
Computing and Informatics, Vol. 30, 2011, 657–679

DEADLINE MISSING PREDICTION
THROUGH THE USE OF MILESTONES

Patricia Della Méa Plentz, Carlos Montez
Rômulo Silva de Oliveira

Department of Informatics and Statistics (INE)
Department of Automation and Systems (DAS)
Federal University of Santa Catarina (UFSC)
88040-900, Florianópolis, SC, Brazil
e-mail: plentz@inf.ufsc.br, {montez, romulo}@das.ufsc.br

Communicated by Jǐŕı Šafař́ık

Abstract. Distributed Real-Time Thread is an important concept for distributed
real-time systems. Distributed Threads are schedulable entities with an end-to-end
deadline that transpose nodes, carrying their scheduling context. In each node, the
thread will be locally scheduled according to a local deadline, which is defined by
a deadline partitioning algorithm. Mechanisms for predicting the missing of dead-
lines are fundamental if corrective actions are incorporated for improving system
quality of service. In this work, a mechanism for predicting missing deadlines is

proposed and evaluated through simulation. In order to illustrate the main char-
acteristics of the proposed mechanism, experiments will be presented taking into
account different scenarios of normal load and overload. Simulations show that the
deadline missing prediction mechanism proposed presents good results for improv-
ing the overall performance and availability of distributed systems.

Keywords: En-to-end deadline, distributed threads, prediction mechanisms

1 INTRODUCTION

In distributed real-time systems, like those used in factory automation, the end-
to-end deadline of tasks is a timing constraint imposed by the system application.
Mechanisms for predicting missing deadlines are fundamental if corrective actions
are incorporated for improving the quality of services of the system.

658 P.D.M. Plentz, C. Montez, R. S. de Oliveira

This kind of system can be implemented by Distributed Threads (DTs) [1],
which is an abstraction of distributed tasks that transpose physical nodes boundaries
carrying out remote calls. This abstraction is powerful because it demands low
overhead in its execution. Distributed threads can be used to represent control and
supervision tasks in factory automation systems, visiting several nodes to collect
information for the purpose of analyzes and diagnoses. These tasks usually have
firm deadlines and they are distributed.

This paper extends previous work [12] defining deadline missing prediction me-
chanisms for systems based on distributed threads. These mechanisms use informa-
tion such as available slack time of a distributed thread and define a probability of
a distributed thread meeting its deadline. To achieve this goal, a system architec-
ture that supports the distributed thread abstraction with timing constraints [12]
is used in this work. This system architecture is present in each system node and
is composed by local tasks, an interceptor and an aperiodic server which services
DTs. This architecture meets deadlines of hard periodic local tasks while trying to
improve response time of DTs.

The rest of the paper is organized as follows: Section 2 presents related work with
distributed threads, end-to-end deadline partitioning methods and deadline missing
prediction mechanisms. Section 3 describes main concepts about distributed threads
and deadline partitioning methods found in the literature. Section 4 presents the
proposed model used in this work and explains probabilistic known itineraries for
DTs used in this work. The deadline missing prediction mechanisms introduced in
this work are presented in Section 5. Applicability and performance results of the
proposed prediction mechanisms are shown in Section 6. Section 7 contains the final
remarks.

2 RELATED WORK

Some works in the literature address distributed thread implementations [1, 3, 4, 18,
2, 11]. In [1], the Alpha’s kernel programming model is described, which is based on
distributed threads that transpose system’s nodes carrying its timing constraints in
order to make system resource management possible. In the context of Real-Time
CORBA [7], the works [3, 4] take into account some aspects related to DTs. The
work described in [3] addresses the distributed thread-scheduling problem accord-
ing to the Real-Time CORBA approach at Tempus real-time middleware. The main
contribution of that work is scheduling of DTs that are subject to arbitrarily-shaped
Jensen’s time-utility functions (TUF) time constraints. In [4] an approach for inte-
grating release guards synchronization protocol [8] is described with CORBA DTs
ensuring appropriate release times for subtasks along an end-to-end computation.
Moreover, that work presents performance comparison between DTs and federated
event channel for both random workloads and different canonical communication
topologies.

Deadline Missing Prediction Through the Use of Milestones 659

In [2, 18, 11] DTs are studied in the Java context. The technique introduced
in [2] to implement DTs in a portable middleware is based on byte-code transfor-
mation of subroutines, instead of the entire client application. They do not address
aspects related to timing constraints of DTs. In [18], a scheduling algorithm for
DTs and a protocol for ensuring thread integrity are proposed. It is shown that
the scheduling algorithm in conjunction with the proposed protocol ensures that
handlers of threads encountering failures during their execution complete within
a bounded time, yielding bounded thread cleanup time. In [11] DTs are imple-
mented through Real-Time Specification for Java (RTSJ) and a system architecture
is proposed which is flexible enough to accommodate to a hybrid task set as well as
several scheduling policies. The main contribution of that work was to implement
DTs without modifying the Java Virtual Machine with the creation of new classes
and interfaces, as opposed to many other works in the literature. In this work, we
continue exploring the flexibility of this system architecture by the introduction of
the deadline missing prediction mechanisms.

In distributed systems, the end-to-end deadline of a task that can transpose
the system nodes needs to be partitioned in local deadlines, which will be used
by local schedulers. Works presented in the literature propose different methods for
partitioning end-to-end deadlines [16, 17, 9]. The critical path concept is introduced
in [16], which minimizes the overall laxity of the path. This concept is used for
assigning slices (execution windows with static positions in time) to subtasks. Two
laxity ratio metrics were proposed in that work. The first one assigns a subtask
deadline based on its execution time, the other one assigns a subtask deadline based
on the number of subtasks in the critical path. That work is in the hard distributed
real-time systems context and the proposed method is optimal in the sense that it
maximizes the minimum task laxity in the application. The work proposed in [17]
is a refinement of [16] in the sense that it circumvents difficulties associated with
deadline distribution over subtasks with unknown initial task assignment. Threshold
Laxity Ratio (THRES) and Adaptive Laxity Ratio (ADAPT) metrics was proposed
in [17] for minimizing the maximum task lateness. Evaluations show that proposed
techniques present better results in relation to those presented in [16].

Deadline assignment algorithms are also studied in the multi-hop networks field,
as part of admission control. In [9], the authors propose two deadline assignment
algorithms: Fair Laxity Distribution (FLD) and Unfair Laxity Distribution (ULD).
FLD algorithm distributes the laxity in a fair way between the visited nodes. On
the other hand, ULD algorithm distributes the laxity proportional to the minimum
sojourn time that can be guaranteed. In the performance comparison between two
algorithms, with intermediate values of the end-to-end deadline, ULD with NP-EDF
scheduling and FLD with FIFO scheduling present better results than classical me-
thods, such as those in [16].

Using local information, such as response times and local deadlines, for example,
it is possible to predict the future behavior of the system. In [5, 6] the authors
deal with the prediction of response times. The first one introduces algorithms to
estimate the probability of a deadline to be met in embedded systems. This is done

660 P.D.M. Plentz, C. Montez, R. S. de Oliveira

through the prediction of the response time of a service, in which past executions of
this service and the historical data about past executions of all the services supported
by the program are used. In that work an implementation of an application as proof
of concept was carried out, showing the feasibility of the proposed approach. The
goal of the work described in [6] is to minimize the number of exceptions thrown
during process execution and to reduce the cost associated with them when these
exceptions cannot be avoided. The proposed early prediction mechanism is based
on the observation that, when exceptions are inevitable, it may be beneficial to
throw them during the execution of some earlier activity, which has not missed its
deadline yet. The mechanism proposed exploits information about exception throw
costs, which are supplied by the business analyst, as well as information provided by
existing workflow systems, such as statistical measurements based on past process
executions and current status data.

3 DISTRIBUTED THREADS

In many computing problems, applications may be distributed over multiple ma-
chines to achieve desired levels of performance, scalability and robustness. In this
case a control flow that moves itself during the remote call from one virtual ma-
chine to another and returns to the original machine when the method returns is
adequate to implement distributed applications. This control flow abstraction is
known as Distributed Threads [3]. It has a globally unique identifier and can share
physical resources (e.g. processor, disk, I/O) and logical resources (e.g. locks), which
can be subject to mutual exclusion constraints. The distributed thread concept was
initially introduced in the Alpha distributed real-time OS kernel [1].

In the field of real-time systems, a distributed thread can carry its execution
context as it transposes machine boundaries, including its scheduling parameters
(e.g., time constraints, execution time), identity and security credentials [18]. Dis-
tributed applications consist of many distributed threads executing concurrently
and asynchronously. Local scheduler carries out the scheduling of these distributed
threads.

In each node that a distributed thread executes, a local segment of this dis-
tributed thread is created, being implemented by a local thread provided by the
operating system. With Figure 1 it is possible to visualize three distributed threads
being composed by local segments of execution.

When a distributed thread is created, the object and the operation that it will
execute are defined and it begins its execution by invoking an object operation. This
node where it began is called source node. A distributed thread has one execution
point in the whole system, which is called head node. All nodes that host part of
the execution of a distributed thread are known as segment nodes. A distributed
thread that is executing can create a new distributed thread (e.g. through one-way
invocations). This new distributed thread may begin executing in another node of
the system. However, this kind of invocation is not considered in this work.

Deadline Missing Prediction Through the Use of Milestones 661

!"#$%&%

!"#$%'%

!"#$%(%

)*+,-*./,$#%

,0-$1#%2%

)*+,-*./,$#%

,0-$1#%3%

)*+,-*./,$#%

,0-$1#%4%

)*+,-*./,$#%,0-$1#%

5"617%,0-$1#%

8.9$6,%:%

8.9$6,%;%

8.9$6,%<%

Fig. 1. Distributed threads and local segments

This abstraction can be implemented as part of the operating system (e.g., CMU
Alpha, OSF MK7. 3a), as part of middleware (e.g., Real-Time Corba/Dynamic
Scheduling) and as part of the programming language (e.g., Java).

3.1 Methods for End-to-End Deadline Partitioning

Distributed real-time systems are composed of local and distributed tasks. Usually,
an end-to-end deadline tells the system the urgency of a distributed task. Scheduling
policies are used to schedule these tasks according to their deadlines. The partition of
the end-to-end deadline in local deadlines is a common practice for local scheduling.
These local deadlines are used by local schedulers in a scheduling policy.

When considering a distributed system composed of distributed threads, the end-
to-end deadline can be split out using their local segments. A distributed thread
can execute computations before a remote call only or also after a remote call (that
is, when it returns to the node). For example, if a distributed system with five
pipelined nodes is considered, a distributed thread may have five local segments

662 P.D.M. Plentz, C. Montez, R. S. de Oliveira

because it executes computations only before a remote call, or it may have ten local
segments if it executes computations before and after a remote call.

As described in [14] there are two main ways to carry out the end-to-end deadline
partition. The first one is a static way where the partitioning occurs before the
distributed task begins its execution. All the local deadlines are defined and they
do not suffer from changes during distributed task execution. The second one is
a dynamic way where the local deadlines are redefined each time the distributed
task arrives at a node. This kind of end-to-end deadline partitioning takes into
account current system load and generates additional overhead.

The literature presents some end-to-end deadline partitioning methods [17, 9,
16, 10]. In [10] three methods are defined that do not deal with system load (Ef-
fective Deadline – ED, Equal Slack – ES, Equal Flexibility – EQF). They create
estimated local deadlines that consider just the end-to-end deadline, arrival and
execution times of distributed threads. As exposed in [14], ED is a simple method
that considers just the estimated execution time of local segments in the definition of
local deadlines, the EQS method divides the distributed thread’s total slack equally
among all its local segments and method EQF divides the distributed thread’s total
slack proportionally to execution time among all its local segments.

4 PROPOSED MODEL

In this work, we are supposing a distributed real-time system like those in factory
automation. Only one application executes in all nodes of the system at a given
moment and it is implemented by Real-Time Distributed Threads (DTs). This
system has a dynamic load because DTs can be created at runtime. Therefore,
there may be moments when the system is overloaded.

The proposed model is the same as that used in [14] which is composed of
local periodic tasks with hard deadlines and distributed aperiodic tasks with firm
deadlines. The distributed aperiodic tasks are represented by Distributed Threads.
These DTs have timing constraints and they are recurrent, that is, they can be
activated more than once on the system. Furthermore, in this work it is considered
that DTs execute operations before and after a remote call. An end-to-end deadline
and an estimated execution time are defined when a distributed thread is created.
These timing constraints are carried by each real-time distributed thread as they
transpose system nodes.

Figure 2 shows details of the system architecture (which was introduced in [12]).
Distributed threads are serviced by interceptors, which are local threads with exe-
cution times previously assigned. It means that these interceptors are considered
as one additional periodic task of the system. Each interceptor maintains a list of
distributed threads that execute (or executed) in each node. When a distributed
thread arrives at a node (head node), the local interceptor services it. Then, the
interceptor verifies if a local segment of this distributed thread already exists. In
affirmative case, this local segment is activated to execute on behalf of the dis-

Deadline Missing Prediction Through the Use of Milestones 663

tributed thread that arrived. Otherwise, a distributed thread local segment is
created by the interceptor, which will execute on behalf of its parent distributed
thread.

In both cases, all the distributed thread properties (such as identifier and tim-
ing constraints) are inherited by the distributed thread local segment. Each dis-
tributed thread has a history, which records these properties, as well as its last
activations.

!"#$%&'('#'()*%+*,$-./$0%

12$0)'-)*%
+$03$0%

4'*"/%#"56%
7%

8(#$0*$2#'0%

9)5#0):.#$-%

#,0$"-%;%

9)5#0):.#$-%

#,0$"-%<% 9)5#0):.#$-%

#,0$"-%6%

4'*"/%

5$=>$(#%;%

4'*"/%

5$=>$(#%<%

4'*"/%

5$=>$(#%6%

12$0)'-)*%+$03$0%

?'-$%7%

Fig. 2. System architecture

In each system node there is an aperiodic server responsible for the execution of
distributed thread’s local segments. The interceptor puts in the aperiodic server’s
queue the distributed threads local segments that arrive at the node. In this work
the use of the Sporadic Server [15] is proposed for the scheduling of the distributed
thread local segments and the Earliest Deadline First (EDF) algorithm [15] for
preemptively scheduling the aperiodic server’s queue. The Rate Monotonic (RM)
algorithm [15] will be used in each system node, which will preemptively schedule
the hard periodic local tasks, interceptor and aperiodic server. As hard periodic
local tasks are considered critical for the application, their scheduling must not be
jeopardized by the scheduling of DTs with firm deadlines. The scheduling approach
used in this work is composed of two stages: partitioning of the end-to-end deadline
and local scheduling. This is not an uncommon procedure in the real-time litera-
ture [8]. The distributed thread’s timing attributes influence the scheduling only,
and the local schedulers are considered independent. They do not collaborate with
each other in an explicit way. The aim of this architecture is twofold: to guarantee

664 P.D.M. Plentz, C. Montez, R. S. de Oliveira

the deadlines of the hard local periodic tasks and to reduce the response time of the
firm distributed aperiodic tasks in order to meet the distributed threads end-to-end
deadlines.

During its execution in the system, a distributed thread defines its control flow
through the remote calls executions at different nodes, as Figure 3 shows. In this
figure, it is possible to visualize distributed thread executing methods A, B and C
in nodes 1, 2 and 3, respectively. According to application behavior, the distributed
thread can go to node 2 (method B) or node 3 (method C). For this reason, a dis-
tributed thread can be considered autonomous and its remote calls itinerary can be
recorded in a history. In each new activation, the distributed thread may follow the
previous itinerary or a new itinerary.

!

!!!!!!!!!method A {

 if condition then

 method B
 else
 method C

 }

"#$%!&!

!

!!!!!!!!!method B {

 ...

 ...
 }

"#$%!'!

!

!!!!!!!!!method C {

 ...

 }

"#$%!(!

)*+,-*./,%$!

,0-%1$!

)*+,-*./,%$!

,0-%1$!

Fig. 3. Distributed thread execution flows alternatives

Because of its history and autonomous behavior we can say that in its next acti-
vation a distributed thread can follow an itinerary that is not completely known or
completely random. This itinerary can be defined based on the distributed thread’s
history in a probabilistic way [13].

4.1 Probabilistic Known Itineraries for Distributed Threads

Due to its autonomous nature, a distributed thread can define many different iti-
neraries, which can be kept stored in a log. In each new activation, a distributed
thread will follow a different itinerary. Through the scanning of this log it is possible
to identify four main itineraries that a distributed thread would follow: Longest
Itinerary, Shortest Itinerary, Most Likely Itinerary and Average Itinerary. These
itineraries can be visualized in Figure 4 and are described as follows.

As described in [14], the first itinerary considers the greater path that a dis-
tributed thread may follow. The second one considers the lesser path that it

Deadline Missing Prediction Through the Use of Milestones 665

!"#$%&'%(

)*+&$,$-(

.#+/&'%(

)*+&$,$-(

0#'%(123&1-(

)*+&$,$-(

4#5&(6(

4#5&(7(

4#5&(8(

4#5&(9(

4#5&(:(
4#5&(;(

4#5&(<(

4#5&(=(

40%

60%

70%

30%

50%

50%

4#5&(6(

4#5&(7(

4#5&(8(

4#5&(9(

4#5&(:(
4#5&(;(

4#5&(<(

4#5&(=(

40%

60%

70%

30%

50%

50%

4#5&(6(

4#5&(7(

4#5&(8(

4#5&(9(

4#5&(:(
4#5&(;(

4#5&(<(

4#5&(=(

40%

60%

70%

30%

50%

50%

Fig. 4. Possible itineraries of a distributed thread

may follow and the third one identifies in the distributed thread log which path
was followed more times by a distributed thread. The Average Itinerary com-
putes an average of the itineraries kept stored in the distributed thread log con-
sidering the different probabilities of a distributed thread following one or another
itinerary.

At each new distributed thread activation (before it begins to execute) a deadline
partitioning method can be chosen to define its local deadlines according to some
distributed thread itinerary. In this work the EQF deadline partitioning method
is used because of its good results presented in [10]. Because of its autonomous
nature, a distributed thread may not follow this pre-determined itinerary or may
follow it partially. In that case, a new partitioning needs to be computed. When
the system observes that the distributed thread is in a node that does not belong to
the original itinerary, a new deadline definition is made through the same itinerary
last used starting from the present node.

666 P.D.M. Plentz, C. Montez, R. S. de Oliveira

5 PROPOSED DEADLINE MISSING PREDICTION MECHANISMS

The performance of non-critical distributed real-time systems can be improved by
the implementation of mechanisms for early detection of deadline missing. A dead-
line missing prediction mechanism can be used to determine the probability of a dis-
tributed thread to miss its end-to-end deadline. Remedial actions related to deadline
missing should be carried out in time to improve system performance.

End-to-end deadline missing prediction mechanisms can be launched at start
nodes, end nodes or at intermediary nodes of the distributed system. In the first
case, it can compute bad results because the distributed thread is only beginning
its execution. In the second case, maybe it will be too late for taking any remedial
action. Considering these questions, our prediction mechanisms are launched at the
node which represents the middle of the distributed thread execution, that is, the
prediction is made when the response time of an ongoing distributed thread is equal
to or greater than half of its end-to-end deadline.

In this work we propose deadline missing prediction mechanisms that define
estimated local response times, called milestones. These milestones are used as base
in the calculation of the probability of a distributed thread meeting its end-to-end
deadline.

5.1 Mechanisms Based on Milestones

The deadline missing mechanisms based on milestones consider only the distributed
thread information previously known for the definition of a estimated response time
that is used in the calculations of the probability of a distributed thread meeting its
deadline. Three different ways to generate the milestones are proposed, all of them
are based on the end-to-end deadline partitioning methods proposed in [10]:

MilestoneED (MED): based on the Effective Deadline partitioning method [10];

MilestoneEQS (MEQS): based on the Equal Slack partitioning method [10];

MilestoneEQF (MEQF): based on the Equal Flexibility partitioning method [10].

As described previously, the prediction mechanisms run at the node which re-
presents the middle of the distributed thread execution, that is, the prediction is
made when the response time of an ongoing distributed thread is equal to or greater
than half of its end-to-end deadline. Because of this observation, the milestones
mechanisms define estimated local response times for all nodes that belong to the
distributed thread possible itineraries.

The itineraries described in Section 4.1 can be used in conjunction with the
milestones predictors. With the combination of these itineraries and the milestones
predictors, it is possible to define 12 milestones predictors:

• MED – Longest (MED-Lt);

• MED – Shortest (MED-St);

Deadline Missing Prediction Through the Use of Milestones 667

• MED – Average (MED-Av);

• MED – Most Likely (MED-ML);

• MEQS – Longest (MEQS-Lt);

• MEQS – Shortest (MEQS-St);

• MEQS – Average (MEQS-Av);

• MEQS – Most Likely (MEQS-ML);

• MEQF – Longest (MEQF-Lt);

• MEQF – Shortest (MEQF-St);

• MEQF – Average (MEQF-Av);

• MEQF – Most Likely (MEQF-ML).

The generation of the milestones is carried out in the source node, before the
distributed thread begins its execution. For each predictor-itinerary pair, the predic-
tion is carried out considering the execution time of the remote calls that compose
an itinerary. The generated milestones are carried by the distributed thread, in
a dynamic structure that is updated as the distributed thread transposes the sys-
tem nodes.

The next subsections describe the predictors MilestoneED, MilestoneEQS and
MilestoneEQF.

5.2 MilestoneED – MED

This mechanism defines estimated local response times for each distributed thread’
local segment (milestone), using Equation (1) [10]. These MED milestones are used
in the definition of the index Pk, in the following way:

dl(si) = d(TD)−
m
∑

j=1+1

pex(sj) (1)

Slack = (MED(si)− rl(si))/Dffk;

Pk(MED) = slack + 0.5

where MED(si is the milestone of the DTk’ local segment i defined through 1,
rl(si) is the response time of the DTk’local segment si, and Dffk is the end-to-end
deadline of the DTk.

It is defined the probability of the DTk meets its deadline in the following way:

Probk(MED) =







0 Pk(MED) < 0
Pk(MED) 0 ≤ Pk(MED) ≤ 1
1 Pk(MED) > 1

where Probk(MED) represents the probability of DTk to meet its end-to-end dead-
line according to the MED prediction mechanism.

668 P.D.M. Plentz, C. Montez, R. S. de Oliveira

5.3 MilestoneEQS – MEQS

This mechanism defines estimated local response times for each distributed thread
local segment (milestones), using Equation (2) [10]. These milestones MEQS are
used in the definition of the index Pk, in the following way:

dl(si) = ar(si) + pex(si) + (d(TD)− ar(si) (2)

−

m
∑

j=1

pex(sj)) \ (m− i+ 1)

Slack = (MEQS(si)− rl(si))/Dffk;

Pk(MEQS) = slack + 0.5

where MEQS(si) is the milestone of DTk’ local segment i defined through 2. It is
defined the probability of DTk meets its deadline in the following way:

Probk(MEQS) =







0 Pk(MEQS) < 0
Pk(MEQS) 0 ≤ Pk(MEQS) ≤ 1
1 Pk(MEQS) > 1

where Probk(MEQS) represents the probability ofDTk to meet its end-to-end dead-
line according to the MEQS prediction mechanism.

5.4 MilestoneEQF – MEQF

This mechanism defines estimated local response times for each distributed thread
local segment (milestones), using Equation (3) [10]. These milestones MEQF are
used in the definition of the index Pk, in the following way:

dl(si) = ar(si) + pex(si) + (d(TD)− ar(si) (3)

−

m
∑

j=1

pex(sj)) ∗

(

pex(si)
∑m

j=1 pex(sj)

)

Slack = (MEQF (si)− rl(si))/Dffk;

Pk(MEQF) = slack + 0.5

where MEQF (si) is the milestone of the DTk’ local segment i defined through 3.
It is defined the probability of DTk meets its deadline in the following way:

Probk(MEQF) =







0 Pk(MEQF) < 0
Pk(MEQF) 0 ≤ Pk(MEQF) ≤ 1
1 Pk(MEQF) > 1

where Probk(MEQF) represents the probability of the DTk meeting its end-to-end
deadline according to the MEQF prediction mechanism.

Deadline Missing Prediction Through the Use of Milestones 669

6 SIMULATIONS

Simulations were carried out with the objective of comparing the performance of
the milestone mechanisms. The Relative Error Rate (E(z)) and Correct Prediction
Rate (CP(z)) metrics were used to compare the results of the proposed mechanisms.
The first one shows the distance of the resulting prediction in relation to an exact
prediction and it is defined as [5]:

Ek(z) =

{

1− Probk(z) Rk ≤ Dk

Probk(z) Rk > Dk

where Rk and Dk are the response time and the end-to-end deadline of a DTk,
respectively. With this metric, we have a measure of the capacity of each mechanism
in doing correct predictions as the value of k increases.

The second metric just considers if the resulting prediction is greater or less
than 0.5 and if the distributed thread met or missed its deadline. If the deadline
meeting prediction of a DTk (Probk(z)) is equal to or greater than 0.5, and the
distributed thread actually meets its deadline, then the CP (z) metrics accounts as
correct prediction of the mechanism z. If the deadline meeting prediction of a dis-
tributed thread is less than 0.5 and the distributed thread misses its deadline, then
the CP (z) metrics also accounts as correct prediction of the mechanism z. Formally,
CP (z) metrics is defined as follows:

If (Probk(z) < 0.5) and (Rk > Dk) then
CorrectPrediction(z)+ = 1;

If (Probk(z) ≥ 0.5) and (Rk ≤ Dk) then
CorrectPrediction(z)+ = 1;

CP (z) = CorrectPrediction(z)/NPredictions(z);

where NPredictions(z) is the total amount of the predictions carried out by mecha-
nism z.

Three different load scenarios were simulated and analyzed in this work. The
simulation conditions as well as results are described below.

6.1 Simulation Conditions

In this system there are 16 interconnected nodes, in each node there are four hard
periodic local tasks, whose periods are 10 ut, 20 ut, 40 ut and 80 ut. Those tasks
have relative deadlines equal to their periods. The interceptor task and aperiodic
server task are one of the periodic local tasks. The capacity of the Sporadic Server
is 5 ut and its period is 10 ut.

A set with 90 different kinds of DTs was used for the simulations. This set is com-
posed by 30 pipelines DTs, 30 balanced DTs and 30 non-balanced DTs (Figure 5).
100 different configurations have been generated, each configuration is composed of
9 DTs randomly chosen from the distributed thread’s set. For these 9 DTs, 3 DTs
are of pipeline type, 3 DTs are of balanced type and 3 DTs are of non-balanced

670 P.D.M. Plentz, C. Montez, R. S. de Oliveira

!"#$%&% !"#$%'% !"#$%(% !"#$%)% !"#$%*%

+,-$.,/$0.,1$%234%

56.6/7$#0.,1$%234%

!"#$%&%

!"#$%'%

!"#$%(%

!"#$%)%

!"#$%*%

!"/856.6/7$#0.,1$%234%

!"#$%9%

!"#$%:%

!"#$%&%

!"#$%'%

!"#$%(%

!"#$%)%

!"#$%*%
!"#$%:%

!"#$%9%

!"#$%;%

60%

40%

40%

60%

70%

30%

50%

50%

50%

50%

70%

30%

Fig. 5. Types of distributed threads

type. The average executing time of each distributed thread local segment varies
from 5 ut to 200 ut.

In each configuration, 5 different values of deadlines were used in the range from
100 ut to 900 ut where 100 ut represents a tight deadline, 300 ut, 500 ut and 700 ut
represent fair deadlines and 900 ut represents a loose deadline. The DTs arrival time
rate follows an exponential distribution with an average of 700 ut between arrivals.
Furthermore, communication network delay has uniform distribution between 1 ut
and 2 ut and it is assumed that there is no network partition. The simulation time
was equal to 20 000 ut for each configuration.

6.2 Simulation Results

The milestones predictors (MED, MEQS and MEQF) were used in conjunction with
the itineraries Longest (Lt), Shortest (St), Average (Av.) and Most Likely (ML.),
defining 12 predictors (Section 5.1).

Deadline Missing Prediction Through the Use of Milestones 671

Table 1 shows the results of the MED, MEQS and MEQF predictors, through the
Relative Error Rate (E(z)) metrics. Each configuration was run for 20 000 ut. Since
each configuration is composed of 9 distributed threads, we have around 250 pre-
dictions during each run of this 20 000 ut simulation. For each configuration we
computed the average Relative Error Rate. Table 1 shows the average Relative
Error Rate of the 100 different configurations simulated. The values presented in
this table include the confidence interval (column CI) to a level of confidence of
the 95%, considering a sample of size 100. The best result for each deadline was
represented as boldface.

Deadline, Error Rate and Confidence Interval (CI)

100 300 500 700 900

Prediction Error CI Error CI Error CI Error CI Error CI
Mechanisms

MED-Lt 0.047 ±0.005 0.234 ±0.010 0.184 ±0.013 0.110 ±0.012 0.074 ±0.012

MED-St 0.085 ±0.008 0.266 ±0.011 0.191 ±0.014 0.114 ±0.013 0.077 ±0.012

MED-Av 0.055 ±0.006 0.245 ±0.010 0.186 ±0.013 0.111 ±0.012 0.075 ±0.012

MED-ML 0.065 ±0.007 0.242 ±0.010 0.185 ±0.013 0.111 ±0.012 0.075 ±0.012

MEQS-Lt 0.052 ±0.005 0.203 ±0.011 0.194 ±0.010 0.135 ±0.011 0.091 ±0.011

MEQS-St 0.076 ±0.006 0.221 ±0.011 0.193 ±0.010 0.132 ±0.011 0.089 ±0.011

MEQS-Av 0.061 ±0.005 0.206 ±0.011 0.193 ±0.010 0.135 ±0.011 0.091 ±0.011

MEQS-ML 0.062 ±0.006 0.209 ±0.011 0.191 ±0.010 0.133 ±0.011 0.091 ±0.011

MEQF-Lt 0.049 ±0.005 0.194 ±0.010 0.175 ±0.009 0.120 ±0.010 0.082 ±0.011

MEQF-St 0.078 ±0.006 0.223 ±0.010 0.181 ±0011 0.118 ±0.011 0.080 ±0.011

MEQF-Av 0.059 ±0.005 0.198 ±0.010 0.175 ±0.009 0.119 ±0.010 0.082 ±0.011

MEQF-ML 0.062 ±0.006 0.201 ±0.010 0.173 ±0.009 0.118 ±0.010 0.082 ±0.011

Table 1. Relative error rate of the prediction mechanisms

It is possible to visualize that none of the milestones predictors presented better
results in all deadlines. In the deadlines equal to 100, 700 and 900 the MED-Lt
was the better predictor. In the deadlines equal to 300 and 500, the MEQF-Lt
and MEQF-ML predictors were the better predictors. The MEQS predictor did not
obtain better results in none of the simulated deadlines. Through these results we
can say that MEQF is better than the other milestone predictors in the Relative
Error Rate metrics because it is more difficult to compute a correct prediction with
fair deadlines.

The Longest (Lt) itinerary reaches best results in almost all simulated deadlines
(with exception of the deadline 500). Figures 6, 7 and 8 show the values of Table 1.
The MED, MEQS and MEQF are plotted with the four possible distributed thread
itineraries: Lt, St, Av and ML.

Because the Longest (Lt) itinerary showed better results that the other itine-
raries, it will be plotted in the graphic of Figure 9, with each Milestone predictor.
This graphic shows the good results of the MEQF predictor in the fair deadlines.

Table 2 shows the results of the milestones predictors, through the Correct Pre-
diction Rate (CP (z)) metrics. Again we have around 250 predictions during each
run of simulation. For each configuration we computed the average Correct Predic-

672 P.D.M. Plentz, C. Montez, R. S. de Oliveira

100 300 500 700 900
0

0.05

0.1

0.15

0.2

0.25

0.3

Deadlines

R
el

at
iv

e
E

rr
or

 R
at

e

MED−Lt
MED−St
MED−Av
MED−ML

Fig. 6. Relative error rate of the MED predictor

100 300 500 700 900
0

0.05

0.1

0.15

0.2

0.25

0.3

Deadlines

R
el

at
iv

e
E

rr
or

 R
at

e

MEQS−Lt
MEQS−St
MEQS−Av
MEQS−ML

Fig. 7. Relative error rate of the MEQS predictor

Deadline Missing Prediction Through the Use of Milestones 673

100 300 500 700 900
0

0.05

0.1

0.15

0.2

0.25

0.3

Deadlines

R
el

at
iv

e
E

rr
or

 R
at

e

MEQF−Lt
MEQF−St
MEQF−Av
MEQF−ML

Fig. 8. Relative error rate of the MEQF predictor

100 300 500 700 900
0

0.05

0.1

0.15

0.2

0.25

Deadlines

R
el

at
iv

e
E

rr
or

 R
at

e

MED−Lt
MEQS−Lt
MEQF−Lt

Fig. 9. Relative error rate of the MED, MEQS and MEQF mechanisms

674 P.D.M. Plentz, C. Montez, R. S. de Oliveira

tion Rate. Table 2 shows the average Correct Prediction Rate of the 100 different
configurations simulated. The confidence interval (column CI) to a level of confi-
dence of the 95% considers a sample of size 100.

The results show that MEQF predictor presented best results in all simulated
deadlines. Lt itinerary reached better results in the deadline 100 while the St
itinerary was better for deadline 900. Av itinerary presented best results in dead-
lines 100, 300, 700 and 900. ML itinerary presented best results in deadlines 500,
700 and 900.

Deadline, Correct Prediction Rate (CP) e Confidence Interval (CI)

100 300 500 700 900

Prediction CP CI CP CI CP CI CP CI CP CI
Mechanisms

MED-Lt 0.979 ±0.028 0.823 ±0.075 0.859 ±0.068 0.932 ±0.049 0.960 ±0.038

MED-St 0.945 ±0.045 0.760 ±0.084 0.845 ±0.071 0.924 ±0.052 0.955 ±0.041

MED-Av 0.977 ±0.029 0.803 ±0.078 0.853 ±0.069 0.930 ±0.050 0.959 ±0.039

MED-ML 0.958 ±0.039 0.805 ±0.078 0.856 ±0.069 0.930 ±0.050 0.958 ±0.039

MEQS-Lt 0.987 ±0.022 0.871 ±0.066 0.873 ±0.065 0.918 ±0.054 0.953 ±0.041

MEQS-St 0.981 ±0.027 0.863 ±0.067 0.875 ±0.065 0.924 ±0.052 0.958 ±0.039

MEQS-Av 0.987 ±0.022 0.873 ±0.065 0.877 ±0.064 0.920 ±0.053 0.955 ±0.041

MEQS-ML 0.983 ±0.025 0.869 ±0.066 0.879 ±0.064 0.922 ±0.053 0.955 ±0.040

MEQF-Lt 0.989 ±0.021 0.913 ±0.055 0.921 ±0.053 0.949 ±0.043 0.966 ±0.035

MEQF-St 0.981 ±0.027 0.876 ±0.065 0.904 ±0.058 0.948 ±0.044 0.967 ±0.035

MEQF-Av 0.989 ±0.020 0.917 ±0.054 0.924 ±0.052 0.951 ±0.042 0.967 ±0.035

MEQF-ML 0.984 ±0.024 0.908 ±0.057 0.925 ±0.052 0.951 ±0.042 0.967 ±0.035

Table 2. Correct Prediction Rate of the Deadline Missing Prediction Mechanisms

Through these results, it is possible to say that none of the itineraries presented
better results than the others in all simulated deadlines. Figures 10, 11 and 12
show the values of Table 2. The MED, MEQS and MEQF are plotted with the four
distributed thread possible itineraries: Lt, St, Av and ML.

With the aim of analyzing the results of the Longest (Lt) itinerary with each
Milestone predictor, Figure 13 shows a graph of MED, MEQS and MEQF predictors
with Lt itinerary. It shows that MEQF predictor presents better results in all
simulated deadlines and this confirms its good behavior as a deadline prediction
mechanism.

7 CONCLUSIONS

In this paper we have focused on distributed real-time systems, such as those used
in factory automation. Distributed threads may implement this kind of system and
they have probabilistic knowledge about their remote calls itineraries. An end-to-
end deadline partitioning method was applied considering this probabilistic knowl-
edge, and through it local deadlines were defined which are used by local scheduling
policies.

Deadline Missing Prediction Through the Use of Milestones 675

100 300 500 700 900
0.75

0.8

0.85

0.9

0.95

1

Deadlines

C
or

re
ct

 P
re

di
ct

io
n

R
at

e

MED−Lt
MED−St
MED−Av
MED−ML

Fig. 10. Correct prediction rate of the MED predictor

100 300 500 700 900
0.75

0.8

0.85

0.9

0.95

1

Deadlines

C
or

re
ct

 P
re

di
ct

io
n

R
at

e

MEQS−Lt
MEQS−St
MEQS−Av
MEQS−ML

Fig. 11. Correct prediction rate of the MEQS predictor

676 P.D.M. Plentz, C. Montez, R. S. de Oliveira

100 300 500 700 900
0.75

0.8

0.85

0.9

0.95

1

Deadlines

C
or

re
ct

 P
re

di
ct

io
n

R
at

e

MEQF−Lt
MEQF−St
MEQF−Av
MEQF−ML

Fig. 12. Correct prediction rate of the MEQF predictor

100 300 500 700 900
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Deadlines

C
or

re
ct

 P
re

di
ct

io
n

R
at

e

MED−Lt
MEQS−Lt
MEQF−Lt

Fig. 13. Correct prediction rate of the MED, MEQS and MEQF mechanisms

Deadline Missing Prediction Through the Use of Milestones 677

We proposed a deadline missing prediction mechanism based on milestones.
A milestone is an estimated local response time that is used to define the probability
of a distributed thread to meet its deadline. Three milestone predictors – MED,
MEQS and MEQF – were defined through the end-to-end deadline partitioning
method described in [10].

Simulation results have shown that MEQF presents better results as a milestone
generator, when compared with other deadline missing predictors. These results are
an improvement of the results found in [12]. It should be noticed that this mechanism
is very simple and does not take the dynamics of the distributed system into account,
as each node load. Only the estimated computation time of each distributed thread
is considered.

As in any analysis through simulation, the conclusions are mainly valid for sce-
narios similar to those simulated. The set of experiments considered many different
scenarios with respect to deadline tightness. Also, by varying the format of the
distributed threads, we tried not to draw conclusions from a very limited set of
situations. As a general rule, the more variable the behavior of the system, the
more difficult is to make any prediction about meeting deadlines. Nonetheless, the
comparison between the many heuristics was reasonably stable among the many
conditions tested.

In [14] we presented the ASQ deadline prediction mechanism that takes into
account the dynamics of the distributed system. Although this mechanism has
presented better results than milestone predictors, it is more complex and requires
a distributed thread to gather information at each node where it arrives and to carry
this information back to the source node. On the other hand, milestone predictors
are lighter because all estimated response times are defined before a distributed
thread begins its execution. At each node it arrives it is necessary to verify this
partial response time and if it is equal to or greater than half of its end-to-end
deadline. If it is true the distributed thread computes the probability of meeting
its deadline. Milestone predictors are adequate for distributed systems which have
restricted computational resources.

The next step of this research is to improve the way deadline missing prediction
mechanisms are launched. We intend to develop a launcher that can monitor the
system load and to decide the best moment to launch the prediction mechanism.
An open question is how to use our simulation program to check the effectivity of
the corrective actions that follows the deadline missing prediction. This is a difficult
task since the value of the corrective actions is highly dependent of the application
semantics.

REFERENCES

[1] Clark, R.K.—Jensen, D.—Reynolds, F.D.: An Architectural Overview of
the Alpha Real-Time Distributed Kernel. Winter USENIX Conference, April 1993,
pp. 127–146.

678 P.D.M. Plentz, C. Montez, R. S. de Oliveira

[2] Tilevich, E.—Smaragdakis, Y.: Portable and Efficient Distributed Threads for

Java. Middleware ’04, Proceedings of the 5th ACM/IFIP/USENIX International Con-
ference on Middleware 2004, Toronto, Canada, pp. 478–490.

[3] Li, P.—Ravindran, B.—Cho, H.—Douglas Jensen, E.: Scheduling Dis-
tributable Real-Time Threads in Tempus Middleware. 10th International Conference

on Parallel and Distributed Systems, July 2004, New Port Beach (California), pp. 187.

[4] Zhang, Y.—Thrall, B.—Torri, S.—Gill, C.—Lu, C.: A Real-Time Perfor-
mance Comparison of Distributable Threads and Event Channels. Proceedings of
the 11th IEEE Real Time on Embedded Technology and Applications, Symposium,
March 2005, San Francisco (California), pp. 497–506.

[5] Tatibana, C.Y.—Montez, C.—de Oliveira, R. S.: Soft Real-Time Task Re-
sponse Time Prediction in Dynamic Embedded Systems. Proceedings of the 5th IFIP
Workshop on Software Technologies for Future Embedded and Ubiquitous Systems,
Santorini Island, Greece, May 2007, pp. 1–10.

[6] Panagos, E.—Rabinovich, M.: Reducing Escalation-Related Costs in WFMSs-
NATO Advanced Study Institute on Workflow Management Systems and Interoper-
ability, Istambul 1997.

[7] Real-Time CORBA Specification, Version 1.2, OMG (Object Management Group),
January 2005.

[8] Jun Sun: Fixed-Priority End-to-End Scheduling in Distributed Real-Time Systems.
Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1997.

[9] Marinca, D.—Minet, P.—George, L.: Analysis of Deadline Assignment Me-
thods in Distributed Real-Time Systems. Computer Comunications, September 2004,
Vol. 24, No. 15, pp. 1412–1423.

[10] Kao, B.—Garcia-Molina, H.: Deadline Assignment in a Distributed Soft Real
Time System. IEEE Transactions on Parallel and Distributed Systems, December
1997, Vol. 8, No. 12, pp. 1268–1274.

[11] Plentz, P.D.M.—de Oliveira, R. S.—Montez, C.: Scheduling of the Dis-
tributed Thread Abstraction with Timing Constraints using RTSJ. 10th IEEE In-
ternational Conference on Emerging Technologies and Factory Automation, Catania
(Italy), September 2005, pp. 2005.

[12] Plentz, P. D.M.—Montez, C.—Silva de Oliveira, R.: Prediction of End-to-
End Deadline Missing in Distributed Threads Systems. Proceedings of the 12th IEEE
International Conference on Emerging Technologies and Factory Automation, Patras
(Greece), September 2007, pp. 25–32.

[13] Plentz, P. D.M.—Montez, C.—Silva de Oliveira, R.: Deadline Missing Pre-
diction in Systems based on Distributed Threads. IEEE Latin American Robotic
Symposium 2008, Salvador (Bahia),October 2008, pp. 190–195.

[14] Plentz, P. D.M.—Montez, C.—Silva de Oliveira, S.: Deadline Missing Pre-
dictor Based on Aperiodic Server Queue Length for Distributed Systems. Computer
Communications 2008, Vol. 31, No. 17, pp. 4167–4175.

[15] Liu, J.W. S.: Real-Time Systems. Prentice Hall 2000.

Deadline Missing Prediction Through the Use of Milestones 679

[16] di Natale, M.—Stankovic, J.A.: Dynamic End-to-End Guarantees in Dis-

tributed Real-Time Systems. Proceedings of Real-Time Systems Symposium, San
Juan, Puerto Rico 1994, Vol. 7, No. 9, pp. 216–227.

[17] Jonsson, J.: A Robust Adaptive Metric for Deadline Assignment in Heterogeneous

Distributed Real-Time Systems. Proceedings of the 13th International Symposium on
Parallel Processing and the 10th Symposium on Parallel and Distributed Processing,
IEEE Computer Society, Washington, DC (USA) 1999, pp. 678–687.

[18] Ravindran, B.—Curley, E.—Anderson, J. S.—Douglas Jensen, E.: Best-
Effort Real-Time Assurances for Recovering from Distributed Thread Failures in
Distributed Real-Time Systems. 10th IEEE International Symposium on Object
and Deadline Missing Prediction Through the Use of Milestones, 21st Component-
Oriented Real-Time Distributed Computing (ISORC), Santorini Island (Greece), May
2007, pp. 344–353.

Patricia Della Méa Plentz has degrees in Computer Science
from the University of Cruz Alta (1999), Masters in Computer
Science (2001) and Ph.D. in Electrical Engineering (2008) both
from Universidade Federal de Santa Catarina (UFSC). She is
currently an Assistant Professor in the Department of Informat-
ics and Statistics (INE) of UFSC. Her main areas of research
include distributed threads, partitioning of deadlines and fore-
cast of end-end deadline missing.

Carlos Montez has degrees in Computer Science from the Uni-
versdade Federal do Rio de Janeiro (1989), Masters in Computer
Science (1995) and Ph.D. in Electrical Engineering (1999) both
from Universidade Federal de Santa Catarina (UFSC). He is cur-
rently an Assistant Professor in the Department of Automation
and Systems of UFSC. His main areas of research are real-time
systems, adaptive scheduling and wireless sensor networks.

Rômulo Silva de Oliveira has degrees in Electrical Engineer-
ing from Pontificia Universidade Catolica do Rio Grande do Sul
(1983), Masters in Computer Science from Universidade Federal
do Rio Grande do Sul (1987) and Ph.D. in Electrical Engineer-
ing from Universidade Federal de Santa Catarina (1997). He
is currently an Associate Professor in the Department of Au-
tomation and Systems, Federal University of Santa Catarina.
His main topics of interest include real-time systems, scheduling
and operating systems.

