
Computing and Informatics, Vol. 30, 2011, 621–637

DESIGNING AN ASPECT-ORIENTED PERSISTENCE
LAYER SUPPORTING OBJECT-ORIENTED QUERY
USING THE .NET FRAMEWORK 3.5

Mohammadreza Jooyandeh, S. Mehdi Hashemi

Computer Science Department

Amirkabir University of Technology

424 Hafez Ave.

15914, Tehran, Iran

e-mail: mohammadreza@jooyandeh.info, hashemi@aut.ac.ir

Communicated by Alok Miskra

Abstract. In this article, we discuss aspect persistence, how it can be implemented
in the .NET framework, and how to use the .NET framework to provide object-
oriented queries for aspect-oriented persistence layers. The manner in which aspect-
orientation can be available in the .NET framework is investigated in the first part
of this article. Then the procedure through which adding persistence concepts to
the .NET framework as aspects will be explained. In the next step, providing
object-oriented querying is discussed, which is the main part of this article. Having
object-oriented querying ability helps processes query in the same object-oriented
domain in which objects are defined (not in the relation entities’ domain). Language
Integrated Query (LINQ) is used to provide the ability of querying in an object-
oriented manner. Then, the translation of queries from the real objects’ domain to
the storage-objects’ domain is explained. After such translation, the queries can
be run by using the existing LINQ providers (for example LINQ to SQL). Finally,
translating the result of queries back into the real objects’ domain is discussed.

Keywords: Persistence layer, aspect-orientation, aspect persistence, object-orien-
ted query, language integrated query

Mathematics Subject Classification 2000: 68N15, 68N19, 68N20



622 M. Jooyandeh, S.M. Hashemi

1 INTRODUCTION

Persistence layers and services are bridges between applications and their data. They
aim to have a set of common interfaces for communication with mechanisms which
are used for storage and retrieval of data, and applications which use the data [12].
One of the important goals of designing a persistence layer is to release the software
from its codes which deal with persisting data.

Aspect-orientation [1] is a technology which allows for modular thinking in the
world of software development. It provides the ability to intercept code execution
for any purpose. Using this technology, one can add a process before or after, handle
or log thrown exceptions, check access rights or perform other useful processing.

Separation of concerns in computer science is dividing software processes into
some features in such a way that functionality overlap is minimized. This is similar
to the Java which can separate concerns into some objects or to the C program-
ming language which can divide them into functions. Aspect-oriented languages
can separate concerns into aspects and objects. Aspects are abstractions which serve
to localize any cross-cutting concerns like logging and tracing which cannot be en-
capsulated within a class, but it is tangled over many classes. In aspect-oriented
programming, classes are separated from aspects. They join each other at some
point of program execution which is called a join-point. A set of join-points, which
is cut by an aspect, is called a point-cut. Finally an aspect-weaver is used to com-
bine each aspect with its related point-cut. Code 1 shows how access control can
be implemented as an aspect. An access check is performed on all methods of the
class Document which is defined as the CheckPoint point-cut. Aspect-Oriented Pro-
gramming (AOP) provides a way to encapsulate cross-cutting concerns which can
be helpful for system maintenance and changing each concern with minimum cost.

public aspect AccessCheck

{
pointcut CheckPoint void Document.*();

before CheckPoint

{
if (!AccessDecider.AccessAllowed(

AuthenticationManager.CurrentUser,

CurrentJoinPoint))

{
throw new UnauthorizedAccess();

}
}

}

Code 1: An access check aspect for verifying permission to run use-cases of docu-
ments



Designing an AO Persistence Layer Supporting OO Query Using .NET 3.5 623

Querying is one of the most important features which any real-world persistence
layer should support. Almost all databases provide the ability of querying to some
extent. A persistence layer should make a bridge between this and the target pro-
gramming languages. This problem is especially important when the target language
is object-oriented because having relational queries in object-oriented languages is
obviously a mismatch and is not suitable. Many studies have been conducted to
solve this problem. In this work, we will discuss the .NET framework because of the
querying ability that it provides. LINQ is introduced in the .NET framework 3.5
as one of its components. “LINQ is a methodology that simplifies and unifies the

implementation of any kind of data access” [2]. LINQ is used in this work to provide
object-oriented querying for a custom persistence layer.

So far, persistence is considered as a cross-cutting concern in many studies
like [3, 5]; but having object-oriented queries is not considered in many of these
studies. Having both persistence as an aspect and providing object-oriented query-
ing mechanisms is discussed in this article. The rest of the paper is organized as
follows. Section 2 presents some related works and the differences between this
study and previous ones. Section 3 explains a method for adding the ability of
programming in an aspect-oriented way with the .NET framework. Section 4 shows
how some persistence concepts can be defined as aspects. Section 5 describes a way
in which one can query on objects in an aspect-oriented persistence layer. Finally,
Section 6 introduces the future works which can be done in this way.

2 RELATED WORKS AND COMPARISON

The idea of separating persistence in applications is not new and it is introduced in [3]
which talks about how persistence can be aspectized in a highly reusable fashion.
This study shows how persistence can be used as an aspect for Java applications
with AspectJ, which is one of the most powerful aspect-oriented languages [6]. It
covers database actions such as insert, delete and update. Although [3] shows that
persistence is a cross-cutting concern, there is much to do to have a real aspect-
oriented persistence layer. For example, a good persistence layer must be aware of
different kinds of mappings and should support them in a modular way [7]. Also [5]
presents an aspect-oriented implementation of persistence for Enterprise Java Beans
(EJB) which manages the life-cycle of objects.

As pointed out in Section 1, one of the challenges when working on persistence
is querying. Many works have been done recently to resolve the mismatch between
object-oriented persistence layers and relational queries, e.g. [11, 10], but the most
important step is the introduction of LINQ by Microsoft [15]. Many works have
started since then [8] which uses LINQ to make the databases transparent or [9]
which shows how LINQ can bridge object-oriented programs to relational databases.
Maybe the most powerful feature of LINQ is the ability of querying in an object-
oriented manner in the same domain where objects are defined. This property is
very important in this scope because the object-oriented programming languages



624 M. Jooyandeh, S.M. Hashemi

need object-oriented ways to access their data while most of the persistence services
and layers provide relational ones. The object-oriented features available in LINQ
can be used to provide an appropriate solution for this problem. In this article, we
discuss how LINQ can provide the ability of querying a custom persistence layer.

The .NET framework, unlike Java, is not frequently considered in works related
to this scope. AspectJ is mostly used in works that are trying to implement per-
sistence as an aspect because of its strong ability for aspect-orientation [3, 5]. This
study discusses how to provide aspect-orientation and object-oriented queries for
a .NET persistence layer, two concepts which normally are not studied together or
linked together. In addition, as the .NET framework does not have built-in features
for aspect-orientation, some parts of this article deal with a method of adding AOP
to the .NET languages. Also, we tried to make the discussion independent of any
persistence layer, so the details of using persistence layers and some implementation
issues are omitted, and we tried to focus on the ability of aspect-orientation and
querying.

3 ASPECT-ORIENTATION IN THE .NET FRAMEWORK

The .NET framework does not have any built-in features for using aspect-orientation;
but there are some ways to add this ability into the .NET framework. There are some
examples on the Web [16, 17, 18]. To be able to use aspect-orientation features, one
may choose a new compiler, but some infrastructure ways of cutting the method
calls is available in the .NET framework for context-bound and remote objects.
Any method call on a remote object is translated to an instance of an IMessage

object. The translated message is passed to the server sink which later processes
the message. One can intercept the scenario on SyncProcessMessage method of
the server-side sink, before or after the message is processed, and do everything
which is needed there (See Code 2). This idea is borrowed from [18] which used
ContextBoundObject infrastructure properties for intercepting method calls.

According to Micorsoft Developer Network’s (MSDN) description for the class
ContextBoundObject, a context-bound object resides in a context and is bound to its
context rules. A context is a set of properties or usage rules that defines an environ-
ment where a collection of objects reside. The rules are enforced when the objects
are entering or leaving a context [19]. One can add context properties by adding
a ContextAttribute inherited class. When an instance of a context-bound object is
being created, its calling context is checked to see if it is consistent for the object1.
If it fails, a new context is created for the object and is initialized according to the
properties which its context-attributes provide.

When a cross-context call occurs, the .NET framework infrastructure treats the
call like a remote call. It assumes the caller is a client and the object whose method
is called is a remote object. Any method call on a remote object is translated to
an instance of an IMessage object. The translated message is passed throughout

1 Its context-attributes specify if the current context is consistent.



Designing an AO Persistence Layer Supporting OO Query Using .NET 3.5 625

the chain of client and server sinks to the remote object.

Fig. 1. A remote call passing through the chain of sinks

The SyncProcessMessage of the first client sink is called by the remoting infras-
tructure2. Each sink calls the SyncProcessMessage of its next sink until the message
reaches to the boundary sink. The boundary sink transfers the message to the server
boundary sink. Then, the message passes through the chain of server sinks to the
remote object. Finally, the remote object method is called and the result of the call
returns through the sinks back to the client (see Figure 1). Each context-property
can add a sink to the chain of object message sinks whose attributes add the prop-
erty to the context. In the SyncProcessMessage method of the added sinks, the
scenario of the call can be modified (See Code 2). One can use this property to add
advised methods using a custom sink.

The AspectReceiverAttribute class adds a custom sink to objects (see Code 3).
Any ContextBoundObject inherited class which has this attribute (AspectReceiver-
Attribute) adds an instance of the AOProperty to its context. The AOProperty, in
turn, adds an instance of the AOSink class to the chain of the object sinks. The
AOSink implements the IMessageSink interface in a way that its SyncProcessMes-

sage method can intercept method invocations from outside of the context. Also,
the IsContextOK method of AspectReceiverAttribute which returns false causes each
object to have its own context. So, all cross-object calls are passed through the sinks.

The AOSink class is defined as shown in Code sample 2 and provides the ability
of adding pre-process or post-process calls to the main function. Now what is needed
to intercept the method invocations is almost available. Any ContextBoundObject

inherited class, directly or indirectly, with AspectReceiverAttribute as an attribute,
has the ability to have aspects.

The AspectManager class manages all aspects. It has a collection of instances of
the IAspect interface which aspects should be implemented. The IAspect interface

2 Synchronous calls are considered.



626 M. Jooyandeh, S.M. Hashemi

class AOSink: IMessageSink

{
...

public IMessage SyncProcessMessage(IMessage msg)

{
// BEFORE METHOD CALL ACTIONS

IMessage retMsg = NextSink.SyncProcessMessage(msg);

// AFTER METHOD CALL ACTIONS

return retMsg;

}
...

}

Code 2: SynchProcessMessage method of a server sink

has a collection of IAdvise objects which introduces the advises of the aspect. The
AspectManager class uses advises in all the aspects to find the point-cuts and their
advises. Point-cuts can be introduced using regular expressions. When a method is
called, the AOSink asks the AspectManager if the calling method is a join-point. If
it is a join-point, the AOSink asks for its advises and invokes them in the advised
place. Code sample 4 shows a sample class Document with the access check advised
to it before viewing the document. Also, action of viewing the document is reported
after the completion of the view use-case.

4 ASPECT PERSISTENCE

Persistence, i.e., the storage and retrieval of application data from a storage medium
is often assumed to be a cross-cutting concern. Persistence has different aspects
which are discussed in [3]. Reference [5] discusses its implementation for the EJB
persistence framework JSR220 [14]. In this study the creation, modification and
deletion of persistent-objects are examined. Also, some points about the life cycle
of persistent-objects and using different mappings are mentioned.

The state of the object can be considered as being composed of two parts:
the dynamic-state, which is typically in memory and is not likely to exist for the
whole lifetime of the object (for example, it would not be preserved in the event of
a system failure), and the persistent-state, which the object could use to reconstruct
the dynamic-state [13].

The persistent state of objects can be introduced either by using some attributes
or by using XML files. Code samples 5 and 6 are samples which make use of
attributes and XML files, respectively.

For any persistent-type, a storage-type is defined whose instances called the
storage-object which handles the persistent-state of the persistent-object. Storage-



Designing an AO Persistence Layer Supporting OO Query Using .NET 3.5 627

[AttributeUsage(AttributeTargets.Class)]

public class AspectReceiverAttribute: ContextAttribute

{
...

public override bool IsContextOK(

Context ctx,

IConstructionCallMessage ctorMsg)

{
return false;

}

public override void GetPropertiesForNewContext(

IConstructionCallMessage ctor)

{
ctor.ContextProperties.Add(new AOProperty(Name));

}
...

}

Code 3: Definition of the AspectReceiverAttribute class

[AspectReceiver(typeof(Document))]

public class Document: ContextBoundObject

{
...

[AdviseBefore(typeof(AccessCheck))]

[AdviseAfter(typeof(Auditing))]

public void View()

{
...

}
...

}

Code 4: Sample document class with two aspects

objects are managed by storage-homes which are themselves managed by the cata-

log [12]. The type that manages the storage-objects is defined by the provider of the
data-domain used. For example, if MS SQL database is used as data-domain, one
may use Table<TEntity> or DataTable classes to manage storage-objects. For com-
municating with the persistence layer, each provider implements an interface called
ICatalog which provides the functionality of the provider which is needed for the
persistence layer. Each database or any other data-domain can be introduced to this
persistence layer by implementing the ICatalog interface. For example, DataCon-
text can be considered as a catalog providing MS SQL if it implements the ICatalog



628 M. Jooyandeh, S.M. Hashemi

[AspectReceiver(typeof(School)), TablePerClass]

class School: ContextBoundObject

{
[PersistentState(IsPrimaryKey = true)]

public Guid Id { get; private set; }

[PersistentState(Length = 100, Nullable = false)]

public string Name { get; set; }

[PersistentState(Nullable = false)]

public DateTime EstablishDate { get; set; }

[PersistentState(Cardinality = Cardinality.OneToOne)]

public Person Principal { get; set; }

[PersistentState(Cardinality = Cardinality.OneToMany)]

public List<Room> Rooms { get; set; }
}

Code 5: Defining persistent-state with attributes

<?xml version="1.0" encoding="utf=8"?>

<persistentMapping xmlns="urn:persistentMapping">

<persistentState type="School" mapping="TablePerClass">

<key name="Id" type="Guid" />

<property name="Name" length="100" nullable="false" />

<property name="EsablishDate" nullable="false" />

<one2one name="Principal" type="Person" />

<one2many name="Rooms" type="Room" />

</persistentState>

</persistentMapping>

Code 6: Defining Persistent-State with XML Tags

interface. Storage-homes should implement the IQueryable<T> interface in which
T is the type of the storage-objects which are managed by the storage-home. Note
that the storage-homes can only implement the IEnumerable<T> interface, but it
is not preferable because in this case running queries may take much more time.

Three kinds of actions on a persistent-object should be handled by a persistence
layer. These actions are creation, modification and deletion.

Creation of a persistent-object has an advised method, which is called after the
creation. After the construction of the persistent object, an instance of the related
storage-object is created. Then, the persistent-object is introduced to the created
storage-object and both are reported to the provider for querying. Figure 2 shows
the scenario for the creation of a persistent-object.



Designing an AO Persistence Layer Supporting OO Query Using .NET 3.5 629

Fig. 2. Creation of a persistent-object

The modification of a persistent-object occurs in its method call if all of its
fields are defined as private or protected. When a method on a persistent-object is
called, the object is checked to see if its persistent-state is modified. If there is any
modification, the storage-object holding its persistent-state is updated according to
the new state. Figure 3 shows the scenario for the modification of a persistent-object.

Deletion of a persistent-object cannot be handled in an aspect-oriented way
because destructors of objects are called when garbage collector decides to call
them, and there is no delete command in the .NET framework as in the C or
C++ languages. One is obliged to use a direct way for deleting persistent objects.
A persistent-object should be removed with the Remove method of the using catalog.

According to Section 3, advised methods of creation and modification of persis-
tent-objects can be added to them by using aspects. The persistent-types should be
inherited from ContextBoundObject and have an AspectReceiverAttribute as a part
of their meta-data. So, an aspect should be defined for them which has two advised
methods, one for the point-cut of object creation and the other for the point-cut of
object modification. With such advised methods, the creation and modification of
persistent-objects can be handled.

In order to increase application performance, methods which do not modify the
persistent-state can be specified with the PreservePersistentState attribute or the
preserveState XML tag. This is because many methods of persistent-objects do
not change their persistent-state. Such methods can be ignored and should not be



630 M. Jooyandeh, S.M. Hashemi

Fig. 3. Modification of a persistent-object

added to the modification point-cut. Also, each method may change only a small
part of the persistent-state. So, one can use the ProbableChange attribute or the
probableChange XML tag for some methods to specify the parts of persistence-state
which may be modified by the methods. These meta-data help the persistence layer
know which parts of the persistent-state should be checked for changes after callings
on those methods.

Mapping strategies can be controlled by an XML file, although classes may over-
ride the default settings using attributes (See Code 5) or persistentState XML tags
(see Code 6). Four common mapping strategies [4] are supported in the persistence
layer:

Mapping hierarchy to a single table: In this method, all of the attributes of
all the persistent-types are stored in a single table.

Mapping each concrete class to its own table: In this method, a table exists
for any persistent-type which holds inherited attributes in addition to its own
attributes.

Mapping each class to its own table: In this method, a table exists for any
persistent-type which holds its own attributes and not inherited attributes.

Mapping classes to a generic table structure: In this method, the value of all
properties are held in a single table which holds tuples in the form of (ObjectId,
AttributeId, and Value).

The life-cycle of objects is controlled by their storage-objects. For example, if one
uses a DataSet class as the catalog, DataRow instances, which hold the persistent-
states, manage the objects’ life cycle. When an instance of DataRow is added into
a DataTable, itsRowState property is set to Added. When it is modified, the property
is set toModified. After deletion, it changes to Deleted. When a transaction commits



Designing an AO Persistence Layer Supporting OO Query Using .NET 3.5 631

it, the property changes into Unchanged if it is not deleted and otherwise becomes
Detached. According to this state, the persistence layer can decide how to act with
storage objects.

5 OBJECT-ORIENTED QUERIES

Having the ability of performing object-oriented queries is one of the key-features
of a persistence layer. Having object-oriented querying ability helps the develop-
ers query in the same domain in which their objects are defined (not in the rela-
tional entities’ domain). Also, a persistence layer which allows its users to query in
an object-oriented manner provides more functionality which makes data retrieval
much easier. Also, the code which is written with such queries is more clean and
readable. If syntax-highlighting and compile-time error checking is provided for the
query language that is used, it helps the developers solve many query problems while
the project is under development, and avoid many run-time problems.

LINQ is a uniform programming model for any kind of data access. LINQ
enables the users to query and manipulate data with a consistent model that is
independent from the data sources. The model’s consistency is one of the key-
features of LINQ, because writing and understanding of such queries require nothing
more than understanding the model used. Also, the codes can be maintained more
easily. LINQ is used in this article to add the ability of object-oriented querying.

The QueryTranslator is a generic class which is designed for querying persistent-
objects. One can access it with the GetSource<T> method of the QuerySource-

Provider class in which T is the persistent type which the set of its instances is
assumed as the source of the query.

Figure 4 represents the summarized class diagram of these types. QueryTrans-
lator<T> implements IQueryable<T> in a way that it translates queries on the do-
main of persistent-objects into queries on the storage-objects’ domain, and converts
the result to the source domain. The QueryTranslator class uses QueryTranslation-
Provider to provide data of queries which implements IQueryProvider.

The CreateQuery methods of QueryTranslationProvider construct instances of
QueryTranslator with the given expression. Execute methods of QueryTranslation-
Provider send the given expression to ExpressionTranslator class to be translated.
If the translation succeeds, the resulting expression is sent to the related storage-
home which is taken from the using catalog. The result of the query should be
converted to the requested type. The result of queries can vary from simple types
such as a persistent-type to very complex ones like any custom anonymous type.
Converting all such results is very difficult; but some of the types which are used
almost in every query are more important. In the present study, some types as the
result are supported which are:

Simple types: Simple types need no translation because the results of such queries
are automatically correct. For example, extracting the property name of a per-
sistent-type customer needs no conversion because it is of type string.



632 M. Jooyandeh, S.M. Hashemi

Fig. 4. Brief class diagram of the main querying types

Persistent-types: The output of query operators like First, Last and Single can
be a persistent-object. A generic factory type is used for all persistent-types
and assumes that all the persistent-types have a constructor with no parameter,
although other factories can be introduced with the Factory attribute or the
factory XML tag.

IQueryable<T>: Many of the query operators return IQueryable<T> instances
(for example, the result of Distinct, Where, Intersect and Join). Instances of
IQueryable<T> are converted when T itself can be converted.

IEnumerable<T>: Using foreach loops on the result of a query, calls the Exe-

cute method of QueryTranslationProvider with this type. IEnumerable<T> is
converted when T itself can be converted.



Designing an AO Persistence Layer Supporting OO Query Using .NET 3.5 633

IGrouping<TKey, TElement>: Grouping is a very important command in qu-
erying. Some overloads of GroupBy commands return a collection of instances
of IGrouping. IGrouping<TKey, TElement> is convertible whenever TKey and
TElement can be converted.

Anonymous Types: Anonymous type instances can be the result of queries. The
Select family operators can have IQueryable<T> as output in which T is an ano-
nymous type. Anonymous type instances are converted when their properties
can be converted.

Considering the above categories, one can realize that a recursive approach is
used for the result translation process. When the result of a query is going to be
translated, the target type is checked. If it needs some nested data for construction,
the translation will be recalled for the nested related data, until the translating
data has no nested data. When all the nested data are translated, the data itself is
translated.

If the translation fails for any reason, QueryTranslationProvider itself runs the
query over the set of all the storage-objects of the related type instead of using the
querying abilities of the catalog. In more detail, the provider runs a query which
retrieves all the storage-objects. Then using these objects, it converts the result
from the set of storage-objects to a set of persistent-objects and runs the query over
the resulting set.

The ExpressionTranslator class translates query expressions from the persistent-
objects’ domain into the storage-objects’ domain. Each expression may consist of
some subexpressions in addition to the data itself. For example, an instance of the
MethodCallExpression class has a collection of expressions as its parameters, an ex-
pression for the object whose method is called, and an instance of MethodInfo which
holds the information of the calling method. ExpressionTranslator uses a dynamic-
programming approach to translate expressions. Some sample rules are presented
in Code 7.

MethodCallExp(Method, Object, Params)
Trans

=======⇒

MethodCallExp(Trans(Method), Trans(Object), Trans(Params))

ConditionalExp(Test, IfTrue, IfFalse)
Trans

=======⇒
ConditionalExp(Trans(Test), Trans(IfTrue), Trans(IfFalse))

MemberAccessExp(Member, Expression)
Trans

=======⇒
MemberAccessExp(Trans(Member), Trans(Expression))

ConstantExp(Value)
Trans

=======⇒
ConstantExp(Trans(Value))

Code 7: Sample Rules of Translation



634 M. Jooyandeh, S.M. Hashemi

The rules which are presented in Code 7 are not the exact rules which are used.
They show the main action of the convertors. Some rules are needed to handle
some special cases. For example, MethodCallExpression should convert the method
QuerySource.GetSource<TPersistent> into the method Catalog.CurrentCatalog.Get

StorageHome<TStorage>.
Translation of non-expression objects also should be done. Although the fol-

lowing rules do not cover all the expressions, they may help run many kinds of
queries:

ConstructorInfo: If the constructor of a persistent-type is used in an expression,
it should be converted to the constructor of its related storage-type.

MethodInfo: If a method is a member of a persistent-type or is a generic method
with some generic parameter of persistent-types, it should be converted to a re-
lated method of a storage-type or a generic method with generic parameters of
storage-type respectively.

MemberInfo: If a member of a persistent-type is used in an expression, it should be
converted to a related member of its storage-type. Please note that if an instance
of MethodInfo is used as a MemberInfo instance, it can be converted using the
previous rule.

Type: If a persistent-type, query source or a generic type with some generic pa-
rameter of a persistent-type is used, it should be converted to the type of its
related storage-object, storage-home or generic type with the generic parameters
of storage-types respectively.

MemberBinding: If an initialization of some members of a persistent-object oc-
curs in a query, they should be converted to the initialization of members of
their storage-object.

ElementInit: If a collection is initialized inside a query, its element should be
converted. Each ElementInit has a method and a list of parameters.

Object: If an object is used in an expression which is a persistent-object or a query
source, it should be converted to a storage-object or a storage-home respectively.

Using these rules, one can translate many kinds of queries on persistent-objects
into queries on storage-objects. So the querying abilities of the using data-domain
would be available for designers and developers. Code samples 8 and 9 present two
samples of successful and unsuccessful translation, respectively.

6 CONCLUSION

The persistence layer is a part of many softwares. One of the goals of this article
is to show how persistence can be an aspect. Despite other alternative methods,
a remoting-based approach is used in this article to add aspects to objects.

Having object-oriented queries is a very important feature of a persistence layer.
This ability helps the developers query in the domain in which their objects are



Designing an AO Persistence Layer Supporting OO Query Using .NET 3.5 635

var query = from Document d in QuerySource.GetSource<Document>()

where d.Name.StartsWith("Technical")

orderby d.CreateTime

select d;

// Is converted to ...

var innerQuery = from PDocument pd in

Catalog.CurrentCatalog.GetStorageHome<PDocument>()

where pd.Name.StartsWith("Technical")

orderby pd.CreateTime

select pd;

var query = from PDocument pd in innerQuery

select

Catalog.CurrentCatalog.GetFactory<Document>.Create(pd);

Code 8: A sample of a successful query translation

var query = from Document d in QuerySource.GetSource<Document>()

where SomeUnknownMethod(d)

select d;

// Is converted to ...

var allObjects = from PDocument pd in

Catalog.CurrentCatalog.GetStorageHome<PDocument>()

select pd;

var innerQuery = from PDocument pd in allObjects

select

Catalog.CurrentCatalog.GetFactory<Document>.Create(pd);

var query = from Document d in innerQuery

where SomeUnknownMethod(d)

select d;

Code 9: A sample of an unsuccessful query translation

defined. This article showed how object-oriented queries can be available for de-
velopers through LINQ. How queries on persistent-objects can be translated into
queries on storage-objects is also explained. After that, the translated query was
submitted to the using data provider. Finally, the result of queries was translated
back into persistent-objects’ domain.

What has been presented in this article can be developed through future re-
search. It would be a proper research project to try to use a more powerful
method of translating the result of queries back to the using model since the method
which is used in this article cannot be applicable on all kinds of queries although
it can translate many kinds of queries. For example, if a query uses some non-
persistent properties of a persistent type, our approach cannot translate it success-
fully. Maybe this problem can be solved if one uses MS SQL Server 2005 or higher



636 M. Jooyandeh, S.M. Hashemi

version because of the ability to run .NET code inside new versions of MS SQL
Server.

Another point which can be a subject for future research can be introducing
an approach of having aspects, because the using method forces the persistent-
objects to inherit from ContextBoundObject, directly or indirectly, which is not good.
Also, translating calling messages and translating them back adds some overhead to
the time of the method calls which may be considerable and could be decreased by
the use of more optimal techniques.

REFERENCES

[1] Kiczales, G.—Lamping, J.—Mendhekar, A.—Maeda, C.—Lopes, C.—

Loingtier, J.M.—Irwin, J.: Aspect-Oriented Programming. In: Lecture Notes in
Computer Science, Proceedings of the Eleventh European Conference, ECCOP ’97,
Finland, June 1997, pp. 220–242.

[2] Pialorsi, P.—Russon, M.: Introducing Microsoft LINQ. Microsoft Press, Red-
mond, Washington 2007.

[3] Rashid, A.—Chitchyan, R.: Persistence as an Aspect. In: M. Aksit (Ed.): Aspect-
Oriented Software Development, Proceedings of the Second International Conference

(AOSD ’03), Boston 2003, pp. 120–129.

[4] Amber, S.: Agile Database Techniques: Effective Strategies for the Agile Software
Developer. John Wiley&Sons, Inc., New York, NY, USA 2003.

[5] Hohenstein, U.—Meunier, R.—Schwanninger, C: An Aspect-Oriented Imple-
mentation of the EJB3.0 Persistence Concept. In: Aspects, Components, and Pat-
terns for Infrastructure Software, Proceedings of the Sixth workshop ACP4IS ’07,
Vancouver 2007, p. 4.

[6] Kiczales, G.—Hilsdale, E.—Hugunin, J.—Kersten, M.—Palm, J.—

Griswold, W.: An Overview of AspectJ. In: Lecture Notes in Computer Science,
Proceedings of the Fifteenth European Conference ECOOPS ’01, Budapest June 2001,
pp. 327–353.

[7] Hohenstein, U.: Using Aspect-Orientation to Add Persistency to Applications. In:
Proceedings of Database System in Business, Technology andWeb (BTW), Karlsruhe
2005.

[8] Wiedermann, B.—Ibrahim, A.—Cook, W.R.: Interprocedural Query Extrac-
tion for Transparent Persistence. ACM SIGPLAN Notices, Vol. 43, 2008, No. 10,
pp. 19–36.

[9] Meijer, E.: There is no Impedance Mismatch: Language Integrated Query in Visual
Basic 9. In: Dynamic Languages Symposium, Companion to the Twenty First ACM

SIGPLAN symposium OOPSLA ’06, Portland 2006, pp. 710–711.

[10] Alashqur, A.M.—Su, S. Y.W.—Lam, H. L: OQL: A Query Language for Mani-
pulating Object-Oriented Databases. In: Very Large Data Bases, Proceedings of the
Fifteenth International Conference VLDB ’89, Amsterdam, August 1989, pp. 433–442.



Designing an AO Persistence Layer Supporting OO Query Using .NET 3.5 637

[11] Willis, D: The Java Query Language. M. Sc. Thesis, Victoria University of Willing-

ton 2008.

[12] OMG, Persistent State Service Specification, September 2002.

[13] OMG, Persistent Object Service Specification, April 2000.

[14] JSR 220 Specification: Proposed Final Draft 19. 12. 2005 (EJB Simplified API,
Java Persistence API, EJB Core Contracts and Requirements). Available on: http:
//jcp.org/aboutJava/communityprocess/pr/jsr220/index.html, 2008.

[15] Microsoft Corporation: The LINQ Project. Availaible on: http://msdn.

microsoft.com/netframework/future/linq.

[16] NKalore Compiler. Availaible on: http://aspectsharpcomp.sourceforge.net/

about.htm.

[17] Castle Project. Availaible on: http://www.castleproject.org/AspectSharp/

index.html.

[18] Interceptin Method Calls in C#, an Approach to AOSD. Availaible on: http://www.
codeproject.com/KB/cs/aspectintercept.aspx.

[19] Microsoft Corporation: ContextBoundObject Class, The MSDN Library. Available
on: http://msdn.microsoft.com/en-us/library/system.contextboundobject.

aspx, 2008.

Mohammadreza Jooyandeh has graduated from Amirkabir
University of Technology in computer science and pure mathe-
matics for B. Sc. in 2006 and 2008, respectively. In 2009 he has
received his M. Sc. in computer science from the same university.
His research interest is isomorph-free exhaustive generation of
graphs; he started his Ph.D. in 2010 at the Australian National
University under supervision of Prof. Brendan McKay. He has
published seven scientific papers so far.

S. Mehdi Hashemi has graduated in the field of dynamical
systems from Ferdowsi University of Mashad in 1988. In 1996
received his Ph.D. degree in applied mathematics in computer
sciences from Ottawa University, Ottawa, CA. He is currently
a Full Professor in the Department of Computer Science, Amirk-
abir University of Technology, Tehran, Iran. His research inter-
ests span the areas of graph drawing, network flow optimiza-
tion and information technology. He has published more than

40 scientific papers and has translated a textbook on applied and
algorithmic graph theory. He has also managed several research

projects in network transportation and information technology.


