
Computing and Informatics, Vol. 35, 2016, 369–390

EFFECTIVE SCHEDULING OF GRID RESOURCES
USING FAILURE PREDICTION

Woochul Kang, Jibum Kim∗

Embedded Systems Engineering Department
Computer Science and Engineering Department
Incheon National University
12-1 Songdo-dong, Yeonsu-gu
Incheon, South Korea
e-mail: {wchkang, jibumkim}@incheon.ac.kr

Abstract. In large-scale grid environments, accurate failure prediction is critical
to achieve effective resource allocation while assuring specified QoS levels, such as
reliability. Traditional methods, such as statistical estimation techniques, can be
considered to predict the reliability of resources. However, näıve statistical methods
often ignore critical characteristic behavior of the resources. In particular, periodic
behaviors of grid resources are not captured well by statistical methods. In this
paper, we present an alternative mechanism for failure prediction. In our approach,
the periodic pattern of resource failures are determined and actively exploited for
resource allocation with better QoS guarantees. The proposed scheme is evaluated
under a realistic simulation environment of computational grids. The availability of
computing resources are simulated according to real trace that was collected from
our large-scale monitoring experiment on campus computers. Our evaluation results
show that the proposed approach enables significantly higher resource scheduling
effectiveness under a variety of workloads compared to baseline approaches.

Keywords: Grid computing, resource scheduling, failure prediction, reliability, job
execution service

∗ corresponding author

370 W. Kang, J. Kim

1 INTRODUCTION

Computational grids [13] consist of diverse computing resources ranging from cheap
desktop machines to highly available and high performance servers and clusters.
Examples include Condor [35], Entropia [8], Genesis II [1], EGI (European Grid
Initiative) [10], and Globus [13]. They are motivated by the needs of large-scale,
computation-intensive scientific applications that cannot be provided by resources
within a single administrative domain. Today, thanks to such computational grids,
researchers and scientists from a variety of disciplines can tap into an enormous
amount of distributed computing resources of more than a petaflop [14]. Compu-
tational grids have enabled researchers to work on complex scientific problems of
a scale larger than ever.

In this work, we assume a job execution environment, such as Condor [35] and
Genesis II [26], which deals with the execution of idempotent jobs using various
shared resources ranging from desktop PCs to super computers. In such environ-
ments, ensuring QoS (Quality-of-Service) properties such as job completion time or
availability often requires predicting whether a particular resource such as a host
will be functioning over some time interval [4, 27, 28, 32]. For example, if we wish
to execute a job J , which takes 10 CPU hours, at time T and guarantee that it will
complete at some time T + 10 hours on a host H with probability P , then we need
to determine the probability that the host will continue to function over that time
interval. If we cannot find a host that satisfies the requirements P then we might
need to replicate the job to two or more hosts so that we can run multiple copies
of J and know that with probability P at least one replica of J will complete suc-
cessfully. The challenging problem in this situation is how we can precisely estimate
the probabilities of diverse computing resources. More formally, let ∆t be a time
interval with a start time and a stop time, and let Pi(∆t) be the probability that
host Hi will be available over the interval ∆t. How do we compute the Pi’s? One
obvious solution is to exploit statistical models using historical data of up/down
states of the machines.

However, the problem, as discussed in Section 2, is that statistical models man-
ifest very poor prediction performance if a significant number of periodic events
present. For example, a machine becomes periodically unavailable if the machine is
automatically rebooted on some schedule, or when the machine is turned off every
night, or when weekly backups take the machine off-line. Indeed, in shared compu-
tational grid environments, if we model a host as being unavailable or “down” when
a user at the keyboard is actively using the machine, one can observe patterns of
periodic availability. Our previous study [15, 17] with 729 machines spanning several
departments of an institution shows that a large number of machines actually have
such regular patterns in their availability.

To address the problems of traditional statistic modeling techniques in failure
prediction, we have developed a failure prediction model, called a filtered failure
prediction model (FFP) [17]. The basic idea behind FFP is to determine the reg-
ularity of resource availability and pro-actively exploit the information for failure

Effective Grid Resource Scheduling Using Failure Prediction 371

prediction. For instance, the information on regular reboots might be exploited for
checkpointing of long-running jobs [25]. In FFP, we first determine periodic events
from the historical monitoring traces, note them, filter them out, and then pass the
remaining events onto a traditional statistical method. Then, to compute Pi(∆t)
we first check against periodic failures, and if not affected by a periodic failure, we
use the statistical method to determine the probability of success.

In our previous work [17], we presented analytic evaluation of FFP by analyz-
ing the autocorrelation and self-similarity of resource availability signals. In this
paper, our focus is to show the effectiveness of FFP under computational grid en-
vironments. FFP is being implemented as an extension of OGSA-BES (Open Grid
Service Architecture Basic Execution Service) [12] in the Genesis-II computational
grid platform [26]. Before deployment in the active grid, we have conducted a num-
ber of simulations using traces from actual computers. Our experiment results show
that FFP significantly outperforms statistical techniques which ignore periodic pat-
tern of failures. This results allow us to provide more accurate Quality-of-Service
(QoS) bounds with significantly less resource consumption.

The remainder of this paper is as follows. Section 2 presents our monitoring
environment and summarizes FFP. In Section 3, we discuss the simulation environ-
ment of computational grids. In Section 4, we present our evaluation results that
quantify the benefits of FFP via trace-driven simulation. Related work is presented
in Section 5 and Section 6 concludes the paper.

2 FAILURE PREDICTION

In this section, we demonstrate that ordinary statistical methods perform poorly
in the presence of periodic events. We also present the Filtered Failure Prediction
technique, in which failures of a resource are categorized into periodic and non-
periodic failures, rendering more effective predictions.

2.1 Resource Monitoring Environment

To understand the behavior of a large collection of computing resources, a monitor-
ing daemon is installed in 729 classroom and laboratory PCs at the University of
Virginia. The monitoring daemon at each machine gathers statistics every 5 min-
utes, including Up/Down heartbeat signals, CPU utilization, and memory usage.
The snapshots are reported to a central monitoring server. The study comprises
PCs operated by two administrative organizations: 668 PCs by the Department
of Information Technology & Communication (ITC) and 61 PCs by the Computer
Science Department. The details of the monitoring environment can be found in [15].

During the continuous observation for 3 months, many machines reported regular
reboots for ‘software rejuvenation’ [16, 39]. The idea behind software rejuvenation
is to restart software periodically to prevent accumulating errors. This software
rejuvenation through periodic reboots is a typical technique that is performed by

372 W. Kang, J. Kim

many institutions managing a large collection of computing resources. In Figure 1,
the number of available machines during the 3 months is shown. We can see the reg-
ularity of the resource availability. This regular pattern of the resource availability
provides the motivation of this work.

0 3000 6000 9000 12000
0

100

200

300

400

500

600

700

800

Time (x5 minutes)

N
u

m
b

e
r

o
f

a
v
a

ila
b

le
 m

a
c
h

in
e

s

Figure 1. The number of available PCs for 3 months [15]

Throughout the remainder of the paper, we use the traces from this monitor-
ing study for both analysis and evaluation since we believe that the University’s
computing environment is representative and typical for many other institutions.

2.2 Statistical Modeling of Grid Resources

To predict the reliability of computing resources, one typical approach is to use
statistical methods such as fitting the collected data to statistical models. For
instance, exponential distribution is commonly used to model the pattern of resource
failures. Weibull distribution might be considered for more exact estimation [37].
For a resource, which does not manifest periodic behaviors, such statistical models
work reasonably well as far as we choose a right model. However, in the presence
of periodic patterns, the behavior of resources cannot be easily modeled by such
well-known statistical models.

Figure 2 illustrates an exponential distribution and a Weibull distribution that
were fitted using the maximum likelihood technique. In the figure, the empirical dis-
tribution shows a sudden surge at 1 440 minutes. This discontinuity at 1 440 minutes
occurs due to the daily ‘rejuvenation’ of the machine. With the presence of such
periodic failure patterns, the empirical distribution obtained from a machine cannot

Effective Grid Resource Scheduling Using Failure Prediction 373

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

Time to Failure

C
u

m
u

la
ti
v
e

 D
e

n
s
it
y

empirical

weibull

exponential

Figure 2. The distribution of a machine’s time-to-failure modeled using the Weibull and
the exponential distribution

be easily approximated by any statistical distribution. As a result, if a predictor is
not aware of these kinds of periodic behavior, the prediction results might be inac-
curate, resulting in poor resource allocation decisions for the grids. For instance, the
empirical distribution in Figure 2 shows that the resource has almost zero probabil-
ity of surviving longer than 24 hours. However, the prediction results from both the
Weibull and the exponential distribution are totally misleading; the distributions
show that the resource has about 30% probability of surviving after 24 hours.

0 3000 6000 9000 12000
0

100

200

300

400

500

600

700

800

Time (x5 minutes)

N
u

m
b

e
r

o
f

a
v
a

ila
b

le
 m

a
c
h

in
e

s

Figure 3. Number of available machines for 3 months after filtering out periodic events

Figure 3 shows the number of available machines after these periodic failures are
filtered out using the filtering algorithm proposed in our previous work [17]. Fig-

374 W. Kang, J. Kim

Figure 4. Time-to-failure distribution of a machine after filtering out periodic failures and
its fitting to Weibull and exponential distributions

ure 4 illustrates the corresponding empirical distribution and the fitted Weibull and
exponential distributions. In the empirical distribution, the previous discontinuity,
observed in Figure 2, has disappeared. Figure 4 also shows that the empirical data
can be more closely modeled using typical statistical distributions after the remov-
ing periodic events. In Table 1, the accuracy of the statistical models is quantified
using root mean square errors (RMSE) between the empirical data and the fitted
statistical models. The RMSE analysis shows that the accuracy of statical models
improves significantly after filtering out periodic events. For example, the RMSE
of Weibull model decreases from 0.161 to 0.032 when periodic events are filtered
out. This result implies that we can achieve more accurate failure predictions once
periodic failures are filtered out.

Exp Weibull

Without filtering of periodic events 0.232 0.161
After filtering of periodic events 0.141 0.032

Table 1. Root mean square errors (RMSE)

2.3 Filtered Failure Prediction Model

To address the problems of traditional statistic modeling techniques in failure pre-
dictions, we proposed a failure prediction model, called the filtered failure prediction
model (FFP) [17]. In FFP, a sequence of up/down signal from the monitored re-
source is fed into the filter that detects and separates periodic failure events from
the original signal. This detection step can be performed using an algorithm that
scales linearly with respect to the number of events [24]. The periodicity detec-

Effective Grid Resource Scheduling Using Failure Prediction 375

tion algorithm should be able to handle impreciseness of time information, which
may be resulted from lack of clock synchronization, rounding, and network delays.
Hence, the algorithm has several tunable parameters to control the accuracy and
reliability of the algorithm. For example, the time tolerance of period length is
a tunable parameter. The algorithm detects periodic events if the number of their
occurrences is more than the threshold value. The threshold value is adjusted ac-
cording to the chi-squared test with a given confidence level, which is also tunable.
Readers are referred to [17, 24] for more detailed discussion of periodicity detection
algorithms.

After the filtering of periodic failures out, a failure predictor Pfiltered(∆t) is
obtained from the updated up/down signal. For the failure predictor Pfiltered(∆t),
we can consider any well-known probabilistic models such as Weibull and exponential
distributions. If the sampled resource up/down signal has periodic component, it is
detected and used to predict future periodic failures. The reliability acquired from
Pfiltered(∆t) is only valid if ∆t does not span the future periodic failure points. Since
our objective is to predict the reliability, ∆t includes both a start time and duration
of a job. P (∆t) is the actual predicted reliability over duration ∆t and it can be
summarized as Equation (1).

P (∆t) = α× Pfiltered(∆t),

where α =

1 if ∆t does not spans periodic

failure points,
0 otherwise,

and Pfilter is the reliability model obtained after filtering out
periodic failures.

(1)

As an example, let us consider a resource that reboots every 24 hours and its
last periodic failure occurred at time t. Assume that the resource’s Pfilter is 0.9
for 10 hours. At time t + 5 and t + 15, the resource is requested to run a job that
requires 10 hours CPU time with more than 0.8 reliability. In this scenario, the first
request can be accepted because the resource satisfies the reliability requirement
(e.g., 0.9 > 0.8). However, under FFP, the second request cannot be accepted
because the job’s execution spans the next periodic failure point, which is t + 24.
Hence, the actual predicted reliability for the second request becomes 0 (= 0 ∗ 0.9),
not 0.9. Further, we might consider accepting the job with the expected reliability
of 0.9 and make a checkpointing of the job before the regular failure [25].

3 COMPUTATIONAL GRID ENVIRONMENT

In this section, we first describe the Genesis II computational grid [26], which is the
basis of this work. We also discuss the simulation environment of the Genesis II
computational grid, where jobs are replicated to achieve the specified QoS levels.

376 W. Kang, J. Kim

3.1 Genesis II Computational Grid

BES

container

BES

container

BES

container

Organization B

Organization A

clients

Information

Service

JSDL

JSDL

Broker

���
�
�
�

Figure 5. Genesis II computational grid environment

The Genesis II computational grid is an implementation of OGSA (Open Grid
Service Architecture) from OGF (Open Grid Environment). The implementation
includes several standards such as WS-Addressing and JSDL (Job Submission De-
scription Language) [2]. Figure 5 shows an example of the Genesis II computational
grid, which has two virtual organizations. Organization A and B, respectively, is
a pure resource consumer and a provider. If a client in the organization A wants
to use the resources in the organization B, he/she submits a job request to the bro-
ker using a JSDL (Job Submission Description Language) document. JSDL is an
XML-formatted document that describes the properties of the submitted job. In
the Genesis II platform, JSDL standard is extended to include QoS requirements,
such as reliability of the resources. A client might use a portal with web interfaces
to build a job description [11, 38]. Figure 6 shows an example of JSDL extended to
include QoS specification for the target resource. It specifies that the target resource
is supposed to have 95% reliability for a job running over 150 minutes on a canon-
ical machine1. The ExecutionTime in JSDL specifies the estimated execution time
of a job, which is normalized to a canonical machine. Due to the heterogeneity
of grid resources, it is extremely difficult, if not impossible, to accurately estimate
the execution time of a job, in general. Hence, our grid platform targets a set of
high-throughput applications that renders such estimation. For example, parame-
ter sweep applications, such as GridBlast [20], tend to be highly parallel, require
minimal inter-node communications, and entail multiple executions of the same ex-
ecutable against different data. For such applications, the completion time of a job
can be estimated.

After the broker receives a request, it selects one or a group of resource con-
tainers, and manages the execution of the job. If available resources are not enough

1 Current JSDL v1.0 [2] does not support QoS specification yet.

Effective Grid Resource Scheduling Using Failure Prediction 377

<jsdl:JobDefinition id="myComputingJob">

<jsdl:JobDescription>

<jsdl:Application>

<jsdl:Name>GridBLAST</jsdl:Name>

</jsdl:Application>

<jsdl:DataStaging>

<jsdl:FileName>input_file_115.dat</jsdl:FileName>

</jsdl:DataStaging>

<jsdl:Resources>

...

<jsdl:QoS>

<jsdl:ExecutionTime>150M</jsdl:ExecutionTime>

<jsdl:Deadline>240M</jsdl:Deadline>

<jsdl:Reliability>95</jsdl:Reliability>

</jsdl:QoS>

</jsdl:Resources>

...

</jsdl:JobDefinition>

Figure 6. An example of JSDL for submitting a job

to execute the job, the broker enqueues the request until more resources become
available. Once a job instance is created in a BES (Basic Execution Service) con-
tainer [12], the container will also help with staging in input data, performing the
execution of the job, and staging out the results. Note that similar architectures have
been proposed in cloud systems to facilitate resource and service management [6, 29].

The information service monitors the availability of the resources periodically
and provides information required for the broker to make a proper decision on re-
source allocations. Information services have been investigated as one of core com-
ponents in grids [9]. Information services provide services such as service discovery,
resource monitoring, and resource characterization. To prevent potential overloads
at the information service, the monitoring interval of each resource should be prop-
erly determined2. In this study, the information service simply provides a list of live
service providers that are willing to accept a new job. However, they may support
query interfaces to find resources satisfying clients’ complex constraints. Support of
such complex queries might result in the complexity and overheads around the infor-
mation services. To address this problem, distributed resource allocation strategies
have been adopted in a few distributed system, e.g. [7], which requires no central
information service. Although a distributed system might have better scalability, it
might become inefficient due to the limited information at the local systems. We
leave further analysis of the two approaches as future work.

2 In this work, each resource container reports its status every 5 minutes.

378 W. Kang, J. Kim

3.2 Job Replication Strategies

Since Genesis II targets less reliable desktop machines as its computational resources,
the reliability requirement of 0.9 is too high to meet, especially when the runtime
length of a job is longer than 10 hours. In case of having insufficient resources to
meet the reliability requirement alone, we apply two replicated execution polices
to meet the client’s QoS requirement, replication in time and in space; we call
them replication-in-time and replication-in-space, respectively. These replication
strategies were first introduced in our previous work [18].

In the replication-in-space strategy, a job is replicated onto a set of selected
resources. The number of selected resources for the replication is determined so
that the aggregate reliability of selected resources is no bigger than the requirement.
Aggregate reliability is the probability that at least one of the selected resources
survive without a failure. For example, if a job is replicated onto two resources
with the reliability of 0.7 and 0.8, respectively, the aggregate reliability is 0.94
(= 1− (1− 0.7)× (1− 0.8)). This indicates that one of the replica might complete
successfully with 0.94 probability.

Algorithm 1: Replication-in-space with FFP

Input: Job Specification J with (j, r, δt), where j is job description, r is required
reliability, δt is expected execution time

Get a list of candidate resources S from the information service;1

Each resource s in S has a tuple (rs, ps), where rs is reliability, ts is next periodic2

failure time;
Sf = {};3

while
(
1−

∏Sf (1− rs) < r
)
do4

s ← pick s from S;5

if J.δt dos not span s.ts then6

Sf = Sf ∪ (s);7

end8

remove s from S;9

end10

if (1−
∏

(1− rs)) < rs then11

dispatch replicated jobs to service sites in Sf ;12

else13

wait until more resources are available;14

end15

In Algorithm 1, the resource allocation algorithm with replication-in-space strat-
egy and FFP is shown. The first step is to get a list of candidate resources from the
information service (Line 1-2). A set of resources is selected from the candidates to
achieve the target reliability using the replication-in-space strategy. The aggregate
reliability, which is defined as 1−∏Sf (1−rs), is updated as a new resource is selected
from the candidates (Line 4). In Line 6, a resource is checked if its next periodic

Effective Grid Resource Scheduling Using Failure Prediction 379

failure point overlaps with the job’s execution range. Once the aggregate reliability
becomes greater than the required reliability, the job is dispatched to all selected
resources concurrently (Line 11-12). If all replicated executions fail, the job failure
is notified to the client and marked as failure.

In the replication-in-time strategy, resources are selected in a similar manner.
However, unlike replication-in-space strategy, a job is dispatched onto only one re-
source at a time. If the resource fails before the completion of the job, then another
resource is chosen for retries.

3.3 Simulation Environment and Settings

In a grid environment, it is hard to evaluate an algorithm by performing actual
experiments in a repeatable and controllable manner since resources are distributed
across multiple organizations with their own policy [5]. To overcome this problem
and show the effectiveness of FFP, we use the Java-based discrete-event grid simula-
tion toolkit, which was introduced in our previous work [18]. The simulator uses the
same trace introduced in Section 2 to simulate each resource’s behavior. Readers
are referred to [18] for more detailed discussion on the simulator.

Parameter Value

Model training period 1 month

Test running period 1 month

Total number of machines 729

Avg. length of short jobs (TSJ) 3± 0.5 hours

Avg. dispatch rate of short jobs 1 job/10± 2 minutes

Avg. length of long jobs (TLJ) 6, 9, 12, 15, 18, 21± 0.5 hours

Avg. dispatch rate of long jobs 1 job/20± 5 minutes

Table 2. Parameters and settings of the simulation

Table 2 shows details of the simulation. The arrival of jobs from clients to the
broker is synthesized to follow bimodal distribution. The bimodal distribution is
composed of two normal distributions; one mode is for short runtime jobs with the
average of 3 hours, and the other is for long runtime jobs with varying averages.
Since we are more interested in the behavior of long runtime jobs, we change the
mean length of longer runtime jobs, TLJ , from 6 hours to 21 hours while the mean
length of short jobs fixed to 3 hours. We expect that as the execution time of jobs
get closer to the periodic failure interval, 24 hours in our case, the job will more
likely to fail before its completion.

4 EVALUATION

In this section, we demonstrate the effectiveness of the proposed FFP in the simu-
lation environment.

380 W. Kang, J. Kim

4.1 Baselines

We evaluated 3 algorithms, shown in Table 3, to verify the effectiveness of FFP for
job scheduling.

Name Job assignment strategy

Random A job is assigned to any randomly chosen live machines without
considering reliability.

FFP Periodic failures are detected and the reliability prediction is
made from a filtered series of events.

NFFP Reliability is predicted without filtering.

Table 3. Resource scheduling approaches

For both NFFP and FFP , a job is submitted to a resource only if the pre-
dicted reliability is no less than the required reliability from clients. In case of FFP,
a candidate machine is first checked if it is going to have periodic failure during the
job’s expected run, and if not affected by a periodic failure, the reliability require-
ment is compared to the predicted reliability. In contrast, NFFP does not consider
periodic resource failures when resources are selected. Further, NFFP’s statisti-
cal models are built without filtering out periodic failures. For replication-in-time
strategy, Random scheduling is used as a base case, in which any available live and
idle machine is assigned for job execution without comparison of the required and
predicted reliability. For all scheduling approaches, we assume that the time delay
for job scheduling, including service delay to access information service, is negligible
compared to the long execution time of jobs.

4.2 Results

For both replication-in-time and replication-in-space, we evaluate the resource us-
ages and job success rates. The job success rate indicates how faithfully a client’s
reliability requirement is satisfied. The reliability requirements from clients are set to
0.90 in our simulation. Therefore job success rate should be close to 0.90. Achieving
that required reliability with less resource usage is desired.

4.2.1 Varying Job Execution Time in Replication-in-Time

In this experiment, we observe job success rates and the resource usage in the
replication-in-time mode, while the mean execution time of long jobs, TLJ , is varied
from 6 to 21 hours. Figures 7 and 8 show the average number of retries and its
achieved job success rates, respectively. Both NFFP and FFP achieve the requested
reliability from clients quite closely. However, the number of retries to achieve that
success rate is quite different. In NFFP, the number of retries is almost same as
Random, which is the worst case. For example, NFFP needs 3.3 retries to achieve
0.68 job success rate while FFP needs 1.3 retries to achieve 0.71 job success rate.

Effective Grid Resource Scheduling Using Failure Prediction 381

This shows that the average reliability of resources is much lower, as Figure 7 shows,
when the periodic failures are not filtered out. As a result, the higher amount of re-
sources consumption is required to meet the reliability requirement. However, that
higher resource consumption does not make significant improvement in job success
rate, as shown in Figure 8. For example, FFP achieves 0.88 job success rate using
less than half computing resources than NFFP when TLJ is 21 hours.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 6 8 10 12 14 16 18 20 22

A
v
g
.
n
u
m

b
e
r

o
f
re

tr
ie

s

TLJ: job execution time (in hours)

Random
FFP

NFFP

Figure 7. Average number of retries

 0

 0.2

 0.4

 0.6

 0.8

 1

 6 8 10 12 14 16 18 20 22

A
v
g
.
jo

b
 s

u
c
c
e
s
s
 r

a
te

TLJ: job execution time (in hours)

Random
FFP

NFFP

Figure 8. Average job success rate

This high performance gap between NFFP and FFP demonstrates that resources
are more effectively used by considering periodic failures. This is more evident when
the average turnaround time and the changes of the waiting queue at the broker are

382 W. Kang, J. Kim

observed. Figure 9 shows the average turnaround time. In the figure, Ideal shows
the turnaround time when no resource failure is occured during the job execution.
Interestingly enough, the gap between NFFP and FFP is not as big as the number
of retries. For FFP, instead of doing retries and consuming resources which is going
to fail due to periodic failure, the jobs are kept in the waiting queue when the run
of job execution are predicted to span the next periodic failure time. The depth of
the queue, as shown in Figure 10, increases until the periodic failure points, which
occurs every 24 hours, and sharply decreases after them. The interval of this pattern
conforms to the interval of periodic failures. In contrast, the depth of NFFP’s queue,
as shown in Figure 11, does not manifest this kind of pattern, indicating that it does
not exploit the periodic behavior of resources for intelligent job scheduling.

 0

 10

 20

 30

 40

 50

 60

 6 8 10 12 14 16 18 20 22

A
v
g
.
tu

rn
a
ro

u
n
d
 t
im

e
 (

in
 h

o
u
rs

)

TLJ: job execution time (in hours)

Random
FFP

NFFP
Ideal

Figure 9. Average turnaround time

4.2.2 Varying Job Execution Time in Replication-in-Space

In this experiment, we perform the same experiment when the replication-in-space
strategy is deployed. Figures 12 and 13 show the average degree of spatial redun-
dancy of jobs and its achieved job success rate, respectively, while the job execution
time of long jobs, TLJ , is varied from 6 to 21 hours. As shown in Figure 12, the
number of concurrent job executions required for NFFP increases sharply as TLJ is
getting closer to the periodic failure interval, 24 hours. For example, for 21 hours
jobs, NFFP requires over 2 times of resources to achieve the similar level of reli-
ability guarantees of FFP. Surprisingly, in contrast to the replicated execution in
time, replication-in-space showed very low job success rate, around 0.7. This seems
odd at first. After analyzing logs, we found that the failures of resources are highly
correlated. Because our resource availability trace has been obtained from resources
of a single institution, the availabilities of resources are often affected at the same

Effective Grid Resource Scheduling Using Failure Prediction 383

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 24 48 72 96 120 144 168 192 216 240

Q
u
e
u
e
 l
e
n
g
th

time(in hours)

Figure 10. Changes of the queue in FFP for 10 days

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 24 48 72 96 120 144 168 192 216 240

Q
u
e
u
e
 l
e
n
g
th

time(in hours)

Figure 11. Changes of the queue in NFFP for 10 days

time by power failures, network partitioning, non-regular administrative mainte-
nance, and etc. In the presence of these frequent correlated failures, the redundant
execution of job is less effective. We leave the investigation on this correlated failure
as our future work.

5 RELATED WORK

There has been much research on analyzing events and building a statical model
for machine/resource behavior in order to make a future event prediction. Some re-
searchers have been focusing on analyzing error and failure event logs [21, 22, 32, 31].

384 W. Kang, J. Kim

 0

 2

 4

 6

 8

 10

 6 8 10 12 14 16 18 20 22

A
v
g
.
d
e
g
re

e
 o

f
re

d
u
n
d
a
n
c
y

TLJ: job execution time (in hours)

FFP
NFFP

Figure 12. Average redundancy

 0

 0.2

 0.4

 0.6

 0.8

 1

 6 8 10 12 14 16 18 20 22

A
v
g
.
jo

b
 s

u
c
c
e
s
s
 r

a
te

TLJ: job execution time (in hours)

FFP
NFFP

Figure 13. Average job success rate

Work of Lin et al. [22] is similar to our work in terms of that they see the failures
and errors are due to multiple sources, not a single source. Lin et al. separate and
categorize errors into intermittent and transient errors and provide a set of rules for
fault/failure prediction. They show that the time between errors from each separate
source follows a Weibull distribution and the combined errors cannot be modeled by
any single well-known distributions. However, their approach uses information ob-
tained in controlled environment. In grids which typically span multiple autonomous
administrative domains, we have very limited control on resources and the available
information about resource error and failure. Therefore, their approach cannot be
used for our research as it is. Our approach does not rely on detailed information

Effective Grid Resource Scheduling Using Failure Prediction 385

from a resource. We assume the only information we can obtain is heartbeat signals
to check the liveness of a resource.

Saadatfar et al. [31] used machine learning techniques to mine Grid Workload
Archive (GWA) data in order to derive patterns and rules that affects failures of
jobs. This study demonstrated that several parameters such as CPU-intensity, queue
load, and execution hour of day, etc. affect failure rates closely. The proposed failure
predictor assumes that a predictor has such detailed real-time information, which is
rarely available in shared grid environments.

The preprocessing of the original data set of events to simplify analysis has
been done before, e.g., [37] and [42]. However, the preprocessing have been mostly
preformed to remove redundant information such as successive repeated errors. In
our study, the original series of events are preprocessed to separate periodic events
from non-periodic events.

The emergence of grids as new distributed computing platform has fostered many
studies on resource availability/reliability prediction in grids such as [4, 28, 42, 3]
and [30, 31, 33, 34]. Brevik et al. [4] compare parametric and non-parametric ap-
proaches for machine availability prediction. Their result shows that non-parametric
approach is better in most situations in estimating the lower bound of a given quan-
tile, especially when the sample size is small. Non-parametric approach is very good
when the distribution is not easy to fit by parametric methods as our case. However,
the problem of non-parametric approaches is that they are appropriate for testing
assertions rather than estimation of effects. From a practical viewpoint, a job sched-
uler needs to quantify the reliability of the resources at some specific time to test and
compare the fitness of the resources. Our work shows that parametric approaches
might have problem in the presence of periodic failures but the distribution can be
fitted using parametric methods if periodic events are filtered out. Despite the large
body of work on error/failure prediction, the absence of any research on periodic
resource unavailability as a separate source of failure and modeling of them to make
a prediction in job scheduling is the motivation of our study in this paper.

Recently, cloud computing [41], such as Amazon EC2, has become a popular
on-demand computing platform. Reliability/availability issues in clouds have been
studied in [36, 40, 23, 19], where various models were proposed to characterize
the failures in clouds. For clouds, unlike grids, reactive approaches such as check-
pointing and restarts have been more actively investigated since the migration of
tasks/platforms can be efficiently supported in the the virtualized computing envi-
ronment of clouds [43].

6 CONCLUSIONS

Accurate prediction of resource reliability is critical to provide completion time,
availability, and other quality of service (QoS) guarantees. We analyzed the real
traces from the large scale monitoring experiments, and demonstrated that accurate
prediction using traditional statistical methods is difficult in the presence of periodic

386 W. Kang, J. Kim

events. We have developed the failure prediction scheme, called FFP, that separates
non-time-homogeneous regular failures from time-homogeneous non-regular failure
events. To show the effectiveness of the proposed scheme, we have developed a com-
putational grid simulator, in which the entities and their availability are modeled
based on a large scale monitoring experiment on real computing resources. Through
the extensive simulation, we demonstrated that FFP outperforms other techniques
that ignore periodicity for failure prediction. The improvements are particularly
pronounced as the time interval approaches the periodic failure interval. Further-
more, our results show that ignoring periodicity in the presence of actual periodic
failures might lead to ineffective resource allocation, as bad as doing no predic-
tion.

Acknowledgements

This work was supported by the Incheon National University Research Grant in
2014.

REFERENCES

[1] Genesis II project homepage. http://genesis2.virginia.edu/wiki/, 2014.

[2] Anjomshoaa, A.—Brisard, F.—Dresher, M.—Fellows, D.—Ly, A.—Mc-
Gough, S.—Pulsipher, D.—Savva, A.: Job Submission Description Language
(JSDL) Specification. Version 1.0. 2005.

[3] Khoo, B. T. B.—Veeravalli, B.: Pro-Active Failure Handling Mechanisms for
Scheduling in Grid Computing Environments. Journal of Parallel and Distributed
Computing, Vol. 70, 2010, No. 3, pp. 189–200.

[4] Brevik, J.—Nurmi, D.—Wolski, R.: Automatic Methods for Predicting Ma-
chine Availability in Desktop Grid and Peer-to-Peer Systems. In IEEE CCGrid, 2004,
pp. 190–199.

[5] Buyya, R.—Murshed, M.: GridSim: A Toolkit for the Modeling and Simulation of
Distributed Resource Management and Scheduling for Grid Computing. Concurrency
and Computation: Practice and Experience, Vol. 14, 2002, No. 13, pp. 1175–1220.

[6] Buyya, R.—Yeo, C. S.—Venugopal, S.—Broberg, J.—Brandic, I.: Cloud
Computing and Emerging IT Platforms: Vision, Hype, and Reality for Delivering
Computing as the 5th Utility. Future Generation Computer Systems, Vol. 25, 2009,
No. 6, pp. 599–616.

[7] Chard, K.—Bubendorfer, K.: High Performance Resource Allocation Strate-
gies for Computational Economies. IEEE Transactions on Parallel and Distributed
Systems, Vol. 24, 2013, No. 1, pp. 72–84.

[8] Chien, A.—Calder, B.—Elbert, S.—Bhatia, K.: Entropia: Architecture and
Performance of an Enterprise Desktop Grid System. Journal of Parallel and Dis-
tributed Computing, Vol. 63, 2003, No. 5, pp. 597–610.

Effective Grid Resource Scheduling Using Failure Prediction 387

[9] Czajkowski, K.—Fitzgerald, S.—Foster, I.—Kesselman, C.: Grid Informa-
tion Services for Distributed Resource Sharing. Proceedings of the 10th IEEE Interna-
tional Symposium on High Performance Distributed Computing (HPDC ’01), 2001,
pp. 181–194.

[10] David, M.—Borges, G.—Gomes, J.—Pina, J.—Campos, I.—Fernan-
dez, E.—Lopez, Á.—Oriviz, P.—Cacheiro, J.—Fernandez, C.—Simon, A.:
Software Provision Process for EGI. Computing and Informatics, Vol. 31, 2012, No. 1,
pp. 135–148.

[11] Dziubecki, P.—Grabowski, P.—Krysinski, M.—Kuczynski, T.—Kurow-
ski, K.—Piontek T.—Szejnfeld D.: New Science Gateways for Advanced Com-
puting Simulations and Visualization Using Vine Toolkit in PL-Grid. Computing and
Informatics, Vol. 32, 2013, No. 5, pp. 1100–1115.

[12] Foster, I.—Grimshaw, A.—Lane, P.—Lee, W.—Morgan, M.—New-
house, S.—Pickles, S.—Pulsipher, D.—Smith, C.—Theimer, M.: OGSA
Basic Execution Service, Version 1.0. Technical report, Open Grid Forum, 2007.

[13] Foster, I.—Kesselman, C. (Eds.): The Grid2, Second Edition: Blueprint for
a New Computing Infrastructure. Morgan Kaufmann Publishers Inc. San Francisco,
CA, USA, 2004.

[14] Geddes, N.: The Large Hadron Collider and Grid Computing. Philosophical Trans-
actions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
Vol. 370, 2012, No. 1961, pp. 965–977.

[15] Huang, H. H.—Karpovich, J. F.—Grimshaw, A. S.: Analyzing the Feasibility
of Building a New Mass Storage System on Distributed Resources. Concurrency and
Computation: Practice and Experience, Vol. 20, 2008, No. 10, pp. 1131–1150.

[16] Huang, Y.—Kintala, C.—Kolettis, N.—Fulton, N. D.: Software Rejuvena-
tion: Analysis, Module and Applications. Fault-Tolerant Computing, International
Symposium, 1995.

[17] Kang, W.—Grimshaw, A.: Failure Prediction in Computational Grids. 40th An-
nual Simulation Symposium, March 2007, pp. 275–282.

[18] Kang, W.—Huang, H. H.—Grimshaw, A. S.: Achieving High Job Execution
Reliability Using Underutilized Resources in a Computational Economy. Future Gen-
eration Computer Systems, Vol. 29, 2013, No. 3, pp. 763–775.

[19] Khazaei, H.—Misic, J.—Misic, V. B.—Mohammadi, N. B.: Availability Analy-
sis of Cloud Computing Centers. IEEE Global Communications Conference (GLOBE-
COM), 2012, pp. 1957–1962.

[20] Krishan, A.: GridBLAST: A Globus-Based High-Throughput Implementation of
BLAST in a Grid Computing Framework. Concurrency and Computation: Practice
and Experience, Vol. 17, 2005, No. 13, pp. 1607–1623.

[21] Lee, I.—Iyer, R. K.—Tang, D.: Error/Failure Analysis Using Event Logs from
Fault Tolerant Systems. Proceedings of 21st International Symposium on Fault-
Tolerant Computing, 1991.

[22] Lin, T.-T. Y.—Siewiorek, D. P.: Error Log Analysis: Statistical Modeling and
Heuristic Trend Analysis. IEEE Transactions on Reliability, Vol. 39, 1990, No. 4,
pp. 419–432.

388 W. Kang, J. Kim

[23] Longo, F.—Ghosh, R.—Naik, V. K.—Trivedi, K. S.: A Scalable Availability
Model for Infrastructure-as-a-Service Cloud. 2011 IEEE/IFIP 41st International Con-
ference on Dependable Systems & Networks (DSN), 2011, pp. 335–346.

[24] Ma, S.—Hellerstein, J. L.: Mining Partially Periodic Event Patterns with Un-
known Periods. Proceedings of the 17th International Conference on Data Engineer-
ing, 2001, pp. 205–214.

[25] Medeiros, B.—Sobral, J.: AspectGrid: Aspect-Oriented Fault-Tolerance in Grid
Platforms. Computing and Informatics, Vol. 31, 2012, No. 1, pp. 89–101.

[26] Morgan, M. M.—Grimshaw, A. S.: Genesis II – Standards Based Grid Comput-
ing. Seventh IEEE International Symposium on Cluster Computing and the Grid
(CCGrid ’07), 2007, pp. 611–618.

[27] Muppala, J. K.—Ciardo, G.—Trivedi, K. S.: Stochastic Reward Nets for Reli-
ability Prediction. Communications in Reliability, Maintainability and Serviceability,
Vol. 1, 1994, No. 2, pp. 9–20.

[28] Ren, X.—Lee, S.—Eigenmann, R.—Bagchi, S.: Resource Failure Prediction
in Fine-Grained Cycle Sharing System. 2006 15th IEEE International Conference on
High Performance Distributed Computing (HPDC), 2006, pp. 93–104.

[29] Rochwerger, B.—Breitgand, D.—Levy, E.—Galis, A.—Nagin, K.—Llo-
rente, I. M.—Montero, R.—Wolfsthal, Y.—Elmroth, E.—Cáceres, J.
et al.: The Reservoir Model and Architecture for Open Federated Cloud Computing.
IBM Journal of Research and Development, Vol. 53, 2009, No. 4, pp. 535–545.

[30] Rood, B.—Lewis, M. J.: Grid Resource Availability Prediction-Based Scheduling
and Task Replication. Journal of Grid Computing, Vol. 7, 2009, No. 4, pp. 479–500.

[31] Saadatfar, H.—Fadishei, H.—Deldari, H.: Predicting Job Failures in Auver-
Grid Based on Workload Log Analysis. New Generation Computing, Vol. 30, 2012,
No. 1, pp. 73–94.

[32] Sahoo, R. K.—Oliner, A. J.—Rish, I.—Gupta, M.—Moreira, J. E.—
Ma, S.—Vilalta, R.—Sivasubramaniam, A.: Critical Event Prediction for
Proactive Management in Large-Scale Computer Clusters. Proceedings of the Ninth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD ’03), ACM Press, 2003, pp. 426–435.

[33] Salinas, S. A.—Garino, C. G.—Zunino, A.: An Architecture for Resource Be-
havior Prediction to Improve Scheduling Systems Performance on Enterprise Desktop
Grids. Advances in New Technologies, Interactive Interfaces and Communicability,
Springer Berlin Heidelberg, Lecture Notes in Computer Science, Vol. 7547, 2012,
pp. 186–196.

[34] Sonmez, O.—Yigitbasi, N.—Iosup, A.—Epema, D.: Trace-Based Evaluation of
Job Runtime and Queue Wait Time Predictions in Grids. Proceedings of the 18th

ACM International Symposium on High Performance Distributed Computing, ACM,
2009.

[35] Thain, D.—Tannenbaum, T.—Livny, M.: Distributed Computing in Practice:
The Condor Experience. Concurrency and Computation: Practice and Experience,
Vol. 17, 2005, No. 2-4, pp. 323–356.

Effective Grid Resource Scheduling Using Failure Prediction 389

[36] Thanakornworakij, T.—Nassar, R. F.—Leangsuksun, C.—Păun, M.:
A Reliability Model for Cloud Computing for High Performance Computing Ap-
plications. Proceedings of the 18th International Conference on Parallel Processing
Workshops (Euro-Par ’12), Springer-Verlag, 2013, pp. 474–483.

[37] Trivedi, K. S.: Probability and Statistics with Reliability, Queuing, and Computer
Science Applications. 2nd ed., John Wiley and Sons, 2001.

[38] Tugores, A.—Colet, P.: Web Interface for Generic Grid Jobs, Web4Grid. Com-
puting and Informatics, Vol. 31, 2012, No. 1, pp. 173–187.

[39] Vaidyanathan, K.—Harper, R. E.—Hunter, S. W.—Trivedi, K. S.: Analysis
and Implementation of Software Rejuvenation in Cluster Systems. ACM SIGMET-
RICS Performance Evaluation Review, Vol. 29, 2001, No. 1, pp. 62–71.

[40] Vishwanath, K. V.—Nagappan, N.: Characterizing Cloud Computing Hardware
Reliability. Proceedings of the 1st ACM Symposium on Cloud Computing, ACM,
2010, pp. 193–204.

[41] Voorsluys, W.—Broberg, J.—Buyya, R.: Introduction to Cloud Computing.
In: Buyya, R., Broberg, J., Goscinski, A. (Eds.): Cloud Computing: Principles and
Paradigms. John Wiley & Sons, 2011, pp. 1–41.

[42] Wolski, R.—Spring, N. T.—Hayes, J.: Predicting the CPU Availability of Time-
Shared Unix Systems on the Computational Grid. Cluster Computing, Vol. 3, 2000,
No. 4, pp. 293–301.

[43] Yi, S.—Kondo, D.—Andrzejak, A.: Reducing Costs of Spot Instances via Check-
pointing in the Amazon Elastic Compute Cloud. In IEEE 3rd International Conference
on Cloud Computing (CLOUD), 2010, pp. 236–243.

Woochul Kang received his Ph.D. degree in computer science
from the University of Virginia in 2009. He was a senior re-
searcher at Electronics and Telecommunications Research Insti-
tute (South Korea, 2000–2004, 2009–2012), and a post-doc at the
University of Illinois at Urbana-Champaign (USA, 2012–2013).
He joined Incheon National University as Assistant Professor
in 2013. His current research interests include cyber-physical
systems, embedded databases, distributed middleware, feedback
control of computing systems, and safe integration of medical
devices.

390 W. Kang, J. Kim

Jibum Kim received his B.Sc. and M.Sc. degrees in electrical
engineering from Yonsei University, Seoul, South Korea, in 2003
and 2005, respectively, and his Ph.D. degree in computer science
and engineering from the Pennsylvania State University in 2012.
He was a postdoctoral fellow at the Los Alamos National Labo-
ratory (Group T-5) in 2013. He is currently Assistant Professor
in the Department of Computer Science and Engineering at In-
cheon National University, South Korea. His research interests
include embedded computing systems, computational science,
and high performance computing.

