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Abstract. Refined descriptive sampling is designed to improve upon the descrip-
tive sampling method for experimentation in simulation. The former reduces signif-
icantly the risk of sampling bias generated by descriptive sampling and eliminates
its problem related to the sample size. In this paper, we propose an optimal parallel
Monte Carlo simulation algorithm using refined descriptive sampling and evaluate
in parallel architecture, performance measures of a stable M/M/1 queueing system,
a Pert network and the Newsboy problem.
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1 INTRODUCTION

Monte Carlo method also called random sampling (RS) can solve a large variety of
problems, but both kinds of variations (set effect and sequence effect) are present
in a randomly generated sample that provides an imprecise evaluation of each si-
mulation estimates (which is a function of the input values). To remedy the lack
of accuracy that is related to the method itself, a new paradigm has emerged. The
latter says that is not always necessary to generate sample values randomly to
describe a stochastic behavior. Then, new deterministic methods, like Quasi Monte
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Carlo [24], Latin hypercube sampling [18], Descriptive Sampling (DS) [29] as well
as Refined Descriptive Sampling (RDS) [35] were derived from this paradigm.

RDS is based on a deterministic selection of the input sample values. Subsets of
regular numbers are first generated, then randomly shuffled and finally observations
of the input random variables are generated as required by the simulation since
the dimension of subsets are prime numbers randomly generated. This method was
proposed by Tari [34] to make DS safe, efficient and convenient; safe by reducing
substantially the risk of sampling bias, efficient by producing estimates with lower
variances and convenient by removing the need to determine in advance the sample
size.

On the other hand, simulation modelling involves both repetition and iteration.
A large simulation model may take a number of hours to run and, of course, many
runs may be required for thorough experimentation. Because simulation is time-
consuming approach, it is recommended to be used as a means of last resort, rather
than the preferred option [25]. Indeed, simulation studies systems whose analytical
solution is difficult even impossible. Surveys of modelling practice demonstrate
that simulation is one of the most commonly used modelling techniques of systems
performance measures evaluation. Most simulation software is not cheap and most
simulation projects take few weeks to complete. Few software applications require
the computing power necessary for simulation. Even Taylor et al. [39] explore the use
of net conferencing during simulation studies. It is then obvious that a simulation
study is expensive in time, memory and more generally in necessary resources [1].
Indeed, the traditional simulation tools could be unusable when complex systems
are studied. We are then confronted with the problem of the best compromise
between the precision of simulation estimates and the cost of the experiment. The
latter of course must be balanced against the benefits that can be gained from the
use of simulation, in the same way, the precision of the estimates that are often
an order of magnitude greater than the cost. Unfortunately, the limited means
of available sequential computation make achieving this goal difficult. Therefore,
a parallel simulation procedure is needed for solving the above problem. Parallelism
is regarded as a means of reducing the cost in time and memory of a program solving
a complex problem.

We can find several works on the parallelization of Monte Carlo methods but all
kinds of variations are still present in a randomly generated sample and simulation
estimates remain affected by such sampling errors through Monte Carlo parallel
algorithms already proposed for example in [2, 22, 40].

In this paper, the best sampling procedure — RDS is selected to improve —
the accuracy of simulation estimates and its safe implementation is suggested in
parallel architecture to reduce the cost of running simulation experiments. However,
RDS procedure is regarded as an algorithm of dependent instructions capable to
be executed just in sequential way. The only instruction able to be parallelized
is related to the loop of the array filling up with regular numbers but it is not
well-suited to parallelization because of the high communication cost that may be
generated. However, MC simulation using RDS involves repetition and this feature



The Use of RDS and Applications in Parallel MC Simulation 683

is specially well-suited to parallelization. Then, to avoid such communication cost,
parallelism of the number of replicated runs is proposed using RDS to generate
input distributions. We have then carried out a parallel Monte Carlo simulation
program running on machines with distributed memory. Accordingly, the Single
Program Multiple Data (SPMD) model has been selected for a better programming
related to the replicated runs and the Message Passing Interface (MPI) library [11]
has been suitably chosen to be used with such model. The selected library supports
both C/C++ and FORTRAN and allows data exchange between the processors. The
selected library fits well our requirements; nevertheless we can find other libraries
like Parallel Virtual Machine (PVM) [13], Portable Programs for Parallel Processors
(P4) [4] and Open Multi Processing (OpenMP) [6].

The use of SPMD model provides an optimal efficiency of the proposed parallel
algorithm. This paper also evaluates in parallel architecture performance measures
of some problems such as a stable M/M/1 queueing system, Pert network and News-
boy problem. In the designed parallel software!, we used RDS algorithm given in [36]
to generate input refined descriptive sample values and the built in generator of the
computing environment to generate both prime numbers and integers to permute
the regular numbers related to RDS method?.

2 ON CHOOSING THE BEST SAMPLING PROCEDURE

Monte Carlo [9] is a numerical method of solving problems using random numbers
and it is one of the most popular mathematical tools with a very large application
field; like differential equation integration, matrix inversion, particles transport,
fluids mechanic and financial mathematics [5, 8, 26, 28]. The following sampling
methods are all regarded as variance reduction techniques.

2.1 Quasi Monte Carlo Method

In quasi Monte Carlo methods, we use deterministic sequences of weak convergence
to reduce the variance in MC method. In other words, we replace the random points
by a set of points that cover the unit hypercube more uniformly than typical random
points. The two main classes of methods for constructing such point sets are digital
nets and integration lattices [17, 20, 33].

Okten, Owen and Tuffin [21, 23, 40], using random sampling with low discrep-
ancy sequences, randomized nets and sequences and a random permutation of QMC
methods, respectively carried out various comparisons between the simulation of MC
and QMC producing hybrid methods. The existing literature in this field abounds
of theoretical results on QMC, for example [3].

! The simulation programme of each application is written by using the C++ compiler
and run on Pentium 4 under the operating system Linux.

2 The built in pseudo random number generator used is the rand() function of the C++
compiler under Linux.
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2.2 Latin Hypercube Sampling

In 1979, McKay et al. [19] proposed Latin Hypercube Sampling (LHS) as a variance
reduction technique in which the selection of sample values is highly controlled,
although still letting them to vary. The basis of LHS is a full stratification of the
sampled distribution with a random selection inside each stratum. It is a kind
of stratified random sampling where sample values are randomly shuffled among
different variables. Some theoretical results on LHS can be found, for example in
Hoshino and Takemura [14].

2.3 Descriptive Sampling

DS is based on a deterministic selection of the input sample values and their ran-
dom permutation. This method was introduced by Saliby in 1990 [29] as a better
alternative to Monte Carlo simulation avoiding the variability of the sample values
that is an undesirable sampling error but keeping the sequence effect that may be
desirable. The values of the descriptive sample do not vary; only their sequences
will vary between different simulation runs. In spite of its advantages, this method
is known to have two problems: it can be biased and its strict operation requires
a prior knowledge of the sample size [25].

2.4 Refined Descriptive Sampling

RDS is concerned with a block that must be situated inside a generator aiming to
distribute regular samples of prime number sizes pi,ps,... when required by the
simulation. We stop the process when the simulation terminates.

In this procedure, each run is determined by a block of different prime numbers.
Contrary to DS, the values of refined descriptive sample vary between different runs
since the sample size is a prime number randomly selected. The generation process
of the sample values is deterministic whereas the generation of the prime numbers
as well as the sequence of the sample values are random.

2.5 Comparison

Several empirical comparisons on a PERT network, an M/M/1 queue, an inventory
system and Newsboy problem [29] show that the estimates of the output random
variables parameters produced through simulation using DS are with lower variance
than those obtained by RS. In [30] there is a discussion suggesting that DS has
a lower variance than LHS whereas Saliby and Pacheco [31] compared the efficiency
of six Monte Carlo simulation sampling methods, namely QMC using Halton, Sobol
and Faure numeric sequences, DS, LHS and RS in two finance applications: a project
risk analysis and a correlated stock portfolio where it was shown that DS and LHS
produced the best results. Tari and Dahmani [36] have shown that RDS is an efficient
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sampling in simulation studies developing methods. This reference was concerned
with ensuring that the implementation of RDS method is safe, correctly designed and
fitted to any simulation in an economical and undemanding manner. The authors
compare the efficiency of DS and RDS on a flow shop system [37] and a production
system [38] showing that RDS produces better results than DS and RS.

However, the aim of any sampling procedure is to represent truly the population
distribution from which it is generated so that any simulation estimates drawn from
it can be safely implemented in the real system. Therefore, RDS outperform all
other sampling methods: DS, RS, LHS and QMC methods and it is capable of
substantially reducing the cost of running simulation experiments.

3 THE USE OF REFINED DESCRIPTIVE SAMPLING
Without loss of generality, we assume that one input random variable X drives the

simulation and one output random variable with k& parameters 6, to be estimated is
observed through simulation.

3.1 The Refined Descriptive Samples
Suppose that m prime numbers have been used in a simulation run. Formally,

in RDS, regular sample values are generated for the input random variable X as
required by the simulation using the inverse transform method such as

(z )+Z71P1 H~ (H qlb) fori=12,...,p,and¢g=1,2,...,m

P
where
Pq
N & forg=1,2,.
{ 1+Ez 1pl’ 2+E; 1pl’ o 1} =
are considered as subsets of dependent regular numbers of prime size p1, po, ..., Pm

uniformly distributed between [0, 1] and are obtained by the following formula

1—0.5 .
7+Z71P7 ’ fori=1,2,...,p,and¢=1,2,...,m,

and H~lis the inverse cumulative function of the input random variable X.
The refined descriptive samples of prime number size p, are obtained by:

1. generating the subsets of regular numbers

7,1711
1+Zq L pi’ 2+Zq e Y b
of size a randomly chosen prime number p,, ¢ =1,2,...,m

2. randomizing their sequence for any p,
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3. computing the regular sample values of the input random variable a;d;er .1 for
i=1

i=1,2,...,pq as required by the simulation.

3.2 RDS Simulation Estimates

In a given run, the use of RDS procedure leads to the following m estimates of the
parameters 0;, j =1,2,...,k

1
(Yr); = E(ri,r%,...,rﬁi)
forj=1,2,....k
2
(Yr); = Fj(rhpl,ripl,...,gjﬂl)

forj=1,2,....k

(Y’]");ﬂ = F ( 1+Zm11p7, 2+Zm 1 : r%lzllpi)

forj=1,2,....k

such as

m

dpi>n

i=1
and conventionally

0

Zpi =0

i=1
where Fj, j = 1,2,...,k is a simulation function usually defined by a program

that relates the input variables with each estimator, and (

1+ZL P’ 2+ZL 1771 o

rba, p_), g=1,2,...,m are the subsets of regular numbers uniformly distributed
=157
over the range 0 and 1.

Therefore, in a given run, the use of RDS method leads to the following sampling
estimates of 0;, 7 =1,2,..., k, defined by the average of these estimates

Z for j=1,2,... k.

1=

1
S m

—

Remark 1. If NV replicated runs are needed to run a simulation experiment, it is
then necessary to consider N blocks of mq, ma, ..., my regular samples.

4 PARALLELISM

There are several parallel programming models developed and two main variants of
parallel programming models classified are shared and distributed memory based
parallel programming models. The parallel programming model is often influenced
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by the type of the application. Then, a better programming model is needed that
facilitates easy development and on the other hand porting high performance.

A programmed application using threads is more appropriate on shared memory
because the threads share the same memory space. On the other hand, if we have
a large amount of data which cannot take place in the memory of one processor, it
is more appropriate to distribute the data on different processors. In this case, to
ensure a better data distribution between different nodes, the distributed memory
based parallel programming models is the most appropriate. Nevertheless, both
architectures can be appropriate if the program is processed with small amounts of
data.

We can find various classifications for parallel architectures in the literature.
Some examples are the classification of Flynn [10], Taxonomy of Skililcorn [32] and
the classification of Duncan [7]. They are all based on particular and important
points of the architecture but the classification of Flynn is the most popular one.

5 THE PROPOSED PARALLEL SIMULATION

In this section, we propose an optimal parallel Monte Carlo simulation algorithm
using refined descriptive sampling which is implemented on parallel architecture
computers.

Let us first define the parallel run time of a program by the following formula

Tharailer = Computation time + Communication time

where the computation time is a locally processing time and the communication
time is given by

Communication time = Latency time + Over-cost time + Transferred time

where

e latency time is the initialization time of the network parameters,
e over-cost time is the make-ready time of the message,

e transferred time is the necessary time for transferring the message.

Suppose that )+ 1 processors are taking part in the simulation experiment. We
appoint one processor as the master called M and the remaining @) by the slaves’
processors or workers called Wy, Wa, ..., Wg.

It is well known that a program composed by more than one independent tasks
can be able to be run simultaneously on multiple processors in order to obtain results
faster [27]. Usually, in parallelism using SPMD model, the program distribution is
done in turn between the various processors using “Round Robin” discipline and if
a MC simulation experiment is carried out in parallel with IV replicated runs then
the number of messages sent by the master M for all workers W;, i =1,2,...,Q is
equal to N.
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The proposed parallel MC simulation consists of execution of the same program
over all workers with different data given by RDS generator which are independent
from one processor to another. Furthermore, to ensure the independence of the
generated prime numbers related to RDS sampling method itself, we suppose inde-
pendent prime numbers generators from one processor to another. To reduce the
transferred time, the master distributes all inputs of the program and the number

¥ of runs to be replicated for each slave processor at once such as each processor

Q
carries out the same copy of such program % times (where N is a multiple of @
to ensure that % is an integer). The reception of partial simulation results by the

master is done in the same manner as the distribution. In the following we show
how we reduced the transferred time. Let T} to be the communication time between
the master M and each worker W;, i = 1,2,...Q where T; is the same value for all
exchanges, say T. Then the transferred time of distribution from M to @ is T' X @,
and the transferred time of reception from @ to M is also T'x @), then the transferred
time is 2 x T' x ). Taking T as a unit time, the number of messages is then reduced
from 2N to 2Q) (distribution and reception). Then the influence of the communi-
cation time is highly controlled and therefore it is regarded as an insignificant time
compared to the computation time. Then,

Tparailer = computation time.

Note that at the end of reception of all partial results, the master computes the
performance measures of the simulation.

It is well known that load balancing is one of the most significant concepts in
parallel computing. In the proposed parallel MC simulation algorithm, we passed
around the load balancing because the considered application is regular (each worker
executes the same program and the same number of runs).

In the proposed parallel program, according to the replication of simulation runs
and their independence, SPMD model has been selected for a better programming.
The sequential part of the proposed parallel program denoted by « is processed just
at the beginning and at the end of the program. The beginning of the program
by reading input data and their distribution over all possible workers and the end
of the program by computing all performance measures using the partial results
obtained when all slaves’ processors have finished running their replicated runs. All
these instructions are done by the master. However, the speedup of processing by
a parallel system with @ + 1 processors is formulated by Gustafson’s law [12] given
by

SQ+1 = (Q + 1) — Qa.

If the part of the code executed by the workers is large, then a can be neglected,
therefore Sgpi1 ~ Q + 1.
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6 RDS ALGORITHM AND ITS IMPLEMENTATION

Before each simulation run, we generate randomly a prime number p. To do so,
we first generate a random number and then we test if it is a prime number using
an improvement of the test of primality, the so-called prime number generator.
A value of the sample is then generated to be used in the simulation experiment.
We stop generating sample values when the simulation terminates.

6.1 RDS Algorithm

a) Initialization for the experiment.

ay) Before each simulation run, generate a sequence of distinct prime numbers.

as) Choose a prime number p from this sequence randomly without replacement.

az) Generate the subset of regular numbers r;, i = 1,2, ..., p and store them in
an array R.

b) Initialization for the sub-run. At the beginning of every sub-run, let ip := 1.

¢) Sampling without replacement during the sub-run:

1) if ip > p then go to (d)

») randomly generate an integer iaux € [ip, p)
)

)

Q

interchange r(ip) with r(iauz)

Q

3

c4) generate one observation zd;.

If a descriptive sub-set value is not required, stop and collect the final results
from the last prime number used and go to (e)
¢s) otherwise let ip := ip + 1 and go to (c1).
d) Collect the results after each sub-run and go to (as).

e) Collect the results after each run.

6.2 Random Number Generation

The mixed congruential generator of C++ is represented by the function rand() and
obtained by the following recurrence relation

Tpi1 = ax, + cmodm

where

e m > 0 is a modulus,

e gand ¢, 0 < a <m and 0 < ¢ < m are positive integers called the multiplier
and the increment, respectively

e and zp, 0 < g < m is the initial value of the generating sequence.
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The pseudo random number generation function rand() is given by the following
algorithm:
#Let us define RAND MAX 32767/(2' — 1)
// as the greatest value that may be generated

Begin
SEED = (1103515245 x SEED + 12 345) mod 2"
X = SEED

Returns integer in range [0, RAND MAX]
End // By repeating this process, we get a series of random numbers between 0
and 2! — 1 reproducible since the initial value of SEED is always the same but if
different sequences are needed, we change the function rand() by srand().

6.3 Test of Primality

// A function of test of primality for a given z number
Begin

Is_Prime(x)

{// z is an unspecified generated random number

// Lower than 2: not prime

If (z < 2) Return (False);

// Equal 2: prime number

If (x==2) Return (True);

// even number else than 2: not prime

If ((z%2) == 0) Return (False);

// Test all i divisor between 3 and [331/ 2]

1 =3;

While (i x i <= z)

// If this number is divisible by i: It is not prime
If ((z %) ==0) Returns (False);
// go to the next divisor
14+ =2;
};
// Any i number between 3 and [ml/z] would split z:
It is prime
Return (True);
};
End

6.4 Prime Number Generator

We first generate an unspecified integer number, then we multiply it by two and add
one in order to make the generated number an odd number since all prime numbers
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are odd except number 2 which is ignored; finally, we test if the odd number is
a prime number by successive division on odd numbers, starting from three with
a step of two. If it is a prime number we use it in running simulation by generating
observations of input random variables, otherwise we go back to generate another
unspecified integer. In this manner, we reduce the time allocated to the generation
of prime numbers by 75 %; we then reduce the time of sequential running simulation
experiments and in this way, we again reduce the parallel time by reducing the
computation time.
// A modified function of test of primality for an unspecified z an odd number
// Let y to be an integer randomly generated between [0, 215 — 1]
Begin
x=2%y+1;
IsPrime(x)
{
// Test all i odd divisor between the integer 3 and [z'/?]
i=3;
While (i*i <= x)
{
// If this number x is divisible by i: It is not prime
If ((x % i) == 0) Returns false;
// Go to next divisor
14=2;
b
// Any i number between 3 and [331/ 2] would split z: It is then prime
Returns (True);
b
End
// If the function IsPrime(x) return false, another random integer y is again gene-
rated until a prime number is obtained.

6.5 Regular Numbers Generation

// Let p to be a prime number generated by the above algorithm

// Let R to be the array containing the regular numbers r;, i = 1,2,...,p

For i:=1topdo

Begin
ry =

End for

// Initialization for the sub-run. At the beginning of every sub-run, let ip := 1, then

it increments at each iteration ip := +1.

// Let k to be an intermediate variable

// Randomly generate an integer iaux € [ip, p| (ip route index of vector R)

Begin (permutation)

i—0.5
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k= r(ip)

r(ip) := r(iauz).

r(iaur) ==k
End (permutation)

6.6 Refined Descriptive Samples Generation

Generation of an observation z; of an input random variable X.

// Let x; = F~'(r;) where F~! is the inverse cumulative function of X.

// In the first problem, the negative exponential distribution of parameter A is used.
// The observations of this distribution are given by

1 .
i ==y In (r(ip))
// In the second problem, a discrete uniform distribution is used.
// In the third problem, an empirical distribution is given.
// The observations of both distributions are generated using top hat method.

7 SAMPLE PROBLEMS

In this section, we evaluate parallel Monte Carlo simulation, performance measures
of a stable M/M/1 queuing system, a Pert network and the Newsboy problem.
In each sample problem, we choose the same input parameters for all carried out
experiments.

We summarize each experiment by computing the mean and variance of
the estimates of the output random variables parameters with both sampling me-
thods.

7.1 The M/M/1 Queuing Problem

This problem concerns the steady state of queue size and queue waiting time distri-
butions for an M/M/1 queue. In this problem, there are two input random variables,
the inter-arrival time and the service time following both an exponential distribution
of parameter respectively A and u, and two response variables are observed through
simulation. The queue size and the queue waiting time have both one parameter,
the mean, Lg and Wq to be estimated by size and Time, respectively.

7.1.1 Data Structure

For each experiment, we define a record with the following structure:

e N: integer number

e )\ u, T: float numbers.
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For each input random variable, we define a record with the following structure:

e p: a prime number defining the size of the regular numbers subset;
e R: array [1...p] of real numbers containing the subset of regular numbers;

e ip: integer pointing to the first available r element to be drawn. If ip = 1, no
element has been drawn yet. If ip > p, a full subset of regular numbers has
already been drawn.

7.1.2 The Parallel Algorithm

In this sub-section, we define the main steps of the proposed and implemented
parallel algorithm.
Begin
1. The Master reads the simulator parameters
N : Number of replicated runs
A : Inter-arrival rate
i = Service rate
T : Simulation period

2. The Master distributes the parameters to each slave processor
For k from 0 to Q — 1
send (%, A, i, T') to processor k

3. Each slave processor carries out ¥ simulation runs of the sample problem using
RDS algorithm given in sub-section 6.1 to generate input refined descriptive
samples

4. Gathering together the simulation results obtained on each slave processor
For k from 0 to @ — 1 send all computed estimates of the % runs
to the Master

5. The Master computes the overall mean of each studied parameter based on all
runs

6. Display the final results by the Master
end

7.1.3 Empirical Results

For both carried out experiments, the number of replicated runs is taken to be
equal to the number of available slave processors. The simulation period was set
equal to 1200 units; we take \ = % and p = % For these problem parameters, the
theoretical values of the output variables parameters under study are Lg = 1.33 mn
and Wq = 4mn. In the first experiment, we take Q = N = 2 and in the second
experiment we take Q = N = 5. The observed results are listed in Table 1.

We can see from Table 1 that when the number of replicated runs increases, the
observed results get closer to the theoretical values.
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Q=N=2 | Q=N=5
Estimate | Mean | Var | Mean | Var

size 2.06 | 0.11 1.56 | 0.08
Time 4.43 | 0.09 4.20 | 0.05

Table 1. Empirical results showing the parallelization efficiency for both experiments

7.2 The Pert Network

7.2.1 Description of the Problem

This problem concerns a simple Pert network already studied by Kleindorfer [16].
As shown in Figure 1, this network has eight activities. All activities durations
are independent and identically distributed random variables following a discrete
uniform distribution defined by

f(dy=02ford=1,...,5

Fig. 1. The simulated Pert network

In this problem, there is one response variable with two parameters — the mean
and the standard deviation — to be estimated. The observed response variable is the
total project duration. Its parameters are both estimated by DT and Spr.

7.2.2 Empirical Results

Four simulation experiments of different replicated runs were carried out on the
studied problem, where each run was defined by 50 observations of the total project
duration. We take @ = 5 in each experiment and for different number of runs, the
observed results are given in Table 2 below.

We can see from Table 2 that the growing up of the number of replicated runs
does not affect the observed results.
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Estimate\ N 50 200 250 300
Mean var | Mean var | Mean var | Mean var

DT 10.13 | 0.36 | 10.13 | 0.41 | 10.11 | 0.42 | 10.13 | 0.41

Spr 2.24 | 1.05 2.30 | 0.92 2.3 | 0.95 2.29 | 0.95

Table 2. Empirical results showing the parallelization efficiency for different experiments

7.3 The Newsboy Problem

7.3.1 Description of the Problem

This problem concerns a simple inventory problem already studied by Kaufmann
and Faure [15]. Daily, a newsboy buys B issues of a newspaper at 0.5 £ each. The
selling price is 1 £. At the end of the day, all remaining issues are restored and the
salvage price for surplus newspapers is 0.2 £ each. Daily demand (D) is independent
and identically distributed according to the following statistical distribution where
Freq stands for frequency and C freq stands for cumulative frequency.

D | Freq | Cfreq | D | Freq | Cfreq | D | Freq | C freq D | Freq | C freq
0 0 0113 1 17 | 26 4 64 39 1 94
1 0 0| 14 3 20 | 27 3 67 40 2 96
2 1 1|15 3 23 | 28 3 70 41 0 96
3 1 2 116 3 26 | 29 4 74 42 1 97
4 1 3|17 4 30 | 30 2 76 43 1 98
5 2 5118 3 33 | 31 3 79 44 0 98
6 1 6| 19 4 37 | 32 3 82 45 0 98
7 1 7120 3 40 | 33 2 84 46 1 99
8 1 8 | 21 4 44 | 34 2 86 47 0 99
9 2 10 | 22 5 49 | 35 2 88 48 0 99
10 2 12 | 23 4 53 | 36 1 89 49 1 100
11 1 13 | 24 4 57 | 37 2 91 50 0 100
12 3 16 | 25 3 60 | 38 2 93 | >50 0 100

Table 3. Cumulative frequency of daily demand

The newsboy wishes to know the quantity B of newspapers to purchase in order
to maximize its daily profit. Then, the simulation purpose is to study the daily
profit distribution P varying the quantity to be bought until 50 and then searching
the optimal profit value and the corresponding quantity to be purchased. In this
problem, there is one response variable with the mean parameter to be estimated
by P.

7.3.2 Implemented Algorithm

Begin
For 1, B =1 until 50 do
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For 2, j =1 until 100 do
Simulate daily demand D with RDS algorithm and compute the expected profit,
If B < D then expected profit = B x 0.5
otherwise expected profit = D x 0.5 — (B — D) x 0.3
end if
end for 2
Save the daily expected profit value
Compute the mean of the daily expected profit over 100 working days
Save the expected profit mean value
end for 1
For 3, ¢ =1 until 50
Look for the optimal expected profit
Look for the corresponding quantity B of newspapers to purchase
end for 3
Display the optimal profit and the optimal quantity to purchase
end

7.3.3 Empirical Results

Seven simulation experiments of different replicated runs were carried out on the
newsboy problem, where each run was defined by 100 days for each bought quantity.
We simulate the daily demand distribution according to Table 3 and the newsboy
problem according to the above algorithm. The summarized results are given below.

N 10 | 20 | 40 | 70 | 100 | 200 | 350
Mean (P) | 851 | 8.01 | 7.01 | 8.06 | 7.75 | 7.89 | 7.53

optimal B 24 | 22 | 23 | 26 | 23 | 22 | 21
Var (P) | 0.11 | 0.28 | 0.49 | 0.68 | 0.91 | 0.5 | 0.53

Table 4. Empirical results showing the parallelization efficiency for different experiment

We can see from the simulation results of Table 4 that the minimum variance is
obtained within just 10 replicated runs. We then suggest to the newsboy to purchase
a quantity of newspaper equal to 24 in order to make a profit of 8.51 £.

8 CONCLUSIONS AND REMARKS

The proposed MC parallelization using the best sampling RDS procedure reduces
the computation time when the number of runs and /or the duration of simulation are
large enough, while preserving the assets of the sampling method, its efficiency and
safety. Since this method works by replication, then it was naturally parallelized.
Providing criteria for assessment is essential, we define three main criteria of
optimization such as the parallel runtime, the number of processors (scalability) and
the cost. The parallel runtime is the time that elapses from the moment a parallel
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computation starts to the moment the last processing element finishes execution.
For a given number of runs, whatever the number of processors is, the simulation
results obtained in parallel execution are similar to those obtained sequentially, but
the parallel runtime of simulation experiments (program) is different and inversely
proportional to the number of available processors according to the following formula

T sequential

Q

while the proportion of computation for a slave processor is very large compared to
the communication time between the master and each slave processor.

On the other hand, increasing the number of processors is beneficial (rentable)
for the proposed parallelization just in the case where the computation time of any
added worker is significantly larger than the communication time and in this case
the scalability of the SPMD model is preserved.

Regarding cost, it is considered as the communication time and the cost of idle
machines. In this case, the cost is controlled because the communication time is
insignificant as mentionned in Section 5. Given that all workers have the same
charge, we have then passed around the idle machines. Accordingly, the proposed
parallelization is optimal.

A stable M/M/1 queueing system, a Pert network and the Newsboy problem
were simulated by using the proposed parallel algorithm, but any other application
using replications can be solved by this algorithm.

Tparal lel =
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