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Abstract. As distributed systems have emerged they become widely adopted by
scientific communities and various commercial vendors. Some of them settled ar-
chitectural models that today are broadly known as grid computing and service
oriented architecture. Both of them are base on service and workflow paradigms as
a single shareable unit of work. Unfortunately, an increasing number of workflows
being brought out has raised a problem of their distribution and management, e.g.,
search repositories and find workflows similar to the given one in order to increase
the efficiency of calculations. In this paper a similar workflow search algorithm
based on semantic type comparison has been proposed. In order to evaluate the
algorithm usability and precision, an experiment has been conducted that regarded
workflow extraction from Feta repository. The entire process involved reasoning
based on myGrid ontologies. The received results were compared to results ob-
tained from other algorithm, based on an analysis of the names of the workflow
components using the TD-IDF weight. The described experiment shows that se-

mantics and ontology play significant role in service and workflow representation.
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1 INTRODUCTION

In general, a workflow is considered as a shareable unit of work. It consists of services
that are logically connected by control and data flow constraints. Each workflow
takes a certain number of input parameters and produces output data or has some
defined impact on the environment state.

Implementation of software platforms supporting the concept of workflows and
their adaptation to the realities of the target environments is associated with a num-
ber of benefits for commercial and scientific organizations, like, e.g.:

1. reduction of the time needed to start work on a new scientific issue – a user
wishing to continue experiments in the field does not need to start work from
scratch,

2. making the results of research available to the public in the form of workflows
allows them to be further used, including possible modifications for new appli-
cations.

The use of workflows is associated with the problem of their distribution and
management. Each user of distributed systems possessing the ability to build these
structures (workflows) needs an infrastructure for their search to find, for example,
workflows that are functionally similar to the given one. A similar workflows search
system is expected to indicate the corresponding best possible fit based on predeter-
mined criteria. Unfortunately, at present there is no clear similarity quality function
which would rank results obtained in terms of their usefulness. In most cases, this
process requires direct human intervention. However, it seems that it is possible to
identify a few degrees of similarity.

One of them, the easiest to formulate, could be based on the identity relation.
For example, two services can be considered highly similar, if it is the same com-
ponent but installed in various locations and available at different addresses. In
the context of workflows they can be logically the same structures differing only in
instances of services used. This type of similarity could be used for the purpose of
raising the level of workflows availability, or their load balancing.

Probably, another example of the similarity relationship with a lower degree
measure might be workflows performing different tasks, but their purpose is the
same. In other words, the results of workflows are consistent in terms of semantics.
To illustrate this issue it is worthwhile to quote numerical integration algorithms.
Having this type of similarity workflows, the increase of the efficiency of calculations
and precision of the obtained results could be possible.

The last example of the similarity, being most difficult to assess, is to find the
workflow that is sufficiently convergent with a pattern so that it is useful for a reason
defined by the user. For instance, a user can search for workflows that use the same
service to analyze the scenarios of its use.

The problem of measuring workflows similarity is presented in a few papers.
In [3] an algorithm of comparing business workflows that contain complex block
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structures such as parallel OR, parallel AND is described. The similarity measure
is calculated by analyzing the workflow block structure. The algorithm consists of
four steps: conversion of workflow into a block tree, transformation of the tree into
a binary tree, construction of vector representation of the binary tree, and the last
step is calculation of the distance metric based on the above representation.

In [23] the authors describe workflows similarity methods based on Finite State
Automata (FSA). Each workflow is represented as FSA, and then two kinds of
similarity approaches: structural automaton similarity, and automaton language
based similarity, are considered.

In [4] workflows are represented as business processes dependency graphs. Each
graph is converted into a normalized process matrix, and then the metric space
distance between the normalized matrices is calculated.

In [20] a method of finding functionally similar workflows is described. The
authors assume that naming conventions, used during creating workflow definitions,
can be used to measure similarity. Because the results described in this paper are
very promising and, besides, the authors do research in the same field as we do,
i.e., analysis of the similarity of bioinformatics workflows, we chose the method for
further comparisons.

In this paper we present a method of finding similar workflows in terms of
semantics.

The rest of the paper is organized as follows: first, workflow discovery goals are
presented. In Section 3 the aforementioned method of finding functionally similar
workflows is described in more detail. Next we present the method of finding similar
workflows based on semantic type comparison. Results of applying this method to
compare workflow contained in the Feta repository are shown in Section 5. The
next section contains comparison of both methods, and the last section concludes
the paper.

2 WORKFLOW DISCOVERY GOALS

Despite the fact that the workflow technology is relatively new and new usage scena-
rios are being developed every day, it is possible to point out some general purposes
for workflow discovery and workflow similarity.

The first and the least complex goal is to find a workflow or service that meets
specified requirements and invoke it as is [2]. It is not necessary to provide an insight
into its construction details unless general purpose of the workflow is satisfactory
enough.

The second goal, which tends to be more demanding, is to explore infrastruc-
ture resources in order to find workflows or services that are suitable for automated
composition matching a given interaction pattern [8]. It is very likely that a pro-
cess mentioned above will not be performed directly by an end user, but rather
by a dedicated software agent. This usage scenario is sometimes called resource
reuse.
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The last goal which undoubtedly is more desired by scientists is called service
repurpose. There is a stark difference between this approach and those mentioned
before. Once a required workflow or service interaction is found, the infrastructure is
supposed to provide more detailed information regarding internal control and data
flow. Such comprehensive results are not only vital to allow a scientist to analyze
and understand the entire process, but it also gives him/her a possibility to make
changes in order to achieve new behaviour [21].

3 TERM COMPARISON APPROACH

Bioinformatics is one of the most eager domains to adopt workflow related tech-
nologies. In the recent years, many biological databases [5–7] were made accessible
via Web Services protocols which resulted in migration towards Service-Oriented
Architecture (SOA). Most bioinformatics repositories were integrated with graphic
design tools like Taverna Workbench [21] or Kepler [11].

Scientists were given a powerful application that could improve their research
by refining service composition. Collaboration was achieved by publishing workflow
definition into some kind of a repository which was available for every interested
party. Usually it is based on a file server that stores service or workflow descriptors
in a tree-like structure. As the number of stored services and workflows useful in
a distinct research area is big, creation of new workflows, in many cases, can be
replaced by finding existing, similar workflows and then their adaptation to meet
the needs.

One of a few algorithms [20] in this field was proposed by researchers from Osaka
University. Their work assumed that workflow similarity can be measured by se-
mantics contained by the names of the components like input or output parameters.
It assumes that naming conventions, used during creating workflow definitions, can
be used to measure similarity. As this approach introduces an admissible level of
uncertainty, the TF-IDF (Term Frequency – Inverse Document Frequency) filtering
method [19] was used to remove irrelevant results. The algorithm was implemented
to process XSCUFL [17] files shipped as samples from myGrid project [16]. Each
definition was used as so called “virtual workflow” and matched up with others from
the list. Below this algorithm is described in more detail.

Workflow, in the nomenclature adopted in the described algorithm, is repre-
sented by a set of literals, and each of them represents input/output parameters,
their data types – input/output ports, and tools (local tools and Web Services). In
Figure 1 a model of the virtual workflow, which is the input for the algorithm, is
shown.

The process of matching the virtual workflow to a given pattern has been divided
into three main stages. In the first, literals describing the output parameters are
analyzed. The virtual workflow is compared to each item in a workflow repository
with a binary function match(string1, string2). Provided that length(string1) ≤

length(string2),
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Fig. 1. Virtual workflow model [20]

match(string1, string2) =

{

TRUE if length(comsub)
length(string1)

≥ 0.5 ∧
length(comsub)
length(string2)

≥ 0.8

FALSE otherwise

where comsub is the longest common substring for string1 and string2, e.g., for the
“Medline” string and the “Medline ID”, the comsub is “Medline”. Both boundary
factors were selected by the authors during conducted experiments. If the above
function positively recognises at least one pair of literals the entire workflow is
qualified for the next stage.

A result set created by the above procedure is narrowed in the second stage
through the analysis of literals representing input of the workflow – the above-
mentioned function match(string1, string2) is being used. The result of the second
stage is a set of workflows with similar input and output parameters.

The third phase differs significantly from the previous ones and reaches into the
structure of the workflow. The names of input and output literals, and the names
of tools related to the services component of compared workflows are considered.
An important change is comparing only the most important terms in the virtual
workflow and in the potential similar workflow. The weight function is a key element
of this phase. Its role is to compute term relevance so uncertain results can be
selected and removed from a final set. The idea behind it is solely derived from
a statistical measure named TF-IDF. The weight function is expressed as follows:
ω = tf × log(N

df
) where

• tf stands for a number of occurrences of a given term within a single workflow
descriptor,

• df is a number of workflows that a specified term occurs in,

• N stands for a total number of workflows in a repository.

Values returned by the function have relative meaning, i.e., the more frequently
a given term occurs in a single workflow definition the greater weight it will get
computed, whereas df value has substantially the opposite meaning. The more
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often a specified term is used in other workflow descriptors the lesser weight will be
applied.

The conducted experiments raised the question regarding algorithm precision.
As there is no formal definition of functional workflow similarity, the result had to
be validated manually. The authors have assumed that similarity criteria are met
when extracted workflows can be used interchangeably with a slight modification of
an internal structure. This approach has let authors achieve 99.2 % result precision.

Even though the extraction method seems to be very promising, several obstacles
are worth mentioning here. All the examined workflow descriptors were taken from
myGrid samples which could let us expect more issues, as the number of workflows
increased. Secondly, the terms used to measure similarity were derived from a single
usage domain. It is very likely that once workflow technology is spread to other
areas, more naming collisions and term mismatches will occur.

4 SEMANTIC APPROACH

Ontology [9] is a formal representation of the knowledge in Semantic Web applica-
tions [1], in semantic search engines like, e.g., the Feta system described below, and
in other intelligent applications [22].

4.1 The Feta Repository

Taverna Workbench widely adopted workflow composition and enactment tool, es-
pecially with regard to scientific communities. It can be used to visually compose
interaction patterns and save them as a XSCUFL descriptor to let other researchers
make use of it. One of the most interesting features is that the workbench can be
enriched with the Feta [13] system (the Feta plugin). It allows users to browse ser-
vice repository and import desired workflow into their own workspace. A draft view
of the architecture of the Feta system is presented in Figure 2 – it shows information
flow among its individual software components, as well as between the components
and users.

Unfortunately, the overall feature set is pretty limited1; however, internal repos-
itory data model can be valuable for the sake of the workflow similarity analysis.

The repository structure adopts recent Semantic Web achievements. It stores
RDF [14] triples which follow constraints specified by the myGrid ontology.

The myGrid ontology [15] is built from two separate sub-ontologies that serve
different purposes. The first defines basic predicates which are used to point out
service building elements. The second, named domain ontology, provides wide hier-
archy for data and algorithm types. Those are associated with parameters and tasks
in order to attach metadata. A sample service description is described in Figure 3.

1 At the time of writing this paper it was impossible to form and send custom queries
to the repository. A web service that allowed to serialize entire content into RDF file was
used to prepare data for further experiments.
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Fig. 2. The Feta system architecture [2]

Feta semantic service model consists of blank nodes that lead to semantic types.
According to the described data model, Feta service can contain one or more oper-
ations which are associated with input and output parameters.

Parameters and tasks can be given textual names and descriptions. These literals
are often used to store names which are imported from other formats like XSCUFL
files.

4.2 Workflow Extraction Algorithm

Feta service model contains much more valuable metadata than plain XSCUFL
descriptors. It can be used as a more reliable and more comprehensive similarity
marker.

The idea of the first two phases of the proposed algorithm is fairly similar to its
TF-IDF based predecessor. Invalid workflow pairs are eliminated by output para-
meter matching. Subsequently, input parameters are compared. However, there are
two significant differences. Comparison function makes use of associated semantic
type identifiers instead of literals. Secondly, there is no need to employ fuzzy term
matching as ontology guarantees unambiguity.

There is a compelling dissemblance with regard to the third phase. Since Feta
semantic model hides internal workflow structure by covering it with a semantic
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Fig. 3. myGrid semantic service model [12]

task concept, it does not make sense to measure TF-IDF weight. Fixed comparison
of task semantic types is used instead.

Since myGrid ontologies provide deep type hierarchy, it was possible to propose
a significant refinement to the matching algorithm. Given that the subclassOf rela-
tion is commonly used to link general and more specific semantic types, it is likely
that workflows annotated with semantic types within the same type hierarchy will
maintain the same relation.

For the sake of example, let us assume that a given workflow returns an output
parameter annotated with nucleotideSeqence type. It is likely that another workflow
that returns DNAsequence can be considered similar as its output fulfills the same
requirements2 specified by myGrid ontology.

This approach involving reasoning by types was applied to three similarity cri-
teria: input, output and a task being performed. If all requirements were satisfied,
two workflows were considered similar.

2 General semantic types can have limitations against, i.e., class predicates, relations,
etc. More specific semantic types have to fulfill the same limitations (requirements) too.
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5 EXTRACTION RESULTS

In order to evaluate the proposed algorithm, an experimental application Fetawf was
implemented. Its basic task is to find similarity among stored services. The entire
content of Feta repository was serialized into an RDF file and used as input to build
semantic model based on Jena Semantic Web Framework [10]. Service descriptors
and myGrid ontology files were merged together in order to prepare data model for
further experiments. The data flow between components of the Feta repository and
the Fetawf application is shown in Figure 4. At the time of conducting this research
the Feta repository was characterised by the following number of elements – see
Table 1.

Number of the RDF triplets 44 519

Number of the Feta descriptors 601

References to the XSCUFL descriptors 388

Semantically described 506

Number of I/O parameters 2 448

Number of references to the WSDL descriptors 585

File size of the RDF set 7MB

Table 1. Quantitative characteristics of the elements of the Feta repository

Every workflow definition structure was compared to each other in order to
check whether similarity criteria are met. Technically speaking, comparison process
was accomplished by invoking SPARQL [18] queries combined with direct Jena API
calls onto underlying repository. If a given pair passed the similarity test, it was
considered as a successful extraction and saved in a result list.

Figure 5 shows workflow comparison results after the first stage regarding output
comparison. Repository elements were numbered and put into a matrix (a similarity
matrix). Each row or column refers to a different workflow. The squares that are
placed at the intersections represent a successfully identified similarity between two
given workflows.

The diagonal line built from the squares refers to similarity of a workflow to itself.
It is worth mentioning that similarity squares are placed symmetrically around the
diagonal, which means that the comparison method is a symmetric relation in this
case.

Nevertheless, there are several exceptions marked as circles. Those pairs were
considered similar with a help of type reasoning. In this case only one way similarity
relation is satisfied.

To have a better understanding of the issue let us have a look at the following
example described in Figure 6. Given that the task associated with workflow 2
is an indirect descendant of a task associated with workflow 1 it is assumed that
workflow 1 is similar to workflow 2 with regard to the task type. Having said that
though, there are no prerequisites to believe that an opposite relation is satisfied.
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Fig. 4. Data flow between components of the Feta repository and the Fetawf application

Even though it may seem probable it is not possible to state that workflow 2 is
similar to workflow 1 with regard to algorithm type.

The number of pairs of similar workflows found after the first stage (phase)
is presented in Table 2. As one can see, using inference during output parameter
matching phase allowed to extract additional 336 matchings. After the last stage
we received a result set consisting of 132 pairs3 of similar workflows.

Number of matchings 1 376

Number of inferred 336

Table 2. The number of workflows found by the algorithm after the output parameter
matching stage

6 METHOD COMPARISON AND QUALITY ESTIMATION

At the moment of writing this paper it seemed that it was impossible to verify the
algorithm correctness automatically. Results had to be checked manually. Hence
a bioinformatics scientist was asked to evaluate whether a workflow pair could be

3 Workflows similar to themselves are not taken into account
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Fig. 5. Output matching asymmetry (the axes contain the corresponding numbers of work-
flows)

considered similar. A possible answer set was purposely limited to three options
(subsets):

• workflows that are definitely similar and can be used interchangeably with
a slight modification,

• workflows whose similarity is questionable, which means that interchangeable
usage requires more complex recomposition,

• workflows that are certainly different and should not be considered similar.

The cardinality of the subsets is presented in Table 3. Method correctness
evaluation results are presented in Figure 7. It shows that only 20 % of all extracted
workflow pairs are definitely wrong. It means that if we apply the same quality
criteria as with regard to TF-IDF algorithm, the overall method correctness is equal
to 80 %. It is obvious that results may differ if the entire process is provisioned
with data from other sources. Nevertheless, the Feta repository was probably the
only single database that contained semantically annotated descriptors at the time
of writing this paper.
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Subset Cardinality

definitely similar 75

definitely dissimilar 26

questionable similarity 31

Table 3. Analysis of results of semantic method extraction

In order to correlate extraction results given by two approaches, an attempt
to compare the semantic method with the TF-IDF workflow algorithm described
earlier was performed.

Because workflow descriptors stored in the Feta repository, as compared with the
XSCUFL files mentioned in Section 3, were less detailed, the TF-IDF was slightly
changed. The terms that were used for lexical comparison were taken from literals
associated with given parameters and task nodes of a service model. The third stage
related to TF-IDF filtering algorithm was simplified as there is only one task name
used for each service descriptor.

Workflow extraction results are shown in Figure 8. Term based approach ex-
tracts much more similar pairs of workflow than the semantic based one. What is
most striking is the fact that only 41 pairs were extracted by both methods. The
above results indicate that it is easier to meet the criteria of similarity of names
than the assigned types. The studies have shown that this is mainly caused by the
following factors:

• not all services had assigned semantic types – some of them were added to the
repository due to automatic import from other sources,
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• use of the same, common literals to name the parameters or tasks, (e.g. report,
arg, data, info)

• using very similar names in terms of similarity function (e.g. DNA, RNA).

Another very important difference can be seen from the similarity matrix. Algo-
rithm based on the semantic types forms result in linear shapes (see Figure 9). This
means that groups of services, which are to each other similar, were found. This is
a result of classification carried out in the annotation process of services.

In the case of the term based algorithm such regularity is not seen (see Fi-
gure 10). Showing the pair of matching points services are freely scattered over the
whole surface of the chart. This allows to conclude that these matches are more
random. One can venture to say that the term based algorithm returns workflows
similar in terms of used naming conventions and composition habits. Assuming that
all the authors of workflows are motivated by the same guidelines during creating
a definition, one can count on satisfactory results of finding similar workflows with
this method.
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Determining the similarity in the semantic based method is implemented at
a slightly different plane. Classification of individual components of definition using
a consistent glossary allows determination of corresponding workflows in terms of
their destination.
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Fig. 9. Result similarity matrix for the semantic based approach

The term based approach led to naming collision and mismatches which unfor-
tunately could not be avoided by filtering in this case.

The semantic comparison relies mostly on annotations attached during service
classification. This is a process that requires overall cognition of entire repository
resources and remains tightly related to knowledge engineering, whereas the term
based approach makes use of naming conventions that are very likely to differ for
each research group.

To better understand the difference between these two algorithms, it is worth
analysing example pairs found by both methods and pairs identified only by one of
them.

Table 4 contains characteristics of two example workflows: transeq and back-
transeq, i.e., the names and the types of the input / output parameters and tasks, as
well as short workflow description. This matching was identified by both methods
as a result of both semantic type matching and big similarity of parameter names.
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Fig. 10. Result similarity matrix for the term based approach

One key difference are the names of the tasks: transeq and backtranseq, but these
names are in the TD-IDF method tolerance limits.

transeq backtranseq

INPUT
NAME TYPE NAME TYPE
sequence usa mb:single sequence format sequence usa mb:single sequence format
sequence direct data mb:biological sequence sequence direct data mb:biological sequence
sbegin – sbegin –
sformat – sformat –
. . . . . . . . . . . .

OUTPUT
outseq mb:biological sequence outseq mb:biological sequence
report – report –
detailed status – detailed statsu –

TASK
transeq mb:translating backtranseq mb:translating

DESCRIPTION
Returns modified sequence Returns sequence with masked features

Table 4. Example pair of similar workflows found by both methods

Table 5 contains matching done only by the semantic method. In spite of a big
lexical similarity of input and output parameters, this pair was rejected because of
the big difference of task names, i.e., cutseq and maskfeat.
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cutseq maskfeat

INPUT
NAME TYPE NAME TYPE
sequence usa – sequence usa –
sequence direct data mb:biological sequence sequence direct data mb:biological sequence
sbegin – sbegin –
sformat – sformat –
. . . . . . . . . . . .

OUTPUT
outseq mb:biological sequence outseq mb:biological sequence
report – report –
detailed status – detailed status –

TASK
cutseq mb:removing maskfeat mb:removing

DESCRIPTION
Returns modified sequence Returns sequence with masked features

Table 5. Example pair of similar workflows identified only by the semantic method

The last collation (see Table 6) shows one of the pairs rejected by the semantic
algorithm, but accepted by the algorithm based on the TD-IDF method. As one
can see, ontological types describing output parameters and tasks (of these two
workflows) are different. In spite of semantic types dissimilarity, lexical similarity
has been taken into account, mainly because of naming conventions. According to
them, the searchSimpleAsync task name and the analyzeSimpleAsync task name are
similar.

searchSimpleAsync analyzeSimpleAsync

INPUT
NAME TYPE NAME TYPE
query mb:biological sequence query mb:biological sequence
database – –
program – –

OUTPUT
Result mb:BLAST report Result mb:multiple sequence alignment report

TASK
searchSimpleAsync mb:sequence aligning analyzeSimpleAsync mb:multiple local aligning

DESCRIPTION
Execute BLAST asynchronously with

Execute ClustalW asynchronously with multiple sequences.
program, database and a query sequence.

Table 6. Example pair of similar workflows identified only by the TF-IDF method

7 CONCLUSIONS

The described experiment shows that semantics and ontology play significant role
in service and workflow representation. The provided metadata may be valuable for
workflow comparison and extraction. It brings several benefits like disambiguation
and eliminates undesired naming collisions.

Semantic approach allows to scale the problem domain. It is very likely that
workflows which were designed for different purposes can be easily merged to form
more comprehensive repositories. In accordance with semantic web and ontologies
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assumptions each workflow is uniquely identified so there is no risk that descriptor
elements may collide.

The term based approach fails at this point. It extracts too many workflows
that follow similar naming convention but refer to different algorithms. Even though
statistical measures are used to eliminate uncertain data it cannot comprehensively
avoid the problem.

Reasoning is another aspect that makes us believe that most usable features are
yet to be implemented. According to ontologies standards, metadata can be easily
extended and combined with more sophisticated reasoning rules than type hierarchy.
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