
Computing and Informatics, Vol. 30, 2011, 733–747

SEARCH TREE GENERATION FOR THE EXCEPTION
HANDLING OF E-COMMERCE DELIVERY PROCESS

Jin-Gyu Shin, Doug-Won Choi

Department of Systems Management Engineering

Sungkyunkwan University

300 Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-do

440-746, Korea

e-mail: {sjg0311, dougch01}@paran.com

Dong-Cheol Lee, Yung-Cheol Byun∗

Department of Computer Engineering

Jeju National University

66 Jejudaehakno, Jeju-si, Jeju-do

690-756, Korea

e-mail: {dchlee, ycb}@jejunu.kr

Communicated by Jozef Hvorecký

Abstract. A business process management system (BPMS) offers the facility to
define new processes or update the existing processes. However, exceptional or
non-routine tasks require the intervention of domain experts or generation of the
situation specific resolution process. This paper assumes that sufficient amount
of business process exception handling cases are stored in the process repository.
Since the retrieval of the best exception handling process requires good understand-
ing about the exceptional situation, context awareness is an important issue. To
facilitate the representation of the exceptional situation and to enable the selection
of the best exception handling process, we adopted the ‘situation variable’ and ‘deci-
sion variable’ construct. A case example for exception handling in the e-commerce
delivery process is provided to illustrate how the proposed construct works. We
applied the C5.0 algorithm to build the optimum search tree.

Keywords: Exception handling, process repository management, systematic con-
text description, situation variable, decision variable, search tree generation

∗ corresponding author



734 J.-G. Shin, D.-W. Choi, D.-C. Lee, Y.-C. Byun

1 INTRODUCTION

Manufacturing processes usually do not involve so many exceptional situations; and
this property explains part of the reason why we can automate control and manage-
ment of manufacturing processes. However, the recent progress in software techno-
logy enable us to extend the process automation technology into the area of service
and business processes. Currently, there are many software packages available for
the management of various business processes. Business process management sys-
tem (BPMS) is a typical example [1]. Many organizations have implemented this
system and are reported reaching good results [2].

It is a difficult job to automate non-routine or exceptional processes. In order
to make a BPMS handle this kind of non-routine or exceptional process, we must
have a process predefined and implemented into the BPMS such that it can be
retrieved and applied to the resolution of the exceptional situation at the time of
need [3]. An exceptional situation implies a task which occurs occasionally and has
a poorly defined or undefined rules and procedures. Therefore, it usually requires
the subjective judgement of the decision maker to resolve the problem.

Exceptional situation falls into the category of semi-structured or unstructured
problems as discussed in [4, 5]. We can improve the task efficiency if we store
the exception handling knowledge into the knowledge base and have an articulated
infrastructure for sharing the knowledge. Selecting the right model for the problem
situation is an important issue in a decision support system research [6]. In the
same vein, selecting the appropriate process that can best handle the exceptional
situation is an important issue in BPMS research.

In this paper, we introduce the two variable sets, i.e., situation variable set S =
(s1, s2, . . . , sm) and decision variable set D = (d1, d2, . . . , dn), to enable systematic
context description of exceptional problem situation and to render a useful data
structure for optimum search tree generation. The situation variable set describes
the customer requirements, traffic condition, etc. and is used to depict the given
or uncontrollable aspects of the problem context. Decision variable set portrays
the selection of alternative course of action which the problem solver can adopt to
resolve the exception. The situation variable may circumscribe the scope of the
decision space and the decision maker has to choose a series of action from the
alternative decision space. Therefore, the specific value assigned to each decision
variable explains which course of action the decision maker has chosen to resolve
the exception problem. In this paper, the data structure which is composed of the
situation variable and decision variable plays the key role in designing the process
repository architecture for exception handling.

Section 2 discusses the review of related literature about exception problems
and the corresponding resolution approaches [7–14]. Basic idea about inductive
approach to the selection of exception handling process is provided in the same
section. In Section 3 we demonstrate a profile of exceptional situations that could
be encountered in the e-commerce delivery process. In Section 4 we provide the
architecture for exception handling process repository and present a case study of



Search Tree Generation 735

generating the process repository which can also be used as the search tree for
selection of the exception handling process. Section 5 discusses the conclusion and
issues about the future research.

2 THE THEORETICAL BACKGROUNDS

[8] classified the failures and exceptions of business process management system
into four types (as shown in Table 1). Based on their work, [12] provided the
exceptional situations which can take place at various stages of the business process
and presented the corresponding solution framework (Table 2).

Type Stage Instances

Unexpected
exception

Process execu-
tion stage

The predefined process model is
unable to handle the exception.
Ex) Change the priority of a VIP
customer upon his request

Expected
exception

Process defini-
tion stage

Part of the process cannot be ap-
plied. Ex) Customer failed to pay
the fee/ Failed to reserve an air-
line ticket because it was already
booked.

Application
failure

Application
stage

Program failure/ Constraint viola-
tion

Basic failure System stage System break down, deadlock,
network connection failure, printer
break down

Table 1. Type of failure and exception

As shown in Tables 1 and 2, exception handling in BPMS can be divided into
two types: handling of expected and unexpected exceptions. When the exception
is unexpected, it may be resolved by inserting or deleting specific task unit(s) into
the process model at the execution stage. In this case the workers are allowed to
change the work flow schema dynamically [8] or some sort of exception handling
tools are provisioned such that the workers may handle the exceptions for them-
selves [9].

The main stream approach to handling the expected exceptions is to store the
matching solution (sub-process) in the process repository. It is also possible to
include the expected exception handling process as a sub-process of the normal
process diagram. However, in this case, it is likely to increase the complexity and
reduce the legibility of the process diagram [15].

[11] proposed a binary search tree in retrieving the exception handling process.
[16] provided a hierarchical structure for storage of various exception handling pro-
cesses. In this paper we introduce the data structure which is composed of the
situation variable S and the decision variable D in order to enable the systematic



736 J.-G. Shin, D.-W. Choi, D.-C. Lee, Y.-C. Byun

Process
stage

Exceptions Solution Remarks

Strategic Unexpected

exceptions
(employee, team
organization)

Human

intervention

Tactical Expected excep-

tions (Workflow,
data, temporary
or exogenous
problem

Model

the workflow
adaptive to
the situation

Seek solution

by shifting it
to the strategic
stage

Operational Basic failure,
Application
failure

Traditional
TPS

Shift the prob-
lem to tactical
stage

Table 2. Exceptions at various process stages and matching solutions

description of the exceptional problem context, and to facilitate the understanding,
classification, and retrieval of the exceptional situation and the matching exception
handling process. We deploy an e-commerce delivery process as the case example to
demonstrate the usability of the data structure and how it can be used in generating
the search tree structure which can be applied to the efficient management of the
exception handling process repository.

[16] and [11] reported that most of the preceding process retrieval system archi-
tecture design was based on the subjective opinion of the domain expert. In this
paper we propose to use the inductive approach in designing the process retrieval sys-
tem architecture. More specifically, we propose to use the induction-based decision
tree structure which can be generated by applying the ID3-based C5.0 algorithm.
The advantage of using the induction-based decision tree structure is that it pro-
vides the logical reasoning regarding the quest why the induced decision tree is the
best structure for the storage and retrieval of the exception handling processes. The
advantages of using the decision-tree structure over other existing process retrieval
system structure in exception handling are summarized as follows.

1. The decision tree is organized so as to maximize the information gain. Therefore,
it guarantees the optimal behavior in the storage and retrieval of the exception
handling processes (Han, 2004).

2. The decision tree can be updated anytime as there are more exception handling
processes added to the process repository, while in [16], they have to convene
and hold a domain expert panel meeting in order to update the classification
hierarchy structure. The worse part of their scheme is that there is no guarantee
of optimality even after the structure was updated.

3. The context description of the exceptional situation in terms of the situation
variable (S) and decision variable (D) reflects the implicit knowledge structure of



Search Tree Generation 737

the domain experts when they make the decision contingent upon the exceptional
situation.

4. The process storage and retrieval scheme based on the situation variable (S)
and decision variable (D) enables the efficient identification and recognition of
the exceptional situation. It also enables the efficient retrieval of the exception
handling process that could best resolve the problem.

Methods Process repository structure Structure generation

Adams et al.
[11]

Binary tree Expert panel (sub-
jective)

Klein and Del-
larocas [16]

Hierarchy tree Expert panel (sub-
jective)

The proposed
method

S &D variable structure for
context description and deci-
sion tree structure

Expert panel, Tree
induction (subjec-
tive and objective)

Table 3. Comparison of the handling methods for expected exceptions

Table 3 is the comparison of the methods used by [11, 16], and this paper.

3 SAMPLE EXCEPTIONS IN E-COMMERCE DELIVERY PROCESS

The following are samples of extraordinary exceptions that might happen in the
process of e-commerce delivery. The data are excerpted from the case book of
the e-trade dispute arbitration published by the Korean Institute for Electronic
Commerce [17].

• The item was delivered to a third party (not an agent) and then got lost.

• An item that exceeds the standard size was accepted for delivery since there was
some extra space in the delivery vehicle and the competitor was also accepting
such non-standard items under similar conditions. In this case the operator
must identify the availability of extra space or extra vehicle and has to follow
the complicated procedure to justify the exception handling.

• A buyer ordered an item from an Internet shopping mall and completed the
payment process. He received a mail from the seller confirming the order in-
formation and notifying that the item was shipped out. However, the item was
returned to the seller because of incorrect address. In addition, the buyer was
charged for the return shipping.

• An expensive item was deposited for repair at a service center. When the item
was shipped back to the owner, he found it damaged due to faulty packaging.
So he asked for exchange or compensation. However, the service center refused
the claim because the item was already a second handed one and they had no
regulation for such a case.



738 J.-G. Shin, D.-W. Choi, D.-C. Lee, Y.-C. Byun

• The seller delayed shipping many times and eventually cancelled the contract
because they were unable to procure the inventory. The buyer experienced a big
loss due to this contract failure and filed a claim for compensation. A compli-
cated dispute arbitration process is anticipated to resolve this case.

• A perishable item was ordered. However, the package was broken in the delivery
process and some other items located adjacent to the package got tainted. The
seller asserted that he had made a tight packaging. In this case, the dispute
arbitration process must clarify where the responsibility lies. Decisions regarding
return, refund, and compensation have to be delineated.

Handling this sort of extraordinary exceptions require the involvement of prob-
lem domain specialists or need to go through a series of problem specific decision
making processes. The hard part of the task is that it is not easy to automate
the entire task and is mostly processed manually. In this paper, we attempt to
find an effective methodology for storage and retrieval of the exception handling
processes assuming that a sufficient amount of exception handling process data are
accumulated over a long period of time.

4 SEARCH TREE GENERATION

In this section we present the process repository architecture for exception handling
and also provide a case example for generating the decision tree for storage and
retrieval of the exception handling processes. We use the sample exception data
excerpted from the KIEC case book (see Section 3) in generation of the decision
tree.

4.1 Architecture for Process Repository

In order to handle the exceptions the process must go through three stages, i.e.,
to identify the exception, retrieve the matching exception handling process, and
then resolve the exception [18]. An exception can be identified by monitoring the
current status of an ongoing process. At this stage every instance of the ongoing
process is checked against exceptionality, and when an exception is perceived, the
type of exception is identified. Retrieval of the matching exception handling process
is done by looking up the process repository and finding the best fit process for the
exception.

At this stage the situation variable S and decision variable D play the key role.
If a good exception handling process could be found, then we simply need to apply
it for the exception resolution. If an appropriate resolution could not be found,
the exception must be resolved by using one of the approaches shown in Tables 2
and 3. When it is resolved, the new exception handling process should be added to
the process repository. Figure 1 shows the architecture of the exception handling
process repository system.



Search Tree Generation 739

Fig. 1. Architecture for exception handling process repository

4.2 Variable Definition and Data Preparation

The following example explains the process of generating the search tree which can
be utilized for selecting the matching process for handling the identified exception.
In this paper, the C5.0 algorithm of SPSS Clementine package was used to obtain
the induction based decision tree [19]. The overall steps of generating the search
tree are as follows.

• Define the situation variable S and decision variable D.

• Collect the case examples of the exception handling process.

• Prepare the input data according to the C5.0 input format.

• Generate the search tree using C5.0.

Table 4 is the sample definition of the situation variables and decision variables
that can be used to describe the various exceptions that may occur in the e-commerce
delivery process. [7] previous work was referenced in the variable definition. They
grouped the delivery exceptions into two categories: ‘customer originated’ and ‘sys-
tem originated’ exceptions. Some modifications have been made to fit the sample
example situation. Tables 5 and 6 are the modified versions of the situation variable
and decision variable with reference to the variable definition of Table 4.



740 J.-G. Shin, D.-W. Choi, D.-C. Lee, Y.-C. Byun

Origin of
exception

Situation variable Decision variable

Customer * Order change

- Type of order change
- Delivery status

* Cancel order

* Order change processing

- item (name, price, shipping
charge)
- destination (location, recipi-
ent)
- delivery date (delayed, expe-
dited)
- Shipper
- Delivery channel (door
to door, seller delivery,
special delivery)
- Return charge payer
(customer, seller)
- Urgency (emergency, normal)
* Cancellation
(allowed/disallowed)

System factor
(failure/break
down)

* Delayed delivery
- Traffic
- condition turned worse
* Traffic accident
- type of accident
* Problem in production stage
- abnormal production

- abnormal quality
* Carrier problem
- car break down

* Problem with the shipped
item
- damage in item
* IT system problem
- central control system disorder
- transportation system disorder
- wireless communication
disorder (cell phone, PDA)
* Routing problem
- Natural disaster (earthquake,
typhoon)
* Shipping cost increased
- environment change (oil price
up, consumer price up)
* Production stopped (fire,

power failure)

* Traffic jam
- availability of nearby
alternative carrier
* Degree of car damage

* Alternative supplier
- agreement with the original

supplier
* Car damage level
- car operational
- availability of nearby carrier
* Compensation level

* Alternative means
of communication
- back up server system
- public phone

* Alternate delivery
- adjust schedule
- business partner
* change shipping charge

* Alternate supplier

Table 4. Situation and decision variables



Search Tree Generation 741

Variable(si) Value

Order change
type

item, shipping destination, delivery time, delivery
medium

Delivery status before shipping, In delivery, Delivered, In re-
turn(w/RMA), In exchange delivery

Delivery type normal, bundle, return, exchange, re-exchange,
exchanged and cancelled

Priority
(schedule)

normal, expedited, special, designated date, de-
layed

Destination incomplete address, address changed, moved dur-
ing delivery

Payment prepaid, deposit payment & balance payment, de-
ferred pay, escrow

Recipient buyer, agent, third party, agent of absence, P.O.
box

Item descrip-
tion

item name, price, shipping charge, quantity

Condition new, used, damaged, defective, broken in use,
special handling(fragile, perishable, indemnity of

damage in delivery, frozen)

Standard volume, weight, special care

Received yes, no

Empty vehicle available number, load factor

Delivery type door to door, seller delivery, registered mail,
regular mail

Type of trade e-shopping mall, specialty e-store, open market,
auction, direct trade

Table 5. An examples of situation variables

Most BPM systems have the facility to monitor the system behaviour and store
the log data of the business activities. When substantial amount of log data is
collected, the BPMS renders the analysis of the workflow status and analysis of the
system performance record. In this regard the log data is a good source of case
examples which contain much information about situation variable and decision
variable. This observation justifies the fact that constructing a process repository
system from system log data is a viable approach.

Figure 2 shows part of the 145 dataset used in generating the process search
tree. Since this is an advanced research, no real field data is available as of this
paper writing.

The sample data shown in Figure 2 are compilation of the sample data in the
KIEC case book of e-trade dispute arbitration [17]. As a summary of the variable
definition, we had 8 situation variables, 9 decision variables, and one output variable
which is equivalent to the matching exception handling process.



742 J.-G. Shin, D.-W. Choi, D.-C. Lee, Y.-C. Byun

Variable (dj) Value

Delivery
charge

Seller pay, buyer pay, special contract

Return ship-
ping charge

Seller pay, buyer pay, logistics co., undecided

Deliverer Current deliverer, new deliverer, substitute

Item opened &
used

yes, no

Cause of return Simple change of mind, wrong item, delayed de-
livery, not specified, item damaged, wrong price

Returned item
condition

Item damaged, good, package damaged

Stipulated in
the agreement

clear, unclear

Sufficient info
provided

yes, no

Buyer’s fault verified, not verified

Buyer verified
defective

verified, not verified

Exception han-
dling process

Change the order item, Adjust delivery prior-
ity(schedule), Change destination, Cancel order,
Change delivery carrier, Cancel order and re-
fund, Partial refund, Return and exchange ship,
Compensation for buyer, Compensation for seller,
Hold the contract

Table 6. An example of decision variables

4.3 The Search Tree Generation

The search tree we obtained from C5.0 algorithm with the dataset shown in Figure 2
is provided in Figure 3. The leaf nodes in Figure 3 indicate the processes which fit
the given exceptional situation best. The tree diagram in Figure 3 indicates that
the situation variables used in the storage and retrieval of the exception handling
processes are ‘delivery status’, ‘returned item condition’ and ‘type of trade’. The
decision variables are ‘return shipping charge payer’, ‘cause of return’, ‘item type’
and ‘stipulated in the agreement’. The diagram also tells us that the most influential
(effective) variable is ‘delivery status’ (located at the root).

5 CONCLUSION

In the earlier research, the process repository architecture design for exception han-
dling was mostly done by the subjective judgement of the domain experts. This
paper presented an alternative approach which utilized the C5.0 algorithm to ob-
tain the decision tree structure that provided the optimal path to store and retrieve



Search Tree Generation 743

Fig. 2. Sample usage of the situation and decision variable used in generating the decision

tree

the exception handling processes. The use of ‘situation variable’ and ‘decision vari-
able’ structure for the context description of the exceptional problem is an efficient
way to identify the problem context and to find the best fit exception handling pro-
cess. Since the search tree is constructed based on the ID-3 algorithm, each step of
the tree traversal from the root down to the leaf node was adapted so as to maximize
the information gain.

As more exception handling processes are added to the repository, then we need
to update the search tree. As long as we keep describing the exceptions in terms of
the situation variable and decision variable, updating the search tree for renewal of
the optimality will be a handy task since we simply have to run the C5.0 algorithm
with the updated dataset. Since we can anticipate a substantial change in the search
tree organization every time we update the search tree, we have to provide the facility
to accommodate the tree structure change into the database implementation. And
this should be the subject for future study.

Acknowledgements

This work was supported by the research grant of the Jeju National University in
2006.



744 J.-G. Shin, D.-W. Choi, D.-C. Lee, Y.-C. Byun

Fig. 3. Decision tree for storage and retrieval of the exception handling processes in e-
commerce delivery



Search Tree Generation 745

REFERENCES

[1] http://www.wfmc.org.

[2] Park, J.H.: Process Innovation and BPM. IE Magazine, Korea Institute of Indus-
trial Engineering, Vol. 11, 2004, No. 1, pp. 19–24.

[3] Weske, M.—van der Aalst, W.M.P.—Verbreek, H.M.W.: Advances in
Business Process Management. Data and Knowledge Engineering, Vol. 50, 2004,
pp. 1–8.

[4] Simon, H.A.: The New Science of Management Decision. Harper and Row, N.Y.
1960.

[5] Hermann, T.—Hofmann, M.—Loser, K.U.—Moysich, K.: Semistructured
Models Are Surprisingly Useful for User-Centered Design. In G. De Michelis, A. Gi-
boin, L. Karsenty, R. Dieng: Design cooperative systems, IOS Press, Amsterdam
2000, pp. 159–174.

[6] Banerjee, S.—Basu, A.: Model Type Selection in an Integrated DSS Environment.
Decision Support Systems, 1993, No. 9, pp. 75–89.

[7] Christopher, M.—Lee, H.L.: Supply Chain Confidence: The Key to Effective
Supply Chains Through Visibility and Reliability. Stanford Global Supply Chain
Management Forum 2002.

[8] Eder, J.—Liebhart, W.: The Workflow Activity Model WAMO. Proceedings of
the 3rd International Conference on Cooperative Information Systems 1995.

[9] Kappel, G.—Lang, P.—Rausch-Schott, S.—Trtschitzegger, W.: Work-
flow Management Based on Object, Rules and Roles. Bulletin of Technical Committee
on Data Engineering, Vol. 18, 1995, pp. 11–19.

[10] Lee, H.B.—Park, S. J.: Intelligent Workflow Automation System Flexible to Or-
ganization Change: WFMS. Management Information System Research, Korea Ope-
rations Research and Management Science Society, Vol. 11, 2001, No. 3, pp.150–164.

[11] Adams, M.—ter Hofstede, A.A.H.M.—David, E.—van der Aalst,

W.M.P.: Facilitating Flexibility and Dynamic Exception Handling in Workflows
Through Worklets. In The 17th Conference on Advanced Information Systems Engi-
neering Forum 2005.

[12] Mourão, H.R.—Antunes, P.: Supporting Direct User Interventions in Exception
Handling in Workflow Management Systems. 9th CRIWG 2003, Springer Verlag 2003,
pp. 159–167.

[13] Keen, P.—McDonald, M.: eProcess Edge. McGraw Hill 2000.

[14] Gaonkar, R.—Viswanadham, N.: Robust Supply Chain Design: A Strategic Ap-
proach for Exception Handling. International Conference on Robotics and Automa-
tion 2003, pp. 1762–1767.

[15] Müller, R.—Greiner, U.—Rahm, E.: AgentWork: A Wirjfkiw System Support-
ing Rule-Based Workflow Adaptation. Data and Knowlwdge Engineering, Vol. 51,
2004, pp. 223–256.

[16] Klein, M.—Dellarocas, C.: Knowledge-Based Approach to Handling Exceptions
in Workflow Systems. The Journal of Computer Supported Cooperative Work, Vol. 9,
2000, No. 3-4, pp. 399–412.



746 J.-G. Shin, D.-W. Choi, D.-C. Lee, Y.-C. Byun

[17] http://www.kiec.or.kr.

[18] Vojevodina, D.: Exception Handling Automation in E-Business Workflow Process.
Proceedings of Conference on Advanced Information System Engineering, 2005.

[19] Han, J.—Kamberr, M.: Data mixing: Concepts and techniques. 2nd ed., Morgan
Kaufmann Publishers 2006.

Jin-Gyu Shin received his Ph.D., M. Sc. and B. Sc. from Sung-
KyunKwan University, Korea in 2010, 1997 and 1995, respec-
tively. He has been working as a researcher in University Col-

lege of the University since 2007. His research interests include
business process management, data mining and evaluation.

Doug-Won Choi is a Professor in the Department of System
Management Engineering, Sungkyunkwan University, Korea. He

received Ph.D. from Temple University, Philadelphia, U.S.A. in
1995 with major in Computer and Information Sciences, M. Sc.
degree in Industrial Engineering in 1985 from University of Wis-
consin, Madison, U.S.A., and B. Sc. from Seoul National Univer-
sity, Korea in 1973. Before joining Sungkyunkwan University he
worked at Korea Institute of Science and Technology as an inves-
tigator. His research interests include management information
system, data mining, business process management, artificial in-
telligence, and expert systems.

Dong-Cheol Lee received his Ph.D. from Sungkyunkwan Uni-
versity, Korea in 2002 and 1998, M. Sc. from Kookmin University
in 1992, and B. Sc. from Chungnam National University in 1986.
He was with Jeju National University as an Assistant Professor in
2003. Now, he is an Associate Professor of the MIS Department
at the University. His research interests include e-commerce,
Aaents, XML and semantic web, and digital contents.



Search Tree Generation 747

Yung-Cheol Byun received his Ph.D. and M. Sc. from Yonsei

University, Korea in 1995 and 2001, respectively, and B. Sc. from
Jeju National University in 1993. He worked as a special lecturer
in SAMSUNG Electronics in 2000 and 2001. From 2001 to 2003,
he was a senior researcher of Electronics and Telecommunica-
tions Research Institute (ETRI). He was promoted to join Jeju
National University as an Assistant Professor in 2003. Now, he is
an Associate Professor of Computer Engineering Department at
the University. His research interests include intelligent comput-
ing, semantic web and ontology, home network and ubiquitous

computing, RFID middleware and USN, artificial intelligence, and pattern recognition.


