retrieval conditions. It proves that setting weights on facet brings
positive support for improving the efficiency of component retrieval.

Finally, we compare the ART and ATP among three groups. Users of three
groups search the same 10 components, regarded as ¢y, ¢, . . ., ¢19. Users of group 3
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still take the number of historical retrieval records m = 120 and the fading factor
€ = 0.95. The experimental results are shown in Figures 7 and 8.

——Groupl —#—Group2 —&— Group3

140 p
120 ¢
100 ¢
80 |
60
40 ¢
20

ART/s

Cl C2 €3 €4 C5 C6 C7T C8 (9 CcC10
Component

Fig. 7. Comparison of ART on different retrieval methods

The experimental results show that users of group 2 spend no more time than
users of group 1 in the process of component retrieval. Obviously, compared with
the retrieval operations of group 1, it takes extra time for user of group 2 to decide
the weights for his query on all the facets; but the self-defined weights help users of
group 2 optimize the component ranking and provide smaller ATP in the resulting
list, which makes it easier for them to find out the target components, and saves time
in component selection. So the total time of component retrieval process does not
change significantly. The time users of group 3 spend is generally 30 % shorter than
that of group 1 and group 2, because our system calculates facet-weight vectors after
they set facet values on all facets. Users of group 3 are free to adjust the weights,
but it hardly happens in our experiment. So this process takes much less time than
that of the self-defined weights. Furthermore, the experiment of group 3 results in
nearly the same ATP as those of group 2, which means the automatically calculated
facet-weight vectors are very close to what the users really need. The experiment
proves that the personalized model for facet-weight calculation indeed reflects the
users search habits and interests, keeping high accuracy in component retrieval.

The comparison between the results of these three groups proves that setting
facet-weight is quite useful and efficient in assigning differences of importance on
all the facets, improving the accuracy of user requirement express, and helping
users select satisfying components quickly. User’s historical operations of component
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14 ¢
12 ¢
10

ATP

O DN =~ O o
T

cir C2 €3 €4 Cb €6 Cr €8 (C9 C10
Component

Fig. 8. Comparison of ATP on different retrieval methods

retrieval on setting value and weight on each facet reflect his common habits and
interests, and the importance of this relationship will attenuate over time; so the
personalized model constructed according to these characters is able to automatically
calculate reasonable facet-weight vectors for user’s current queries, so as to save
user’s time and improve the retrieval efficiency.

5 CONCLUSIONS AND FUTURE WORK

The emerging ubiquitous computing is changing the current computing paradigm
and our daily activities. In order to make the ubiquitous services accessible to
anyone, anytime and anywhere, it is important to improve the retrieval efficiency
of current component resources. A good ranking method helps reduce the time
spending to accurately select suitable components, which is of great foundation for
providing ubiquitous services. In this paper we have proposed a personalized facet-
weight based ranking method for component retrieval. We designed a new formula to
rank the facet-based components by assigning a weight on each facet to distinguish
the importance of facet values, and automatically calculate facet-weights for user
according to his historical retrieval records of facet values and weight setting. To
reduce the calculation of facet-weight calculation, we created a personalized model
to integrate user’s historical records of facet values and weights, fading factor, and
deduct the formula of incremental study to append user’s new retrieval records
to the personalized model. The experimental results optimize the parameters of
personalized model for facet-weight calculation, and prove that the personalized
facet-weight based component ranking method performs better than the traditional
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facet-based component retrieval method in terms of retrieval accuracy and execution
time.

In the future we plan to expand the ranking scale to heterogeneous compo-
nents repositories. In the environment of ubiquitous computing, it often happens
that users need to organize heterogeneous components to ensure completing their
required service functions. Ranking among more components repositories may help
retrieve better components for user requirements. We also plan to take more user-
specific information into consideration of the personalized model, and to design more
sophisticated learning and ranking algorithms to further improve the efficiency of
component retrieval.
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