Computing and Informatics, Vol. 30, 2011, 761-771

EFFECTIVE RESOURCE ALLOCATION IN PARALLEL
QUANTUM-CHEMICAL CALCULATIONS

Grzegorz MAZUR

Department of Computational Methods in Chemistry
Jagiellonian University
Ingardena 3, 30-060 Krakow, Poland

e-mail: mazur@chemia.uj.edu.pl

Marcin MAKOWSKI

Department of Theoretical Chemistry
Jagiellonian University

Ingardena 3, 30-060 Krakow, Poland
e-mail: makowskm@chemia.uj.edu.pl

Mateusz BRELA

Faculty of Chemistry

Jagiellonian University

Ingardena 3, 30-060 Krakoéw, Poland

e-mail: mbrela@student.chemia.uj.edu.pl

Communicated by Jacek Kitowski

Abstract. Key factors affecting the parallel efficiency of archetypical quantum-
chemical calculations are discussed. Effective load balancing schemes are proposed.
Introduction of the memory affinity to the balancing process is shown to result in
super-linear scaling.

Keywords: Computational chemistry, parallelization, optimization, super-linear
scaling

762 G. Mazur, M. Makowski, M. Brela
1 INTRODUCTION

Significantly growing demand for higher quality computational chemistry results for
large molecular systems can be recently observed. As a result, the chemistry commu-
nity needs for computational power are constantly growing. While this trend is ac-
companied by quick development of high performance hardware solutions, the typical
architecture of modern supercomputers and growing popularity of computer clusters
require algorithmic changes in software to efficiently use the accessible resources.

The key issue is that the cluster architecture is inherently highly parallel. The
same holds for virtually all modern supercomputers. This necessitates the switch
from traditional sequential algorithms to those that are able to exploit the pa-
rallelism of the hardware architecture. Fortunately, most of the typical quantum
chemistry problems are relatively easy to reformulate in such a way.

Most of the existing procedures used for commonly executed quantum-chemical
calculations are parallelized within the Single Program Multiple Data (SPMD)
model. This approach is in general not optimal from the efficiency point of view. It
is, however, justified by its conceptual simplicity and near-optimal performance for
typical quantum-chemical applications. The SPMD model requires a load-balancing
algorithm to partition the problem into tasks performed by the computational nodes.
The partitioning applies to all resources, which in case of typical quantum chemical
calculations means the CPU time and memory.

In the paper we review archetypical quantum-chemical algorithms, analyzing
how their key features affect their parallel performance. This allows us to formulate
effective load-balancing schemes.

The proposed load-balancing procedures were implemented in development ver-
sion of Niedoida [1], a general-purpose computational chemistry package built as
a set of libraries implementing quantum-chemical and microelectrostatic calcula-
tions. Niedoida is a parallel program designed according to the SPMD model. Mes-
sage Passing Interface (MPI) [2] is used as the low-level parallelization framework.
The main reasons for using Niedoida in this work is that it provides a plug-in load-
balancing interface and a wide range of production quality quantum-chemical pro-
cedures, allowing for benchmarking different algorithms in a realistic and consistent
environment.

The paper is structured as follows. The core computational quantum chemistry
algorithms are introduced in Section 2. In the next section the parallel Hartree-
Fock calculations are analyzed. In Section 4 the parallel Moller-Pleset Perturbation
Theory implementation is discussed. The paper is concluded with short summary
in Section 5.

2 CORE ALGORITHMS OF COMPUTATIONAL
QUANTUM CHEMISTRY

Computational quantum chemistry can be considered to be just a glorified name
for simple tensor algebra. Specifically, these are various transformations of the

Effective Resource Allocation 763

two-electron integrals (electron repulsion integrals, ERI) tensor which consitute the
rate-determining step of the calculations. The ERI are defined as

ind) = [[dmaran,) (m) e ra(m) &

T1
where y denote the atomic orbitals. It has to be noted that the sheer size of the
ERI tensor and its sparsity pattern prevent standard algebraic treatment.

While the actual resource requirements depend strongly on the type of tensor
contraction performed by a specific algorithm, we can distinguish two main types of
them, the two-index contraction

G = 37 P [2(u]e) — (A1) (2)
KA

and the four-index transformation

(ia|jb) = Z CriCraCoiCrp(pv|EN). (3)

2N

The former consitutes the core of the Hartree-Fock [3, 4] and hybrid Kohn-
Sham [5] methods. The latter is crucial in the post-Hartree-Fock methods for which
we used the Moller-Pleset second order perturbation theory (MP2) [4] as a repre-
sentative example.

In the next sections we analyze how the structure of the key transformations
affects the performance of the various load-balancing schemes and propose effictient
solutions.

3 PARALLEL HARTREE-FOCK CALCULATIONS

The bottleneck of the two-index contraction of Equation (2) is the two-electron in-
tegral generation step, being responsible for roughly 80 % of the whole calculation
time. This is caused by both the sheer number of the integrals and by the rela-
tively high computational cost of calculating an integral. The latter holds even for
modern quasi-optimal algorithms of integral generation. To considerable extent, the
same applies to the Kohn-Sham (KS) calculations with hybrid exchange-correlation
functionals.

The structure of the problem results in the natural partitioning scheme which
splits the ERI generation into batches and scatters them across the nodes.

3.1 CPU-Time Driven Load-Balancing

We start the analysis with the simplest possible load-balancing algorithm, the static
one. It splits the computational problem into equally sized tasks which are uniformly
distributed between nodes. While conceptually easy, the approach is bound to be

764 G. Mazur, M. Makowski, M. Brela

very inefficient. Even assuming highly uniform computational enviroment, the time
spent by the processors on performing assigned tasks will be significantly different.
This is because the time necessary to calculate integrals involving orbitals with
various angular momentum differs significantly.

Recently we proposed an efficient load-balancing algorithm, which dynamically
adapts to the inhomogeneity of either the computing environment or the data being
calculated [6]. The proposed algorithm works as follows. The computational prob-
lem is divided into tasks of different sizes. The tasks are stored in a task queue.
A node gets the next task from the queue as soon as it completes the previous one.
The splitting of the problem into tasks is organized as follows. A fraction 1/f of the
original problem is divided into n tasks, where f is the splitting factor and n stands
for the number of nodes. Then the procedure is repeated recursively for the remain-
ing part of the problem. The recurrence is stopped when the size of the remaining
part is smaller than the threshold ¢. The algorithm is parametrized by f and t.

Test calculations were performed for sexithiophene (see Figure 1) at the Hartree-
Fock level of theory in the 6-31G** basis. The size of the model system is best
characterized by the number of orbitals. In this case the number of orbitals is 514,
which is of the magnitude typical for commonly performed quantum-chemical cal-
culations. The scaling of the proposed load-balancing algorithms with the number
of CPUs is shown in Figure 2. The dynamic load-balancing algorithms performs
consistently better than the static one.

Fig. 1. The sexithiophene molecule

The relative time required to perform calculations using n CPUs may be de-
scribed by

o

where « represents the fraction of the parallelized part and v stands for the (ef-
fectively) serial fraction of the calculations. [describes the deviation from linear
speedup. The scaling function described above was fitted to the datapoints obtained
for the model system. The fitted parameter values are presented in Table 1.

Algorithm « 8 y
Static 0.92 0.69 0.07
Dynamic 0.96 1.00 0.03

Table 1. Fitted parameter values for the load-balancing algorithms. See text for details.

Effective Resource Allocation 765

- - r r
Static load balancing ——
Dynamic load balancing —%—

Relative time

] 2 4 6 8 10 12 14 16
Number of CPUs

Fig. 2. Time of the SCF calculations for the model system as a function of the number of
CPUs. The time is relative to the 1 CPU case. See text for details.

The non-zero value of the 7 parameter stems from both non-parallelized parts
of the code (mainly the Fock matrix diagonalization) and, to a lesser extent, from
the communication overhead. The difference between the values for the static and
dynamic dispatcher seems to be mainly a consequence of the relatively poor fit of
the v parameter. Still, in both cases the value is small, which shows that the bulk
of the code is executed in the parallel mode.

The main difference between the algorithms is the value of the 8 parameter,
which decides how much faster works the parallelized part of the code with increasing
number of the computational nodes. While the scaling for the static case seems to
be poor, for the dynamic case it has reached the theoretical limit of 1. However,
the performance of the dynamic load-balancing algorithm can still be improved by
taking advantage of the hyper-cache effect.

3.2 Integral Cache

To further improve the efficiency of the integral contraction, some of the quantum-
chemical programs use integral caching. The cache mechanism relies on storing
already computed integrals in fast memory. As the same integrals are used in each
iteration of SCF cycle there are significant profits to be realized if their values are
cached in the fast memory efficiently. However, for real systems the total number

766 G. Mazur, M. Makowski, M. Brela

of integrals is too large to allow for keeping them all in the fast memory. Therefore,
only a fraction of the integrals can be stored in the cache. The amount of cached
integrals depends on the accessible memory.

The caching strategy used in this paper is a very simple one. The integrals
are stored in the order they were requested by the Fock matrix generation proce-
dure until the assigned memory is exhausted. Other, prospectively more effective
approaches are possible, like giving preference to the integrals involving orbitals of
high angular momentum.

Analogous technique can be applied to other computationally intensive proce-
dures, like three-electron integrals used for the density-fitting and atomic orbital
values used for exchange-correlation potential generation. However, in this paper
we concentrate on the ERI cache.

3.3 Cache Affinity

In the case of single processor, caching is conceptually simple but limited due to
usually small memory to use for the purpose. n-node calculations offer n times
extended cache memory space and potentially considerable time savings are possible
if the load-balancing algorithm allows to use it in an efficient way. The efficiency is
determined by cache affinity, which decides how large is the probability that if an
integral was processed by given node, it will be processed by the same node in the
next SCF cycle.

From the point of view of the cache affinity, the static load-balancing algorithm
is optimal. This is because the integrals in the consecutive SCF cycles are always
processed by the same nodes as in the previous cycles. On the other hand, the dy-
namic load-balancing algorithm represents the case of minimal cache affinity, with
the probability of an integral being processed by the same node being equal to 1/n.
However, despite the low cache affinity, the dynamic algorithm performs much bet-
ter than the static one. Therefore, we introduce cache-awareness to the dynamic
algorithm to improve its cache affinity without loosing its adaptivity.

The cache-aware load-balancing algorithm works as follows. The computational
problem is divided into tasks of different sizes. The tasks are bundled into groups
of size n where n stands for the number of nodes. The task groups are stored in the
task groups queue. A node gets the next task from the current task group as soon
as it completes the previous one. The task to be handed out to the node i is taken
from the i-th slot if available or chosen randomly otherwise. When no more tasks
are available in the current group, the group is retired and the next one is taken
from the queue.

The splitting of the problem into tasks is organized as follows. A fraction 1/f
of the original problem is divided into n tasks, where f is the splitting factor. The
tasks are grouped together, and the group is put to the queue. Then the procedure
is repeated recursively for the remaining part of the problem. The recurrence is
stopped when the size of the remaining part is smaller than the threshold ¢. The
algorithm is parametrized by the values of f and ¢.

Effective Resource Allocation 767

The algorithm was implemented in Niedoida. Test calculations were performed
for the same model system as in Section 3.1.

0.7 T T T T
Static load balancing ——
Dunamic load balancing —&—
Cache-aware load balancing ——
0.6 | 1
A
0.5]
2 0.4 1
)
@
[
g
T 037
0.2
]
0.1 1
o " | |
(o] 2 4 6 8 10 12 14 16

Number of CFPUs

Fig. 3. Cache hit ratio as a function of the number of CPUs. Sexithiophene molecule,
HF/6-31G** level of theory, 256 MB of cache memory per CPU.

The cache affinity of a load-balancing algorithm can be characterized by the
cache hit ratio. Cache hit ratio is the fraction of the integrals which were retrieved
from the cache to the total number of integrals required to perform the whole SCF
process. The dependence of the cache hit ratio on the number of computational
nodes for the cache-aware algorithm, while worse than for the static one, is signifi-
cantly better than for the dynamic scheme (see Figure 3).

Comparison of the speed of the analyzed algorithms shows that for small cache
sizes the cache-aware algorithms performs on par with the dynamic one. With the
growing cache size, the dynamic algorithm performs slightly worse and the cache-
aware algorithm performs better. For large cache size (larger than 256 MB per node)
the cache-aware algorithm is the fastest one.

To analyze the scaling of the cache-aware algorithm in more detail we performed
calculations for the model system using large cache size (512 MB per node). The
relative time of the calculations is depicted in Figure 4. Fitting the parameters of
Equation (4) yields o = 1.00, 8 = 1.07 and v = 0.02. Comparison with Table 1
shows that the cache-aware algorithm scales better than the other analyzed algo-
rithms. The value of 5 exceeding the theoretical limit of 1 suggests presence of the
hyper-cache effect.

768 G. Mazur, M. Makowski, M. Brela

T T T T
Cache-aware load balancing ——

Relative time

] 2 4 6 8 10 12 14 16
Number of CPUs

Fig. 4. Time of the SCF calculations for the model system as a function of the number of
CPUs. The time is relative to the 1 CPU case. See text for details.

4 PARALLEL MP2 CALCULATIONS

Naively, the time complexity of the transformation of Equation (3) reaches O(N®).
It can be reduced to O(N?) using the four-stage algorithm

for all 7,a, 7,0

(iv[d) =) Cuiluw|r))
"
(ialcA) = Z Cualiv|rN)
(iajA) =) Ckjlialr))
(ialjb) = D Cwlialjd).
A
However, the reduction of the time complexity comes at the cost of memory com-

plexity reaching O(N?) as the tensors of partially-transformed integrals have to be
kept in memory.

Effective Resource Allocation 769

Given the memory available in currently used computer architectures and the
size of typical calculations, the four-stage transformation has to be split into several
passes P

for all P
forie P
for all a, j,b

(v]sA) = Y Cuilpv|r))
(ialk)) = icya(wm,\)
(ialj\) = icnj(mmm
(ialjb) = Ei:cxb(mum.

This way the memory consumption is reduced to O(N?). Such division of the
whole transformation into passes maps directly to the natural partitioning of the
problem into parallel tasks.

The characteristic feature of the partitioning is that large part of the two-electron
integrals tensor is calculated in every pass. Therefore, contrary to the Hartree-Fock
case, CPU-time for integral generation averages out effectively, leaving the time of
the single pass to depend solely on the number of orbitals treated. Hence, assuming
homogeneous execution environment, the static load-balancing algorithm should be
optimal.

Test calculations were performed for linear chain of 15 water molecules in the
STO-3G basis. The scaling of the proposed load-balancing algorithms with the
number of CPUs is shown in Figure 5.

Fitting the parameters of Equation (4) yields « = 0.94, 5 = 1.06 and v = 0.05.
The modest super-linear scaling is attributed to the hyper-cache effect.

5 SUMMARY

Analysis of the key aspects affecting parallel performance of the core computational
quantum chemistry algorithms was performed. It has been shown that despite the
superficial similarity between the considered algorithms, their parallel form requires
different load balancing schemes to yield an efficient solution. The analysis allowed
us to design close to optimal load balancing procedures for the studied families of
quantum-chemical calculations.

It has been shown that explicit introduction of the memory affinity to the load
balancing procedures allows for superlinear scaling. We were able to exploit the
hypercache effect in all computational quantum-chemistry algorithms considered in
this work.

770 G. Mazur, M. Makowski, M. Brela

1 ¢ T r T r
Static leoad balancing —¢—
a.8 -
H
E 06
«
©
>
=
-
]
T 0.4
3
0,2 r
0
1] 1 2 3 4 5 6 7 a |

Nunber aof CPUs

Fig. 5. Time of the MP2 calculations for the model system as a function of the number of
CPUs. The time is relative to the 1 CPU case. See text for details.

Acknowledgments

Support from ACK Cyfronet (grant MEiN/SGI3700/UJ/077/2006) is gratefully ac-
knowledged.

REFERENCES

[1] MAzUR, G.—MAKOWSKI, M.—PISKORZ, W.—CWIKLH@ L.—STERZEL, M.—
RaDpoON, M.—KULIG, W.—JAGODA-CWIKLIK, B.—Bt.AZEWICZ, D.: Niedoida 0.3.
2007.

[2] MPI-2: Extensions to the message-passing interface. http://www-unix.mcs.anl.
gov/mpi/mpi-standard/mpi-report-2.0/mpi2-report.htm.

[3] RooTHAAN, C.C.J.: New Developments in Molecular Orbital Theory. Rev. Mod.
Phys., Vol. 23, 1951, p. 69.

[4] HELGAKER, T.—JORGENSEN P.—OLSEN, J.: Molecular Electronic Structure The-
ory. John Wiley and Sons, Ltd., 2000.

[6] BECKE, A.D.: Density-Functional Exchange-Energy Approximation With Correct
Asymptotic Behaviour. Phys. Rev. A, Vol. 38, 1988, p. 3098.

Effective Resource Allocation 771

[6] MAzZUR, G.—MAKOWSKI, M.: Development and Optimization of Computational
Chemistry Algorithms. Computing and Informatics, Vol. 28, 2009, p. 115.

numerical methodologies
molecular systems.

Grzegorz MAZUR is an Assistant Professor at the Department
of Computational Methods in Chemistry of Jagiellonian Univer-
sity in Cracow (Poland). He attained his Ph. D. in chemistry in
2001 at the same university. His current research interests in-
clude theoretical description of the excited states properties and
optimization of quantum chemistry algorithms.

Marcin MAKOWSKI is an Assistant Professor at the Depart-
ment of Theoretical Chemistry of Jagiellonian University in Cra-
cow (Poland). He attained his M. Sc. degree in 2001 and his
Ph.D. in 2004, both in chemistry, at the same university, and
his B. Sc. degree in computer science at University of Mining and
Metallurgy in Cracow in 2004. His current research interests in-
clude theoretical molecular spectroscopy, linear scaling methods
in quantum chemistry and optimization of quantum chemistry
algorithms. He participates in several research projects related
with the development of theoretical chemistry formalisms and
that allow to efficiently calculate electronic structure of large

Mateusz BRELA is working towards his M. Sc. Degree in theo-
retical molecular spectroscopy from the Faculty of chemistry of
Jagiellonian University in Cracow (Poland). His current research
interests include optimization of quantum chemistry algorithms,
linear scaling methods in quantum chemistry, theoretical mole-
cular spectroscopy and molecular dynamics.

