
Computing and Informatics, Vol. 32, 2013, 797–826

PERFORMANCE MODELING AND ANALYSIS
OF SOFTWARE ARCHITECTURES SPECIFIED
THROUGH GRAPH TRANSFORMATIONS

Mahdi Rahimi Naddaf, Vahid Rafe

Department of Computer Engineering, Faculty of Engineering
Arak University, Arak 38156-8-8349, Iran
e-mail: m-rahiminaddaf@arshad.araku.ac.ir, v-rafe@araku.ac.ir

Communicated by Ulrich Eisenecker

Abstract. Software architecture plays an important role in the success of modern,
large and distributed software systems. For many of the software systems – espe-
cially safety-critical ones – it is important to specify their architectures using formal
modeling notations. In this case, it is possible to assess different functional and non-
functional properties on the designed models. Graph Transformation System (GTS)
is a formal yet understandable language which is suitable for architectural modeling.
Most of the existing works done on architectural modeling and analysis by GTS are
concentrated on functional aspects, while for many systems it is crucial to consider
non-functional aspects for modeling and analysis at the architectural level. In this
paper, we present an approach to performance analysis of software architectures
specified through GTS. To do so, we first enrich the existing architectural style –
specified through GTS – with performance information. Then, the performance
models are generated in PEPA (Performance Evaluation Process Algebra) – a for-
mal language based on the stochastic process algebra – using the enriched GTS
models. Finally, we analyze different features like throughput, utilization of differ-
ent software components, etc. on the generated performance models. All the main
concepts are illustrated through a case study.

Keywords: Graph transformation system, PEPA, performance model, software
architecture

798 M.R. Naddaf, V. Rafe

1 INTRODUCTION

Software architecture plays an important role in the success of modern, large and
distributed software systems. In an architecture-centric development approach only
principal design decisions are considered at the architectural levels and many un-
necessary details are removed. This yields more efficient, more effective and faster
development of software products through software architecture [1]. Considering
system designs at the architectural level, especially when they are specified accu-
rately by means of formal methods, might considerably decrease the cost, increase
the quality of the product and decrease the risk associated with them [2].

The importance of architectural analysis will be more prominent while dealing
with some properties of system like performance which yields the timing behavior.
Performance optimization of developed software may lead to architecture redesign
which will bring cost and time overflow. Thus, performance prediction of a software
system is necessary in the early development stage when the architecture is designed.

Specifying the architecture is a major requirement for achieving the aforemen-
tioned goals. To specify an architectural model some notations are required with the
following properties: expressiveness to be understandable especially for domain ex-
perts, formality to reason on a more abstract level, supporting dynamic architectures
and finally supporting refinement in the architectural level. None of the existing Ar-
chitecture Description Languages (ADLs) support all of them. Thus Thöne [3] has
proposed a combination of UML and graph transformation as a visual, yet formal
approach to model (and reason about) component based architectures, according to
this observation.

Graphs provide a universally adopted data structure, as well as a model for
the topology of component-based systems. At the same time, a variety of visual
notations used in computer science (i.e. UML) can be easily seen as graphs and thus
graph transformations are involved, either explicitly or behind the scenes, when
specifying how these models should be built and interpreted, and how they are
refined over the time and mapped to implementations.

In addition, as we will explain in the subsequent sections, GTS has simple pri-
mitives and familiar concepts and is flexible for defining some profiles in computer
domain and especially can provide behavioral modeling facilities in a wide area of
abstraction.

However, modeling per se is not enough; it must be complemented with proper
approaches to assess the quality of the designed models. In this paper, we present
an approach to performance modeling and analysis of GTS specifications. To do
this, we use the component-based style presented in [3] for modeling component-
based software architectures using GTS. We enrich the component-based style with
the performance information (e.g. the rate of behavior mechanisms and component
operations). Then, we generate the performance models from the enriched GTS
specifications in terms of PEPA [4, 5].

PEPA (Performance Evaluation Process Algebra) is a formal language, based on
stochastic process algebra, to specify and analyze performance models. PEPA offers

Performance Measurement of Software Architectures 799

several attractive features which are not available in previous performance modeling
paradigms. The most important of these are:

compositionality, the ability to model a system as the interaction of subsystems,

formality, giving a precise meaning to all terms in the language, and

abstraction, the ability to build up complex models from detailed components,
disregarding the details when it is appropriate to do so.

Queuing networks offer compositionality but not formality; stochastic extensions
of Petri nets offer formality but not compositionality; they offer abstraction mecha-
nisms neither. In contrast, PEPA can model components interactions and their
behaviors. Also, PEPA primitives are very close to architectural concepts. For
example, component is a building block of PEPA models and this is a major concept
in software architecture.

Compositionality is explicit in PEPA and is provided by combinators. This
is useful for model construction especially when models are constructed systema-
tically, by either elaboration or refinement and this is a major requirement in the
architectural modeling.

After transformation and generating the PEPA model, we analyze different per-
formance features like throughput, utilization of different software components on
the generated PEPA model. Finally, the results are considered as a feedback to
improve the designed architecture. Figure 1 shows the proposed framework.

PEPA	 performance	
model Analysis

Software	 architecture
model

GTSGTS

Enriched	 software	
architecture

model

GTSPerformance	 Information
Transformation

Feed	 Back

	
	 	

Figure 1. The proposed framework to performance modeling and analysis

The rest of the paper is organized as follows. Section 2 surveys the related ap-
proaches. In Section 3, we briefly introduce the required background, i.e. software
performance engineering, graph transformation system, the core component-based
style modeled through GTS and PEPA. In Section 4, we explain our proposed ap-
proach to enrich the style with the performance information. Section 5 presents our
used approach to generate performance model (i.e. PEPA model) from the enriched
style. In Section 6, we show the analysis approach along with our experimental
results. Finally, Section 7 concludes the paper and evaluates our approach.

800 M.R. Naddaf, V. Rafe

1.1 Running Example

To illustrate our proposal, we use a business application “e-Map Router” presented
in [6]. This is a simple example that we use in this paper to present and exemplify
our approach.

Application	 Logic

SMS	 Component

MMS	 Component

Location	 Component

Session	 Manager

1.	 SMS

2.	 StartSession

8.	 EndSession

5.	 CheckValid

3.	 SMS	 Notify

7.	 MMS	 Delivery

4.	 Location	 Request

6.	 Location	 Response

Web	 Service	 Consumer Web	 Service	 Provider Policy	 Access	 Provider

	
	 	 Figure 2. The main components of the e-Map Router system

The running example is an application that finds the nearest restaurant for a user
and displays the results on the user’s mobile phone. This application displays only
one place for each request. Figure 2 depicts the main components of the system
(at abstract level). Web Service Consumer component encompasses application
logic; Web Service Provider includes three independent components; MMS and
SMS components are responsible for SMS and MMS communications, respectively;
Location component performs searching services for received requests; and finally,
Policy Access Provider controls the security mechanisms considered.

The numbers on the arrows of Figure 2 show the behavior of the system as
an informal scenario. In this scenario the client activates a service by sending a SMS.
Consequently, the Session Manager starts a session. Then, a notification is sent to
the application. The application requests the client’s location from a location web
service. The web service contacts the session manager to control the validity of the
request (checkValid). checkValid is the security processing center of our case study.
So, those received requests enter to this point and the security consideration of the
system for responding this request will be reviewed. It is valuable to measure the
impact of their processing time on the overall performance of the system. Then, the
validity check is performed by the Policy Access Provider. If it succeeds, the location
web service finds the nearest location and passes its map as a MMS to the MMS
Component. MMS Component delivers the result to the user and finally terminates
the session.

Performance Measurement of Software Architectures 801

2 RELATED WORKS

Performance engineering is the main subject of this research. Performance engineer-
ing can be used for performance analysis of a lot of products, i.e. process models
and software systems.

For process model context, Fritzsche et al. [7, 8], proposed to apply model driven
performance engineering. They basically took process models, enriched them via
a staged process using model transformations to finally execute a simulation for
performance analysis which covers non-functional properties.

Our research is more concentrated on performance modelling and analysis of
software architectures. There are several researches which have a similar process
depicted in Figure 1. Differences between these researches are around the selected
notations and the method of conversion between them. Some of these researches
focus on architecture of general systems while the others try to concentrate on special
architectures like SOA. Formal notations have been used for specifying architecture
in some of them, while others have used informal notations. Some of them have
tools with feedback support while others may be applied manually.

Pooley [9] uses UML for modelling the architecture. He models architecture with
regard to performance using combination of sequence and collaboration diagrams
and a special combination of collaboration and state diagrams. Performance model
in this research is specified through PEPA notation and is generated manually.

Mitton and Holton [10] have a research like Pooley [9] but they use only UML
state diagrams for architectural modelling.

Petriu and Shen [11] have used UML for architectural modelling but performance
model is based on LQN. Transformation of UML model to LQN has been done with
graph transformation system. Balsamo and Marzolla [12] have also followed the
referred process. They have applied annotated use case, activity and collaboration
diagrams for architectural modelling. In this research, performance model is based
on multi class queuing networks.

Andrea D’Ambrogio [13] has developed a tool that the referred process can be
followed with automatically. It can be used to architectural design and will increase
the productivity of the designer. In this tool, architecture is designed using UML
and a LQN model is generated for performance.

[14] is about a tool which uses UML for architectural modelling and provides
some features for injecting performance information to architectural model. The
research emphasises the point that the analysis result should be in the form of
UML; this way designers can improve their models.

[15] is a Ph. D. thesis; introduces pa-UML, a modelling language based on UML
which is extended for performance. In this research, SPN is the notation used for
performance modelling.

The aforementioned researches use UML for architectural modelling. UML is
familiar and understandable for domain experts. UML is semi-formal and formal
analysis is not feasible directly through it. Dynamic architectures cannot be de-
scribed through UML. UML extending is a long term activity. With UML, refine-

802 M.R. Naddaf, V. Rafe

ment consideration, which is necessary in architectural modelling, cannot be handled
directly.

Garlan and Spitznagel [16] have provided an approach for performance modelling
and analysis of some architectural style. AESOP [17] has been used for modelling
architecture and performance modelling is done through LQN. Some tools have been
provided for transforming architectural model to LQN model. AESOP has special
provisions for styles. This notation has not offered some features for analysis and
has not a formal semantics. Hence this is similar to UML.

Another research which is about special purpose architectures is [18]. This
research proposes a framework for performance analysis of SOA based systems. In
this research BPE4W, which is a language for specifying web services, is transformed
to SPN models. Because of using BPE4W, this approach is applicable for service
oriented architecture domain and cannot be extended to other styles. BPE4W can
also be used for specifying these architectures and no analysis is supported through
it, while in our approach we use GTS for architectural modelling which is capable
of formal functional and non-functional analysis

[19] has proposed a kernel language named KLAPPER to face both the he-
terogeneous design level notations for component-based systems, and the variety
analysis methodologies for performance in component-based architectures. KLAP-
PER captures the relevant information for the analysis of non-functional attributes
of component-based systems, with a focus on performance. Using this kernel lan-
guage, a bridge between design-oriented and analysis-oriented notations is estab-
lished. Therefore defining a variety of direct transformations from the former to the
latter will reduce to the less complex problem of defining transformations to/from
the kernel language. This work is not an approach for performance analysis of soft-
ware architectures. It proposes less effort for generating the performance models
through architecture specifications. It is worth to point out that transformation
causes losing some information in the source model and KLAPPER suggests several
transformations.

[20] has proposed PCM (Palladio Component Model) to specify component-
based software architectures in a parametric way. This model considers factors
affecting the perceived performance of a software component like influences by ex-
ternal services, changing resource environments, or different input parameters. It
has developed a tool capable of simulating instances of the PCM to obtain perfor-
mance metrics. This approach does not follow the framework of Figure 1 and does
not use the familiar and common performance modeling notations and their tools.
It is necessary to prove the correctness of the results in its simulation engine and for-
mal functional analysis of software architecture has not been considered, while our
approach uses the proved performance analysis methods and other formal functional
analysis is feasible through it.

Heckel et al. [21, 22] introduce the notion of stochastic graph transformation sys-
tems (SGTS) to formalize, measure, and predict properties such as reliability. In the
SGTS, each rule is associated with its application rate. Continuous Stochastic Logic
(CSL) is used to specify reliability properties and verify them through model check-

Performance Measurement of Software Architectures 803

ing. They have constructed an experimental tool chain consisting of GROOVE [23]
for generating the labeled transition system, and PRISM [24] for probabilistic model
checking. An adapter connects both tools by translating the transition graph gene-
rated by GROOVE into a PRISM transition system specification, incorporating the
transition rates as specified in a separate file. Later on, Torrini and Heckel [25], use
a bit modification to the idea presented in [21, 22]. They suggest using simulation
to do the performance analysis to avoid the state space explosion problem. In fact,
in the new work they do not generate all the labeled transition system to avoid the
state space explosion problem.

This approach has added the static application rate to the rules while we have
the dynamic application rate so that modeler can specify different rates for different
instances of rules.

Varró et al. [26, 27] extend the meta-model presented in [3] with the required
parameters for reliable messaging in services. Then, they incorporate fault-tolerant
algorithms into appropriate reconfiguration mechanisms for modeling reliable mes-
sage delivery by graph transformation rules. In order to assess the cost of fault
tolerance techniques in terms of performance, they transform the extended models
to PEPA using VIATRA2 framework [28]. In fact, performance analysis is done
considering different parameters and message delivery semantics in reliable message
passing for service-oriented architectures. Varró et al. [26, 27] use the same modeling
style which we have used and also have the same performance modeling notation,
but the performance is considered only for reliable messaging while our approach
handles the performance more generally.

A couple of other approaches we can mention are those about functional analysis
of GTS specifications (e.g. [29, 30, 31, 32]). Some of them use graph-based algorithms
to model check GTS specifications (e.g. GROOVE [23]), while some other approaches
make a transformation from GTS to the input language of different model checkers
(e.g. CheckVML [30]). In all of these approaches there is nothing related to analysis
of non-functional aspects. Instead, it is possible to verify different functional aspects
in terms of safety, deadlock freeness, reachability and liveness properties.

3 BACKGROUND

This section introduces the required background for the proposed approach, i.e. soft-
ware performance engineering, graph transformation system, the core component-
based style presented in [3] along with a brief description of PEPA.

3.1 Software Performance Engineering(SPE)

Software Performance Engineering is describing, analyzing and optimizing the dy-
namic time dependent behavior of a system. Methods and tools have been in-
troduced to provide performance engineering and guarantee that an implemented
software system will satisfy its performance requirements. Performance engineering

804 M.R. Naddaf, V. Rafe

method and tools should be applied during the whole development process of a soft-
ware system starting from the early phase. In the 1990s Connie U. Smith proposed
a systematic approach called Software Performance Engineering (SPE) method [33]
for constructing a software system to meet performance goals from the early phase
of software development.

The approach has been inspired in many researchers to create their own me-
thods and tools for performance engineering purposes. On the other hand, Software
Performance Engineering (SPE) represents the entire collection of software engineer-
ing activities and related analyses used throughout the software development cycle,
which are directed to achieving performance goals.

Two general approaches exist related to the SPE. The most common approach
is purely measurement-based ; it applies testing, diagnosis and tuning, when the
system under development can be run and measured. The model-based approach
(see also [34] for a survey of modeling approaches), creates performance models
in the early phases and uses quantitative results from these models to tune the
architecture and design with the purpose of satisfying performance requirements.
Our idea in this paper is in the model-based category.

The common properties which are assessed in SPE are response time, through-
put, queuing delays, and utilization of different software and hardware components.
Some definitions are as follows:

Response time is broadly defined as the time interval between a user’s request for
service and the services returning the results.

Throughput is a measure of the number of transactions that receive service over
some predefined period of time. For the transaction systems, this would be
measured as transactions per second, or TPS.

Utilization of a resource is a measure of how busy the resource is. It is computed
as the fraction of the time that the resource is busy by servicing clients divided
by the entire time period:

Utilization = time busy/(time busy + time Idle) (1)

3.2 Graph Transformation System(GTS)

In this subsection, we briefly describe graph transformation, as a modeling notation
which is related to graphs. GTS has some vocabulary which we define through
subsequent definitions. These are Type Graph, Host Graph, Graph Rules and Rule
Firing.

Briefly, Type Graph is a meta-model which defines the elements of our models,
their relations and constraints. This is like the concept of Class Diagram in UML.
Host graph is an object diagram for Type graph with relevance to UML class dia-
grams. The state of our model is depicted through the Host Graph. Host Graph
shows the current elements of our model and their relationship.

Performance Measurement of Software Architectures 805

Graph Rules lead the change conditions in the Host Graph or in the elements
of our model. Graph Rules have pre and post conditions. These conditions are the
constraints in the host graph. When a pre-condition of a rule in the host graph is
satisfied this rule can be fired. When fired, graph elements in pre condition will be
changed according to the post-condition.

Definition 1 (Type graph transformation). A type graph transformation system is
a triple: TGS = (TG,HG,R), where TG is the type graph, HG is the host graph
over TG and R is the set of rules.

Definition 2 (Type graph). A type graph is a tuple TG = (TGN , TGE, src, tar)
where TGN is the set of node types, TGE is the set of edge types and src, tar are
functions from TGE to TGN . These functions assign to each edge a source and
a target node.

Definition 3 (Host graph). A host graph HG, also called instance graph over TG,
is a graph equipped with a graph morphism typeG : HG→ TG. This assigns a type
to every node and edge in HG.

Definition 4 (Graph rules). A graph transformation rule P over a type graph TG
is given by P : L → R where L and R are some graphs over TG. L defines the
precondition (LHS) and R is the post condition of the rule (RHS).

The application of a rule to a host graph H replaces a matching of the L in H
by an image of R. This is performed by (1) finding a matching of the L in H, (2)
deleting a part of the host graph (that can be mapped to L but not to R) producing
the context model, and (3) connecting the context model with a matching of the R
by adding new nodes and edges (that can be mapped to the R but not to the L)
and resulting in a new model H ′.

By recursively applying all enabled graph transformation rules to the host graph,
a transition system can be generated. Transition systems are frequently used to
represent the behavior semantics of software systems. In the case of graph transition
systems, one considers graphs as representations of system states. If the resulting
state space of the graph transition system is finite, we can easily check different
properties (e.g., reachability, safety, and liveness), even for unrestricted forms of
graph transformation systems, by searching the state space. For more information
of GTS interested readers can refer to [35, 36].

3.3 Core GTS Component-Based Style (CBS)

For modeling architectural styles using GTS, its concepts, i.e. type graph, instance
graph and transformation rule should be applied. [3] has proposed an approach to
model architectural styles through GTS which we use for modeling our case study.
Due to its role in this paper, we describe it briefly in this subsection.

Structural part of each style includes some vocabulary with relational con-
straints. Component-based style vocabulary includes Component, ComponentType,

806 M.R. Naddaf, V. Rafe

Port, PortType, Connector, Interface etc. which are modeled through a graph
schema (Figure 3).

Variable Reference

Action

ThreadProcess

RefElement

Message

Request Response

valueFor

holds

previous

declares

isInstanceOf

ComponentType
name:String

Connector

Component
name:String

Port
used:Boolean

Interface
name:String

Operation
name:String

PortType
used:Boolean

ConnectorType
name:String

isInstanceOf

isInstanceOf
reqiures

provides

ownssupports

defines

isInstanceOf

allows sentVia

respondsTocalls

sends
receives

StartAction

CallOperationAction

ReceiveResponeAction

...
runsfollows

refersTo
first

connects

next

1

1
1

1

1

1
1

1

1

1

1

0..1

0..1

0..11

0..1

2 21

1

	
	 	

Figure 3. Graph schema of the component-based style

For example, each Port is an instance of the PortType which introduces the
interfaces provided by a component or the interfaces required by it. ConnectorType
specifies the PortTypes which can be the endpoints of a Connector. As a constraint,
each ComponentType has only one Process and also a Connector connects only two
Ports.

To specify the architecture of a real system, an instance graph of this graph
schema should be instantiated. Figure 4 is the structural part of the architecture of
our case study. This graph represents the participant components, their interfaces,
operations, static behaviors etc.

In addition to the nodes required for structural modeling, some other nodes
are required for behavior modeling. These nodes are shown darker in the graph
schema.

Behavior in this architectural style includes some sequence of connection and
commutation mechanisms. These mechanisms are modeled through graph trans-
formation rules like connecting two components, sending a request, receiving the
response of a request etc. A transformation rule is provided for each of these me-
chanisms in the model. Some of these rules are connect, openPort, callOperation,
sendResponse, receiveResponse, etc. Firing these rules on the host graph implements
the behavior of the architectural style.

Therefore Message, Response and Request nodes in graph schema represent the
different messages which are passed between components.

Performance Measurement of Software Architectures 807

name	 :	 string	 =	 endSession
o1	 :	 Operation

name	 :	 string	 =	 startSession
o2	 :	 Operation

name	 :	 string	 =	 PolicyAccessProvider
t2	 :	 ComponentType

name	 :	 string	 =	 PAProvider
c1	 :	 Component

name	 :	 string	 =	 SessionProvider
p2	 :	 PortType

name	 :	 string	 =	 ISession
i1	 :	 Interface

name	 :	 string	 =	 SessionRequester
p2	 :	 PortType

name	 :	 string	 =	 WebServiceProvider
t1	 :	 ComponentType

name	 :	 string	 =	 WSProvider
c2	 :	 Component

name	 :	 string	 =	 SessionConnector
ct2	 :	 ConnectorType

defines defines

defines

supports

isInstanceOf

providesrequires

isInstanceOf

allows allows

supports

name	 :	 string	 =	 checkValid

O3	 :	 InternalOperation

	
	 	

Figure 4. An excerpt of the host graph of our case study

A number of nodes in the graph schema like Action and Process have been
provided to address the control flow which is necessary for managing the sequence of
executing the behavioral mechanisms. Action is the parent class of all the behavioral
mechanisms. Each behavior mechanism such as callOperation is an Action node in
the graph schema. Process is a sequence of different Actions which specify the
behavior of a ComponentType. Thread is an instance of the Process type which
specifies the behavior of a component instance.

Actions are executed with variable or constant parameters. For example, Open-
Port action has a constant parameter which defines its port name. Some nodes like
RefElement, Reference and Variable are used for modeling parameter passing.

To denote the constant parameter of the action, an edge is established between
the Action node and the parameter node with a label starting with #.

Variable parameters are more complex sine these are different for an Action in
each Thread. Each action which has a variable parameter should have an edge to
a Variable node. For modeling the value of this parameter Reference node can be
used. This node refers to Thread, Variable and its value. Therefore in each Thread
the value of this variable can be distinguished.

Figure 5 shows a rule named callOperation which uses all of the aforementioned
behavioral modeling elements.

This transformation rule is fired when there is a component(c) in the host graph
which has established a connection to another component and that component has
an interface defining an operation named o. The c component has a thread which
points at an Action node as the previous invoked action. Previous action has a next
edge to a CallOperationAction node as the next action. CallOperationAction defines

808 M.R. Naddaf, V. Rafe

c:Component

from:Port

ref1:Reference

t:Thread

a:Action

con:Connector to:Port

pt:PortType

i:Interface

o:Operation

a2:CallOperationAction

v1:Variable v2:Variable

owns

refersTo

holds

previous

connects connects

isInstanceOf

provides

defines

#operation

_request_port

next

runs

valueFor

r:Request

ref2:Reference

sends sentVia

refersTo

holds valueFor

calls

c:Component

from:Port

ref1:Reference

t:Thread

a:Action

con:Connector to:Port

pt:PortType

i:Interface

o:Operation

a2:CallOperationAction

v1:Variable v2:Variable

owns

refersTo

holds

previous

connects connects

isInstanceOf

provides

defines

#operation

_request_port

next

runs

valueFor

	
	 	

Figure 5. callOperation rule [3]

its Operation through an edge labeled #operation. Active thread in this rule has
a pointer to the connecting port through Reference and Variable nodes. This rule
represents that c is ready to call the o operation.

3.4 PEPA(Performance Evaluation Process Algebra)

We use PEPA modeling language which is based on Stochastic Process Algebra
(SPA) for performance modeling and its toolkit for analysis. PEPA has some key
characteristics for performance analysis in the architectural level which makes it
suitable for our purpose.

In PEPA a system is described as a set of components and their interactions.
In fact, components are the processing elements while activities represent the ope-
rations associated with them. Each activity has an action type (or simply type).
Every activity in PEPA has a duration which is a random variable with an exponen-
tial distribution. This parameter is called the activity rate (or simply rate) of the
activity; it may be any positive real number, or the distinguished symbol T, which
should be read as unspecified [4, 5].

An action is represented as a pair (α, r), where α is the type of the action and r
(a real number) is the parameter of the negative exponential distribution governing
its duration. Whenever a component performs an action, an instance of a given
probability distribution is sampled: the resulting number specifies how long it will
take to complete the action.

Components and activities are the primitives of the PEPA language; the lan-
guage also provides a small set of combinators. With these combinators more useful
and applicable clauses can be constructed.

Consider a system which is composed from a WebService(WS) component and
an Application(Appl) component. WS receives request from an Appl , processes the
request, and sends a response back to the Appl . The nature of the WS behavior is

Performance Measurement of Software Architectures 809

Title Form Description

Prefix (α, r).P Sequential behavior representation

Cooperation P < α, β > Q Cooperating two component(P,Q) for some activities α, β

Choice P +Q Parallel processing in two components(P,Q)

Table 1. PEPA combinators

sequential. Hence, the Prefix combinator should be used. Consequently, its PEPA
clause is:

WS = (request,T).(serve, r).(respond,T).WS

This clause says that WS receives a request with the unspecified rate (T). Then
it serves the request with the rate r and finally responds it. This process will be
continued in WS.

Appl has two different behaviors, for some cases local processing is done while
for the other cases it sends a request to the WS. On the other hand it thinks first,
after that for some cases processes its request locally and for other cases sends its
request to the WS. Then Appl has some choices in its behavior and Choice operator
should be used. Its PEPA clause is as follows:

Appl = (think, r1).(local,m).Appl + (think, r2).(request, q).(respond, p).Appl .

The total system behavior is composed of the interaction among these two com-
ponents (i.e. WS and Appl). Thus, the total system equation uses Cooperation
combinator and its PEPA clause is as follows:

Sys = (Appl〈request, serve, response〉WS).

This example has been used as another case study and we will refer to it in the
evaluation section. Interested readers can refer to [5] for more information about
formal operational semantics of PEPA.

4 STYLE EXTENSIONS FOR PERFORMANCE ANALYSIS

To do the performance analysis on the architectural models specified through GTS,
at first we should enrich the style. So, we extend the component-based style pre-
sented in [3] by adding performance related information on the system. Thus, we
should equip the type graph using the required nodes, attributes and new graph
rules to support performance concepts along with modifying some of the existing
graph rules. This extension can be considered in the following parts:

• Extending the style for calling internal operations inside the components

• Extending the style for setting the timing information of component operations
and behavior mechanisms modeled by rules.

810 M.R. Naddaf, V. Rafe

The major existing behavioral mechanisms in the style are communication me-
chanisms. However, we need to have a new mechanism for modeling some internal
processing inside the component. For example, with the existing mechanisms we can
model calling the external actions of a component which are reachable through its in-
terfaces. However, for performance modeling there is a serious need to consider some
major internal processing in a component. In our case study checkValid is an internal
operation for PAProvider component which is not accessible for other components.
This is invoked according to calling other interface operations. We need to inspect
some performance concerns about it but existing mechanisms cannot handle it.

Variable

Process

declares

ComponentType
name:String

PortType
used:Boolean

ConnectorType
name:String

reqiures

provides

supports

defines allows

CallOperationAction

ReceiveResponeAction

...

follows

next

Operation
name:String
rate:Float

Interface
name:String

defines

InternalCallOperationAction

StartAction

first

InternalOperation
name:String
rate:Float

Action

rate:Float

	
	 	

Figure 6. An excerpt of the extended graph schema (modified nodes are colored)

To satisfy this requirement, the structural part of the style (the type graph
of Figure 3) should be extended to support a new node named InternalOperation.
There is a new operation defining in the ComponentType which cannot be provided
by an interface. It can only be called by its associated component privately. So, the
behavioral part of the style should be extended to support a new mechanism named
InternalCallOperation which is used for calling internal operations and IternalCall-
OperationAction is the associated action node for it. Figure 6 shows the extended
type graph while Figure 7 depicts the rule InternalCallOperation.

To consider the timing information for component operations, their application
rates (the rate of the exponential distribution governing the delay of its application)
as a new attribute called rate should be added to the related node types. Figure 6
shows the enriched type graph. As it is shown in InternalOperation, Operation and
Action are behavior nodes of the schema which have a new float attribute called
rate.

Performance Measurement of Software Architectures 811

c:Comp

t:Thread

a1:Action

op:InternalOperation

a2:selfCallOperation

defines

runs

previous

next

#operation

c:Comp

t:Thread

a1:Action

op:InternalOperation

a2:selfCallOperation

defines

runs

previous

next

#operation

invokes

	
	 	

Figure 7. New behavior rule (InternalCallOperation)

For the e-Map Router example, the initial configuration of the system can be
described through a host graph conforming to the extended type graph of Figure 3.
Figure 8 shows an excerpt of the host graph for our case study.

name	 :	 string	 =	 endSession
rate	 :	 float	 =	 0.5

o1	 :	 Operation
name	 :	 string	 =	 startSession
rate	 :	 float	 =	 0.5

o2	 :	 Operation

name	 :	 string	 =	 PolicyAccessProvider
t2	 :	 ComponentType

name	 :	 string	 =	 PAProvider
c1	 :	 Component

name	 :	 string	 =	 SessionProvider
p2	 :	 PortType

name	 :	 string	 =	 ISession
i1	 :	 Interface

name	 :	 string	 =	 SessionRequester
p2	 :	 PortType

name	 :	 string	 =	 WebServiceProvider
t1	 :	 ComponentType

name	 :	 string	 =	 WSProvider
c2	 :	 Component

name	 :	 string	 =	 SessionConnector
ct2	 :	 ConnectorType

defines defines

defines

supports

isInstanceOf

providesrequires

isInstanceOf

allows allows

supports

name	 :	 string	 =	 checkValid
rate	 :	 float	 =	 0.1

O3	 :	 InternalOperation

	
	 	

Figure 8. An excerpt of the extended host graph of e-Map Router case study

5 TRANSFORMATION ALGORITHMS

After enriching the GTS models with the necessary performance information, we
should generate the PEPA description of the models. To transform the architectural
model to PEPA model an algorithm should be followed. This algorithm has two
major steps.

812 M.R. Naddaf, V. Rafe

• Encoding the structural elements.

• Encoding the behavior of the model.

The behavior of the model is implemented through rule firing; thus inspecting
the transition system of the model can help us in extracting the behavior of the
components. A big problem is the state space explosion as encountered in producing
the state space of the graph model. To overcome this problem we use a reduced
state space. To achieve this state space we change the host graph of the model.
The new host graph is the same as the main but includes only one instance of each
component. The behavior of the components in the new graph is exactly as the
original model, because none of the graph transformation rules in the model are
dependent to the number of instances of a component in the LHS and RHS of the
rules. So, reducing the instances of a component to one instance does not affect the
firing conditions of the rules and this causes the behavior of a component does not
change.

These steps are described in the following sections. Before that, it is necessary
to define some formal notions.

5.1 Formal Definition of the Transition System

The transition system of a GTS model is a tuple

TS = (A,C, S, T, CN, beg, end, state, trans)

in which:

• A is the countable set of the corresponding action names of the performance
model in architectural level. This set is prepared when identifying the structural
elements.

• C is the countable set of component types in the architectural model. This set
is prepared when identifying the structural elements.

• S is the set of transition state nodes.

• T is the set of transition edges between states.

• beg : T → S is a function. This function denotes the starting node of a transition
edge.

• end : T → S is a function. This function denotes the ending node of a transition
edge.

• CN is the set in the form of {(c, n) |c ∈ C, n ∈ N} which denotes the last state in-
dex for each component in C. Initial setting is zero indexes for each component.
Also this set is used for each node of the transition graph.

• state : S → CN
⋃
{∅} is a function. This function denotes to each node of the

transition system a set of pairs representing the component state index in it.

Performance Measurement of Software Architectures 813

• trans : T → (A,R, C, C
⋃
{∅}) is a function. This function associates each edge

of the transition graph to some information. This information is the related
action name of an edge (A), the application rate of its action (R), the active
component or the component which fires this action (C), and finally the coop-
erative component in this action or the component which is passive according
to this action (C), it may be empty. How to prepare this information will be
described later while identifying the structural elements.

5.2 Formal Definition of the PEPA Model

A PEPA model is a tuple
PM = (A,C, PE,CS)

where A is the set of action types and C is the set of components.

• PE = {(P, i, j, α, r) | P ∈ C, i, j ∈ N, r ∈ R, α ∈ A} is the set of PEPA prefix
clauses of the model.

• CS = {(c1, c2, A1) | c1, c2inC,A1 ⊆ A, c1 6= c2} holds the cooperation informa-
tion of the components. Each element of this set represents the cooperation of
two components on an action set.

5.3 Encoding the Structural Elements

According to the formal definition of the graph, in this step, the elements of the
C,A and the resulting information of trans function of TS should be calculated.

The elements of C can be extracted from the host graph. The nodes which are
instances of ComponentType in the host graph are the components of the model.
For example, in the host graph of our case study (Figure 4) there are one component
of the PolicyAccessProvider type and one instance of the WebServiceProvider type.

Extracting the elements of A can be done using the transition system. The
generated transition system in GROOVE has some information for the edges as
represented in Figure 9. This information includes the related rule name and the
corresponding node identifiers in the host graph. Accordingly, we can name the
associated activity of this edge to generate the elements of A. The mechanism of
naming is different for each transformation rule.

For example, if the related rule of the edge is callOperation, the sender com-
ponent, the receiver component, the operation name and the duration rate of this
operation can be distinguished using the transition edge information and the host
graph. These can be used for TS edge information (in the form of (A,R, C, C

⋃
{∅}).

For callOperation edges, if the sender of this request is caller comp, receiver
is callee comp, the requested operation is op on the callee comp defined interfaces
and the duration of this action for caller comp is r then the activity name of this
edge which should be added to the set A can be a combination like
caller comp call callee comp op. This combination guarantees the uniqueness of the
actions name in the model.

814 M.R. Naddaf, V. Rafe

Furthermore, the existing edges in the TS need the cooperation between compo-
nents of their related activity. The cooperation in this style is related to some sort
of behavioral mechanisms. These are CallOperation/ ReceiveCall, SendResponse/
ReceiveResponse, Connect and Disconnect. This means that ReceiveCall can be
coordinated with regard to a CallOperation edge, then for ReceiveCall edges the
caller component of CallOperation should be distinguished according to the edge
information, the host graph and the LHS/RHS of the rule.

5.4 Encoding the Behavior of the Model

This step is divided into three sub-steps. In the first step, the prefix and the choice
behavior should be detected, in the second step the cooperation cases should be dis-
tinguished and finally, in the third step the PEPA model clauses should be generated
which can be used in the PEPA toolkit.

It is necessary to point out that different behavior states of a component is
represented through several state numbers in its PEPA model. Also, the nodes in
the transition system denote the behavioral states of the model. Therefore, we have
considered the state indices of each component in the nodes of the transition system.
The initial setting for the nodes is empty and only the first node will have indices
equal to zero for each component as the initial value.

The transformation algorithm saves the current state number of each component
in the CS set. The algorithm uses it for controlling the traversing of the transition
system. Traversing can be done according to DFS or BFS algorithms.

5.4.1 Prefix and Choice Behavior Transformation

For transformation of the transition system to PEPA model, the component set (C)
and the action set (A) are handled in the same way and for generating PE and CS
a set of rules on the transition system should be applied. These rules are described
in the following.

Rule #1: Prefix behavior:

∀t ∈ T,
trans(t) = (α, r, P,Q),

S1 = beg(t) 6= ∅,
S2 = end(t), (P, n) ∈ CN
⇒

PE = PE
⋃

(P, n, n+ 1, α, r)

S2 = S1 + (P, n+ 1)− (P, n)

CN = CN − (P, n) + (P, n+ 1).

Performance Measurement of Software Architectures 815

This rule generates the associated PEPA prefix clause of an edge. Also, it moves
the state information of components from the starting node of the edge to its ending
node. Figure 9 depicts the usage of this rule.

s12 s13 s14

callOperationAction(n54,	 n254,n10,n8,n32,n76,n8-‐previous-‐>n30) receiveCallAction(n85,	 n256,n87,n88,n32,n76,n81-‐previous-‐>n87)

{(P,0),(Q,0)} {(P,1),(Q,0)} {(P,1),(Q,1)}

P0	 =	 (α	 ,r1).P1 Q0	 =	 (α	 ,T).Q1

Q	 <	 α	 >	 P

(α,r1,P,{Q}) (α,r2,Q,{P})

PEPA	 Action	 name:	 α	
Cooperated	 Component:	 Q

Action	 Rate	 :	 r1
Active	 PEPA	 Component:	 P	

PEPA	 Action	 name:	 α	
Cooperated	 Component:	 P

Action	 Rate	 :	 r2
Active	 PEPA	 Component:	 Q	

	
	 	

Figure 9. prefix behavior transformation rule

Rule #2: Cooperation behavior:

∀t ∈ T, trans(t) = (α, r, P,Q 6= ∅),⇒ CS = CS + (P, α,Q).

These rules will generate the PEPA prefix and choice clauses and achieve the co-
ordination set of our model. According to these steps, the PEPA model of our
components will be ready. Now it is time to deal with the cooperation clauses of
our model. These clauses represent the cooperation of components to mimic the
behavior of the system.

5.4.2 Cooperation Behavior Transformation

To achieve the cooperation clauses, a new undirected graph will be assumed (CG):

CG = (V,E, copcls).

This graph has a set of nodes (V) and a set of edges (E). Nodes include the name
of a component from C or some cooperation clauses like ci < A1 > cj where A1 ⊆ A

816 M.R. Naddaf, V. Rafe

and ci, cj ∈ C. The cooperation clause of each node is specified through the copcls
function. This function maps each node to a number of alphabetic strings which
denotes the cooperation clause of the node. The first clause in each node is the
name of a component.

Edges of this graph represent the cooperation between components on some
action types. For example, if there is a cooperation between ci, cj ∈ C on action
type set A1, then an edge exists between two nodes vi and vj such that copcls(vi) = ci
and copcls(vj) = cj and the edge is labeled as A1.

This graph should be constructed applying the following rule on the CS set
which is prepared in the prior sections. According to this rule, for each cooperation
of two components in CS one edge should be established between two components
in CG.

∀cs1 = (c1, c2, α) ∈ CS ⇒
V = V + v2 + v1

copcls(v1) = c1, copcls(v2) = c2

E = E + v1
α→ v2

This graph should be transformed to some disjoined nodes according to the following
rule. Resulting nodes include the cooperation clauses suitable for this system.

∀(v1, v2, A1) ∈ E ∧ v1 6= v2

⇒

V = V − v1 − v2
V = V + v3

copcls(v3) = (v1 < A1 > v2)

∀e =
{
vi

A2↔ vj

}
, (vi = v1 ∨ vi = v2)⇒ E = E − e+

{
v3

A2∪A1↔ vj

}
According to this rule, two related nodes will be merged to one node and the new
node will be replaced by the edges of the two old nodes. The new node will have the
coordination clauses of these two nodes. Figure 10 depicts the application of this
rule.

5.5 PEPA Model Clause Generation

After generating the PEPA model elements, some processing should be done to
prepare the text of the PEPA model. We can use some auxiliary rule to generate
this.

Performance Measurement of Software Architectures 817

c1 c2

c3

c5

c4

α1

α2 α4

α5α3

c1 c2

c3	 <α4> c5

c4

α1

α2

α5

α3

c1 c2

(c3	 <α4> c5)<α5> c4

α1

α2

α3

c1 (((c3	 <α4> c5)<α5> c
4)<α2,α3> c2)

α1

((((c3	 <α4> c5)<α5> c4)<α2,α3> c2)<α1> c1)

1 2

3 4

5 	
	 	

Figure 10. Cooperation clause generation

Rule #1 : Prefix clause extraction

∀pei ∈ PE in PM

pei = (P, n,m, α, r1)

¬∃pej ∈ PE in PM

pej = (P, n, k, β, r2)

⇒
Clause = Clause + “Pn = (α, r1).Pm”

Rule #2 : Choice clause extraction

∀pei ∈ PE in PM

pei = (P, n,mi, αi, ri), i = 1 . . .

⇒
Clause = Clause + “Pn = . . .+ (αi, ri).Pmi

+ . . . ”

Rule #3 : Cooperation clause extraction

∀v ∈ V in CG

Clause = Clause + copcls(v)

818 M.R. Naddaf, V. Rafe

6 PERFORMANCE ANALYSIS

In this section we explain how different non-functional properties can be analyzed
on the generated PEPA model.

Some of the considerable performance parameters for each system are the ef-
ficient number of different components, so the throughput is an important issue.
Also, the designers may be interested to know the effects of some components on
the other components. Furthermore, the designers are interested to know the utiliza-
tion of different component states, the response time of significant system activities,
etc. The result of analysis will help designers to make a better decision before
implementation phase. For example, for our case study it is interesting to know
the throughput of the deliverMMS component since it is an important criterion for
customer satisfaction and shows the performance of the system.

	
	 	

0	
0.002	
0.004	
0.006	
0.008	
0.01	
0.012	
0.014	
0.016	

5	 10	 15	 20	 25	 30	

de
liv
er
M
M
S	
th
ro
ug
hp
ut
	

number	 of	 Customers	

WSProvider=1	

WSProvider=2	

WSProvider=3	

WSProvider=4	

Figure 11. Throughput of the deliverMMS for different numbers of customers and
WSProvider

Figure 11 depicts the throughput of the deliverMMS for different numbers of
clients and WSProvider components. The parameters used in this analysis are shown
in appendix B.

As the figure shows, increasing the number of WSProvider components when
there are a few customers has no effect, while for nearly 30 customers in the system
it has significant effect. Choosing three instances of WSProvider in the system along
with 30 customers, we can conclude that two WSConsumer is enough in the same
way as for WSProvider.

Now with these decisions, we want to do a sensitivity analysis on the checkValid
operation processing time. In other words, we want to know whether a more secure
but slower algorithm for this operation is more suitable or a less secure approach
which is faster. Also, we want to find the proper numbers of PAProviders.

Such effects are measured in Figure 12 where the deliverMMS throughput is
plotted against do checkvalid for different PAProvider pool sizes.

Performance Measurement of Software Architectures 819

	
	 	

0	
0.01	
0.02	
0.03	
0.04	
0.05	
0.06	

0.
01
	

0.
02
	

0.
03
	

0.
04
	

0.
05
	

0.
06
	

0.
07
	

0.
08
	

0.
09
	

0.
1	

0.
11
	

th
ro
ug
hp
ut
	 o
f	 d
el
iv
er
M
M
S	

do_checkValid_rate	 range	

	 PAPrvoider	 =	 3	

	 PAProvider	 =	 2	

PAProvider	 =	 1	

Figure 12. Throughput of the deliverMMS

As shown in Figure 12, by increasing the rate of the check valid operation to
a specific point, the throughput of the deliverMMS will be increased and after that
point there is no considerable improvement. So, we can conclude that the rates
before the slope point are proper choices for check valid operation. For our case
study, as it is shown, having two components is more efficient than having one or
three components.

	
	 	

PAProvider	

PAProvider1	

PAProvier3	

PAProvier5	

Figure 13. Utilization of PAProvider states (two instances)

Utilization of component states that can be derived from PEPA toolkit is also
a metric for finding the suitable number of a component. Figure 13 and Figure 14
depict the utilization of PAProvider component for two and three pool sizes.

Since PAProvider in its first state (named PAProvider) is waiting for request,
zero utilization for an instance of component shows that no request was sent to it.
Then, as Figure 14 shows, using the third instance of PAProvider has no effect in
the overall system performance improvement.

7 CONCLUSION AND EVALUATION

In this paper, we propose an approach to performance analysis of software archi-
tectures specified through GTS styles. To do so, we enrich GTS models with the

820 M.R. Naddaf, V. Rafe

	

PAProvider

PAProvider1

PAProvier3

PAProvier5

Figure 14. Utilization of PAProvider states (three instances)

necessary performance information. Then, we generate the PEPA model from the
enriched GTS model. At the end, we show how different non-functional properties
can be analyzed on the generated performance models.

GTS has a good potential for considering architectural refinement. All efforts
to model and analysis software in the architectural level are not sufficient without
considering refinement with regard to the temporal nature of the architecture. Our
selected notations in this paper have the potential to be refined. Thus, this approach
can be applied to performance modeling of the other levels of the refined architecture.

PEPA which is based on SPA is the performance modeling notation in our
approach. PEPA primitives are very close to the existing concepts in architectural
modeling; and it has some attractive features like compositionality, formality and
abstraction which have been described in the previous sections.

We have proposed an approach which has several applications. GTS architec-
tural model can be analyzed qualitatively through GROOVE and other GTS based
tools for functional properties. The PEPA model of the architecture can be used
for quantitative analysis of some functional properties through PRISM probabilistic
model checker. Finally, performance properties can be evaluated through a PEPA
model in the PEPA toolkit. The result of applying the last case has been described
in the performance analysis section.

The presented approach has also some drawbacks. GTS is not popular and
familiar in software modeling. Its tools are not mature and a big effort is needed to
expand these tools. For example, the host graph of our case study has more than
200 nodes, so managing this host graph was a big grief for us during this research.

State space explosion is an old and familiar obstacle for large models like our
case study. As shown in Table 2, we could not extract the state space for some cases.
Our transformation algorithm is based on state space and then our approach does
not work for some large models, even with diminishing the host graph for having
smaller state spaces.

Using host graph for transforming the architectural model to PEPA model is
a raw idea which can be considered as a future work.

Our transformation algorithm can be developed with a programming language.
In addition, it can be applied with some graph transformation tools like VIATRA [28]
because the source and the target models can be seen as graph and a set of rules

Performance Measurement of Software Architectures 821

can be established for transformation. However, our approach can be faster since
it uses a simple edge traversing algorithm like DFS while VIATRA needs pattern
matching algorithms on a huge state space graph. According to Table 2 applying
rules in a huge state space will not be feasible in many models; but transforming
the two graph models with graph transformation rules would help us to prove the
correctness and completeness of our work.

Case study # Components # Host Graph Nodes # Rules

1. e-Map router 4 218 11
2. 6 222 11
3. 8 230 11

4. Client/server1 2 43 11
5. 3 46 11
6. 4 49 11
7. 5 52 11
8. 6 55 11

State Space Nodes # State space Transitions Time (ms) Memory(KB)

1. 2 573 7 113 6 263 19 979
2. 18 412 64 820 131 123 230 620
3. overflow overflow – –

4. 29 46 133 1 626
5. 234 593 519 2 934
6. 1 775 6 200 2 654 26 041
7. overflow overflow – –
8. overflow overflow – –

Table 2. Exprimental Results

To prove the correctness of our approach, we have used a case study as a bench-
mark which is used in the PEPA tutorial [6] and we got the same performance
analysis results.

The GTS style used in our approach does not support the modeling mechanisms
like loop, resource handling, switch, etc. explicitly; but in our idea, stochastic nature
of performance modeling language offers us these facilities implicitly. For example,
looping of an action for an indefinite time can be seen as a new action with a suitable
duration rate which simulates the probability of executing the first action in the loop.
Thus for performance prediction in these cases, this pattern seems to be adequate
and this solution can be used for other mechanisms.

Acknowledgment

We would like to thank Prof. Jane Hillston (currently at the Edinburgh University),
for her supports in this research especially in the utilization of PEPA and its toolkit.

822 M.R. Naddaf, V. Rafe

REFERENCES

[1] Taylor, R. N.—Medvidovic, N.—Dashofy, E. M.: Software Architecture:
Foundations, Theory, and Practice. John Wiley 2008.

[2] Baresi, L.—Heckel, R.—Thöne, S.—Varró, D.: Style-Based Modeling and
Refinement of Service-Oriented Architectures. Software and Systems Modeling, Vol. 5,
2006, No. 2, pp. 187–207.

[3] Thöne, S.: Dynamic Software Architectures: A Style-Based Modeling and Refine-
ment Technique with Graph Transformations. Ph. D. thesis, Faculty of Computer
Science, Electrical Engineering, and Mathematics, University of Paderborn 2005.

[4] Hillston, J.: Tuning Systems: From Composition to Performance. The Computer
Journal, Vol. 48, 2005, No. 4, pp. 385–400.

[5] Hillston, J.: A Compositional Approach to Performance Modelling. Ph. D. thesis,
Department of Computer Science, University of Edinburgh CST-107-94, April 1994.

[6] Clark, A.—Gilmore, S.—Hillston, J.—Tribastone, M.: Stochastic Process
Algebras. In Proc. of the 7th International Conference on Formal Methods for Per-
formance Evaluation, 2007, pp. 132–179.

[7] Fritzsche, M.—Picht, M.—Gilani, W.—Spence, I.—Brown, J.—Kil-
patrick, P.: Extending BPM Environments of Your Choice with Performance Re-
lated Decision Support. BPM 2009, pp. 97–112.

[8] Fritzsche, M.—Gilani, W.: Model Transformation Chains and Model Manage-
ment for End-to-End Performance Decision Support. GTTSE 2009, pp. 345–363.

[9] Pooley, R.: Using UML to Derive Stochastic Process Algebra Models. Private
communication, in Proceedings of the 15th UK Performance Engineering Workshop,
1999, pp. 23–33.

[10] Mitton, P.—Holton, R.: PEPA Performability Modeling Using UML State-
charts. Proceedings of the 16th Annual UK Performance EngineeringWorkshop 2000,
pp. 19–33.

[11] Petriu, D. C.—Shen, H.: Applying the UML Performance Profile: Graph
Grammar-Based Derivation of LQN Models from UML Specifications. In Proceed-
ings of the Computer Performance Evaluation/TOOLS, 2002, pp. 159–177.

[12] Balsamo, S.—Marzolla, M.: Performance Evaluation of UML Software Archi-
tectures with Multiclass Queuing Network Models. In: Proc. of the 5th International
Workshop on Software and Performance (WOSP 2005), ACM Press 2005, pp. 37–42.

[13] D’Ambrogio, A.: A Model Transformation Framework for the Automated Building
of Performance Models from UML Models. In Proc. of 5th International Workshop
on Software and Performance (WOSP ’05), New York, NY, USA 2005, pp. 75–86.

[14] Canevet, C.—Gilmore, S.—Hillston, J.—Prowse, M.—Stevens, P.: Per-
formance Modeling with UML and Stochastic Process Algebras. IEE Proceedings:
Computers and Digital Techniques, Vol. 150, 2003, No. 2, pp. 107–120.

[15] Merseguer, J.—Campos, J.: Software Performance Modeling Using UML and
Petri Nets. LNCS, Vol. 2965, Springer 2004, pp. 265–289.

[16] Spitznagel, B.—Garlan, D.: Architecture-Based Performance Analysis. In Proc.
of the Software Engineering and Knowledge Engineering (SEKE ’98), 1998.

Performance Measurement of Software Architectures 823

[17] Garlan, D.—Allen, A.—Ockerbloom, J.: Exploiting Style in Architectural
Design Environments. Proceedings of SIGSOFT ’94 Symposium on the Foundations
of Software Engineering, December 1994.

[18] Holanda, H. J. A.—Barroso,G. C.—Serra, A. B.: SOASPE: A Framework for
the Performance Analysis of Service Oriented Software. SBSI, 2009, pp. 204–215.

[19] Grassi, V.—Mirandola, R.—Sabetta, A.: Filling the Gap between Design and
Performance/Reliability Models of Component-Based Systems: A Model-Driven Ap-
proach. Journal of Systems and Software, Vol. 80, 2007, No. 4, pp. 528–558.

[20] Becker, S.—Koziolek, H.—Reussner, R.: Model-Based Performance Predic-
tion with the Palladio Component Model. In Proc. of 6th International Workshop on
Software and Performance (WOSP ’07), 2007, pp. 56–67.

[21] Heckel, R.—Lajios, G.—Menge, S.: Stochastic Graph Transformation. In Proc.
of the Second International Conference on Graph Transformation, Springer 2004.

[22] Heckel, R.: Stochastic Analysis of Graph Transformation Systems: A Case Study
in P2P Networks. In Proc. of ICTAC ’05, LNCS, Vol. 3722, Springer 2005, pp. 53–69.

[23] Rensink, A.: The GROOVE Simulator: A Tool for State Space Generation. In Proc.
of AGTIVE03, LNCS, Vol. 3062, Springer 2004.

[24] Kwiatkowska, M.—Norman, G.—Parker, D.: PRISM: Probabilistic Symbolic
Model Checker. In Proc. of TOOLS ’02, LNCS, Vol. 2324, Springer 2002, pp. 200–204.

[25] Torrini, P.—Heckel, R.—, Ráth, I.: Stochastic Simulation of Graph Transfor-
mation Systems. In FASE 10, 2010, pp. 154–157.

[26] Gönczy, L.—Kovács, M.—Varró, D.: Modeling and Verification of Reliable
Messaging by Graph Transformation Systems. In: Proc. of theWorkshop on Graph
Transformation for Verification and Concurrency, Elsevier 2006.

[27] Gönczy, L.—Déri, Z.—Varró, D.: Model Transformations for Performability
Analysis of Service Configurations. Springer-Verlag 2009, pp. 153–166.

[28] Varró, D.—Balogh, A.: The Model Transformation Language of the VIATRA2
Framework. Science of Computer Programming 2007, Vol. 68, No. 3, pp. 214–234.

[29] Rafe, V.—Rahmani, A. T.—Baresi, L.—Spoletini, P.: Towards Automated
Verification of Layered Graph Transformation Specifications. IET Software 2009,
Vol. 3, No. 4, pp. 276–291.

[30] Schmidt, A.—Varró, D.: CheckVML: A Tool for Model Checking Visual Modeling
Languages. In Proc. of UML 2003, LNCS, Vol. 2863, Springer 2003, pp. 92–95.

[31] Baldan, P.—Corradini, A.—König, B.: Verifying Finite-State Graph Gram-
mars: An Unfolding-Based Approach. In Proc. of CONCUR04, LNCS, Vol. 3170,
2004, pp. 83–98.

[32] Baresi, L.—Rafe, V.—Rahmani, A. T.—Spoletini, P.: An Efficient Solution
for Model Checking Graph Transformation Systems. Electronic Notes in Theoretical
Computer Science (ENTCS), Vol. 213, Elsevier Science B. V. 2008, pp. 3–21.

[33] Smith, C. U.: Performance Engineering of Software Systems. Addison-Wesley 1990.

[34] Balsamo, S.—Marco, A. D.—Inverardi, P.—Simeoni, M.: Model-Based Per-
formance Prediction in Software Development: A Survey. IEEE Transactions on Soft-
ware Engineering, Vol. 30, 2004, pp. 295–310.

824 M.R. Naddaf, V. Rafe

[35] Baresi, L.—Heckel, R.: Tutorial Introduction to Graph Transformation: A Soft-
ware Engineering Perspective. In Proc. of the ICGT 2002, Springer 2002, pp. 402–429.

[36] Ehrig, H.—Ehrig, K.—Prange, U.—Taentzer, G.: Fundamentals of Algebraic
Graph Transformation (Monographs in Theoretical Computer Science – An EATCS
Series). Springer 2006.

8 APPENDICES

8.1 Appendix A (The generated PEPA code for our case study)

sendSMS rate = 0.0010;
startSession rate = 0.5;
endSession rate = 0.5;
startSession resp rate = 1 000 001;//rapid
notify rate = 0.1;
getLocation rate = 0.1;
do checkValid rate = 0.1;
checkValid resp rate = 100 000;
checkValid rate = 100 000; // intermediate operations should be very fast
deliver404 rate = 100 000;
getLocation resp rate = 99.0 ∗ 100 000;
createMap rate = 0.05;
sendMMS rate = 0.2;
deliverMMS rate = 0.02;
Client = (sendSMS,sendSMS rate).Client1;
Client1 = (deliver404, infty).Client + (deliverMMS, infty).Client;
WSProvider = (sendSMS,infty).WSProvider1;
WSProvider1 = (startSession,startSession rate).WSProvider2;
WSProvider2 = (startSession resp, infty).WSProvider3;
WSProvider3 = (notify, notify rate).WSProvider4;
WSProvider4 = (getLocation,infty).WSProvider5;
WSProvider5 = (checkValid,checkValid rate).WSProvider6;
WSProvider6 = (checkValid resp,infty).WSProvider7;
WSProvider7 = (deliver404,deliver404 rate).WSProvider12

+ (getLocation resp,getLocation resp rate).WSProvider10;
WSProvider10 = (sendMMS,infty).WSProvider11;
WSProvider11 = (deliverMMS,deliverMMS rate).WSProvider12;
WSProvider12 = (endSession,endSession rate).WSProvider;
PAProvider = (startSession,infty).PAProvider1 + (checkValid,infty).PAProvider3

+ (endSession,infty).PAProvider;
PAProvider1 = (startSession resp,startSession resp rate).PAProvider;
PAProvider3 = (do checkValid,do checkValid rate).PAProvider5;
PAProvider5 = (checkValid resp,checkValid resp rate).PAProvider;
WSConsumer = (notify,infty).WSConsumer1;

Performance Measurement of Software Architectures 825

WSConsumer1 = (getLocation,getLocation rate).WSConsumer2;
WSConsumer2 = (getLocation resp, infty).WSConsumer3

+ (deliver404,infty).WSConsumer;
WSConsumer3 = (do generateMap, createMap rate).WSConsumer4;
WSConsumer4 = (sendMMS,sendMMS rate).WSConsumer;
Client[30] 〈sendSMS, deliverMMS, deliver404〉 WSProvider[2]
〈startSession, startSession resp, endSession, checkValid, checkValid resp〉
PAProvider[2] 〈deliver404,notify,getLocation,getLocation resp,sendMMS〉
WSConsumer[2]

8.2 Appendix B (Parameters used for the performance analysis
of the case study)

parameter value description
sendSMS rate 0.001 rate at which customers request service
startSession rate 0.5 rate at which a session can be started
endSession rate 0.5 rate at which EndSession can be done
startSession resp rate 1 000 000 rate at which startSession response can

be sent. a big value shows negligible ef-
fect of this operation in system

notify rate 0.1 notification exchange between client and
provider

do checkValid rate 0.05 rate at which checkValid is done in PA-
Provider

checkValid resp rate 10 000 rate of checkValid response sending
checkValid rate 10 000 rate of checkValid request preparing and

sending
deliver404 rate 100 000 rate at which WSProvider acts when

checkValid response is false
getLocation resp rate 99.0 ∗ 100 000 rate at which WSProvider acts when

checkValid response is true, in this case
map should be generated. The rate of
this case is 99 times more than false re-
sponse for checkValid

createMap rate 0.05 rate at which map is created
sendMMS rate 0.2 rate at which MMS messages can be sent

via the Web Service
deliverMMS rate 0.02 rate at which MMS messages can be sent

from provider to customer

826 M.R. Naddaf, V. Rafe

Mahdi Rahimi Naddaf received his B. Sc. from Sharif Uni-
versity and his M. Sc. from Arak University, both in software en-
gineering. His research interests include software methodology,
software architecture, software security and formal methods. He
works in AFAGH software company as a project architect and
manager.

Vahid Rafe received his B. Sc., M. Sc. and Ph. D. in software
engineering from Iran University of Science and Technology. He
was also visiting researcher at Politechnico di Milano (Italy).
He is currently an Assistant Professor at Arak University. His
research interests include formal specification and verification
of software systems, model transformation and refinement and
software architectures.

