
Computing and Informatics, Vol. 32, 2013, 859–876

THE ENHANCEMENT OF A COMPUTER SYSTEM
FOR SORTING CAPABILITIES USING FPGA CUSTOM
ARCHITECTURE

Pawe l Russek, Kazimierz Wiatr

AGH University of Science and Technology
Department of Electronics
Mickiewicza 30
30-059 Cracow, POLAND
&
ACC Cyfronet AGH
Nawojka 11
30-950 Cracow, POLAND

e-mail: {russek, wiatr}@agh.edu.pl

Abstract. The primary goal of the presented experiment was to judge the useful-
ness of FPGA technology in the sorting operation performed by computer systems.
We were interested to see if it was possible to achieve better system performance
and lower energy consumption when the CPU is supported by FPGA chips. The
method of custom processing was applied. We proposed dedicated sorting hardware
to increase performance and save energy. Our concept addresses High Throughput
Computing (HTC) systems. The custom hardware approach was proposed because
this technique is available in supercomputing infrastructures today. Another im-
portant issue of the work is that the hardware was programmed using High Level
Language (HLL). As a semiconductor platform for hardware implementation the
FPGA was chosen. We evaluated the efficiency of an FPGA based sorting proces-
sor that was programmed in Mitrion-C HLL. The FPGA approach was compared
to the CPU approach in terms of efficiency and power consumption.

Keywords: Custom computing processors, data sorting, reconfigurable systems

860 P. Russek, K. Wiatr

1 INTRODUCTION

Typically, data sorting is not considered a problem that is suitable for hardware
acceleration. Along with other data mining algorithms which are rather bandwidth-
intensive than computationally-intensive, a sort operation is not recognized as a pro-
blem which requires a dedicated processor. Opinions presented in the literature
state that custom processors can offer substantial acceleration only for computa-
tionally-exhaustive algorithms. It is also well known that computer architecture
that is efficient for sorting must offer efficient data transfer between different le-
vels of memory hierarchy. It is recognized that for a sorting computer system,
high computation power has no significant influence on the overall system perfor-
mance. The computational complexity of the sorting is rather small (O(n log n)).
The algorithms that are successfully executed by dedicated processors should be
complex such as matrix-multiplication (O(n3)) for example. The above arguments
indicate that fast data transfer is more essential than computing power for the
sorting systems’ efficiency and that considering hardware acceleration is point-
less.

Despite that, in this paper we would like to focus on a problem of processing
element efficiency. We want to compare the common CPU approach to a novel
FPGA solution. Presumably, the presented results might lead to an idea of building
a multi-FPGA system in the future. In such a system a part of the CPUs could
be replaced by FPGA chips to get better performance and efficiency. Here, in this
paper, we compared the CPU approach to the FPGA method. We judged and
emphasized the advantages of the FPGA based computational method.

In our opinion, the efficient computational element dedicated to sorting is im-
portant if today’s available transfer bandwidth is taken into consideration. A lack
of computational power can affect the overall sorting performance of a computer
system. As an example, let us consider the data throughput rate of T = 6 Gbit/s
which is available even on home PCs as a new generation of the SATA bus emerged
today. For such bandwidths, if we assume eight bytes of data for a single database
record, it is possible to transfer W ≈ 100 M records of data per second. To sort
this quantity of records it is necessary to perform more than W ∗ lgW = 2.6 G
‘compare and swap’ operations per second. This requires a substantial computa-
tional effort, which is significant even for the fastest processors today. Accord-
ing to our experiments, the state-of-the-art CPUs can perform ca. 500 million of
‘compare and swap’ operations per second which applies to data that is stored in
a processor’s cache memory. It is worth mentioning that for professional storage
systems used in data and computing centers even T = 6 GBytes/s are available
today.

Custom designed processors offer an advantage of instruction level parallelism.
Both pipelining and consecutive execution are inferred. As only the necessary func-
tional elements are implemented we can gain better performance for the equiva-
lent silicon area. This also means that it is possible to have more computational
power for the same system cost. The method reduces system flexibility as sepa-

The Enhancement of a Computer System . . . 861

rate semiconductor devices must be used for different tasks but this problem can
be inhibited if reconfigurable hardware such as the FPGA is incorporated. Re-
cently, reconfigurable logic devices (such as FPGAs) have become one of the avail-
able platforms for High Performance Computing (HPC). The technique of their
utilization is usually referred to as High Performance Reconfigurable Computing
(HPRC).

The dedicated processors are also regarded as more energy efficient than CPUs.
A well known silicon device power formula is P = CV 2f , where C is constant for the
certain semiconductor technology, V is power supply voltage, f is a clock frequency.
For the FPGA, the clock frequencies are typically 10 times lower than the clock
frequencies of the CPUs. This explains why custom FPGA solutions are regarded
as green computing architectures that consume less energy. This issue has currently
become very important. It was published in [20] that a typical Google Web search
request which is sent from a desktop computer to Google’s servers, generates about
seven grams of carbon dioxide. This makes two searches comparable to bringing a tea
kettle to boil. The sorting operation is essential for every database engine so despite
the correctness of the above claim, green computing is undoubtedly a forthcoming
challenge.

When the programming of reconfigurable hardware is discussed, one of the
most important limitations that should be considered is the design effort. Usu-
ally, the hardware design is much more time consuming and complex than the
designing of software. This generates additional costs of the solution. This ex-
pense must be compensated for by a decent speed-up rate that can be gained. This
is the reason why acceleration methods that involve hardware customization are
often rejected. This holds particularly when no substantial speed-up is noticed.
Usually, designers regard speed-up values that are satisfactory to be 10 times or
more.

The effort of hardware design can be reduced in various ways. One of the
methods is utilization of High Level Languages (HLL). Although this method usually
causes performance reduction, it can be treated as a first approach that allows to
get early results very fast. If the results are promising, the very next stage can
be redesigning of the architecture using Register Transfer Level (RTL) description.
This allows to gain maximum performance.

The outline of this paper is as follows. In Section 2 we present hardware im-
plementations of the sorting algorithms that we found in the literature. In this
section we also give arguments to choose a certain methodology and describe how
the problem was approached. In Section 3 we introduce the reconfigurable platform
that was used in our experiment. In Section 4 we explain the theoretical concept
of the implemented architecture. In Section 5 we explain the software application
used for the sake of comparison with the hardware. In Section 6 we give the imple-
mentation results in terms of hardware resources and the performance of hardware
and software solutions. We also provide some energy consumption considerations
there. In Section 7 we summarize our work and give some perspectives for further
research.

862 P. Russek, K. Wiatr

2 THE GOAL OF THE EXPERIMENT

Most of the solutions that are presented in literature with regard to procesors de-
dicated for sorting are solutions for embedded systems. For example, a serial sorter
chip is presented in [2]. It shows a very interesting, cost effective idea which is
limited in practice to the input data of a moderate size. In this solution all sorted
elements must fit in the sorter registers. The sorter is serially fed with data which are
consequently shifted toward the sorter output. During their way through the sorter
registers, elements are serially compared to one another. Although the solution
is very simple and economical it is rather more suitable for embedded systems and
cannot be considered for high performance architecture. The sorter was implemented
in 2µm CMOS semiconductor technology.

Similar to the previous is the [3] work. It proposes a chip of the continuous sort.
It consists of serially connected sorting elements. Each sorting element is coupled
with a register to store single list elements. It performs a compare operation of
stored and newly arriving elements and passes the smallest one to the next sorting
element. The length of the sorted list is limited by the number of sorting elements in
a queue. This number was 450 for the presented VLSI implementation. The sorter
throughput is 50 MWords/s. Each data record consisted of 24 bits of key and 48 bits
of data.

In [4] an efficient, parallel sorting architecture, denoted as MM-SORT (min-max
sort) is regarded. The proposed architecture took advantages of a sorting network
and distributed processors coupled with local memory. In this solution a small
sorting network can be used iteratively to sort a large number of elements. The
major upside of the idea is that it can be executed in pipeline if some conditions are
fulfilled. There is no need to wait for the results of the previous iteration to start
the next one. A large size distributed memory is necessary in this solution. This
holds because the complete input data set must fit simultaneously into the sorting
processor’s memory. The authors did not implement their proposal in practice so
no results are known.

Both a merge sorting and Batcher’s sorting network are discussed in [5]. In this
method a list of elements is first partitioned into shorter lists. Batcher’s network is
used to sort those lists. Short lists are then merged into a final list by the merge
sorting. This solution does not have high performance characteristics as the merge
sorting is performed sequentially for elements which are stored in local memory.

In [6], the Burrows-Weeler transform for data compression is considered. In the
work enhanced wavesorter architecture is proposed. It is a parallel processing module
suitable for sorting of relatively short sequences (100 elements as mentioned in the
paper). To exploit its efficiency, a wide parallel input port is required. This limits
the usage of the architecture as a processor for HTC because it requires excessive
bandwidth to saturate performance.

In [7] different sort architectures for embedded systems are discussed. Three
different architectures are evaluated. All presented solutions are intended for the
FPGAs. They are implementations of: Batcher’s sorting network, insertion sorting

The Enhancement of a Computer System . . . 863

and merge sorting. Merge sorting combined with insertion sorting was found to be
the fastest one. Depending on the number of elements, the speed-ups between 1.5
and 16 that were achieved in comparison to the quick sorting algorithm that was
running in software.

Beside embedded designs, high performance solutions can also be found in the
literature. The FPGA implementation is described in [8]. The distinction of this
solution is that it was designed for real time video application. The performance of
the solution was the key factor. The disadvantage of this proposal was the lack of
universality. A Counting-Sort algorithm was implemented so the input data set had
to fulfill certain conditions. The solution was capable of sorting 128 keys in a shorter
time than 1µ s. It outperformed other VLSI solutions. However, no comparisons to
the CPU-based solutions were presented.

A hybrid hardware/software solution of a sorter is considered in [9]. It uses
merge sorting for its sequential (software) phase, and Parhami’s and Kwai’s [10]
systolic insertion sort for the parallel (hardware) phase. It is contrary to the solution
presented in our paper where Merge-Sort is performed in hardware.

The solution presented here is intended for HTC problems. The primary goal
is to achieve the maximum throughput of the system. It can be used for the acce-
leration of database engines for instance. The issues and challenges related to data
storage strategies that arise today are discussed in [11]. The feasibility of an FPGA
approach was studied in [12]. Bandi et al. explained and presented the mechanisms
of hardware acceleration of database queries.

A study of the above presented literature leads to the conclusion that hard-
ware acceleration of sorting has its limitations. It is applicable rather for embedded
systems where system performance per cost is the most important constraint. Solu-
tions that are incorporated for embedded systems do not fit HTC needs. If we focus
on the performance of a solution, algorithms of smaller numerical complexity, i.e.
Heap-Sort and Quick-Sort, must be rejected as sequential in nature. No instruction
level parallelism could be exploited in the structure of a hardware processor.

Quick-Sort and Heap-Sort can be executed much faster by the CPUs than by the
FPGA custom processors. However, we recognized Bubble-Sort, Bucket-Sort and
Merge-Sort as algorithms which offer some advantages for parallelism. As pipelining
is the strongest feature of hardware acceleration we further investigated the algo-
rithms for adequate features. Finally we recognized the best potential was in the
Merge-Sort algorithm and we decided to focus our interest on it.

The Merge-Sort algorithm is simple and easy to parallelise. Its computational
complexity is the same as that of the Quick-Sort and Heap-Sort algorithms. The
Merge-Sort algorithm is widely used in practice to build highest performance sort
engines. When it comes to practical software implementation, Merge-Sort can out-
perform other algorithms due to its consecutive data access. The Merge-Sort algo-
rithm starts with unsorted data but it can operate also with already sorted lists.
For best performance, it must be combined with other algorithms. As a result, the
fastest sort solutions combine Quick-Sort or Heap-Sort algorithms with a Merge-
Sort algorithm [13]. In general, the sorting scheme is as follows: first short lists

864 P. Russek, K. Wiatr

are sorted by a Quick-Sort or Heap-Sort algorithm and then they are merged by
a Merge-Sort.

The idea developed here is to use the CPU to sort lists whose size fits into the
processor cache and then finish sorting by Merge-Sort performed in the dedicated
hardware. A Merge-Sort processor can be used to speed-up intensive merge sort-
ing operations in any software application. This idea has a proper background in
the cited references [13]. They prove that the best results were achieved by hy-
brid solutions. We will compare that of Merge-Sort implemented in FPGAs with
that of a Merge-Sort application. If the hardware implementation of Merge-Sort
is faster than the software one then the overall system performance of the hybrid
hardware/software solution will be better than the performance of the solely software
solution.

In our experiment, we first designed and then optimized the processor archi-
tecture suitable for merge sorting. Thus, two different sorting architectures are
presented and explained. The first one takes advantages of flip-flop registers as
storage elements. The second one uses RAM memory to store intermediate data.
Both were compared in terms of performance and resources utilization. As it was
primarily an experiment in the area of the FPGA based data mining, we leveraged
designing process by utilization of Mitrion-C [14] as a design entry tool. We accepted
a moderate loss of hardware performance as a cost of lower designing complexity.
Thanks to that we were able to evaluate our sorting processor idea faster. The ar-
chitecture was run on an FPGA based reconfigurable hardware platform SGI RASC
RC100 [15]. The RASC is a reconfigurable computing platform which comes with
SMP servers of the SGI’s Altix 4 700 family. Finally, we compared the performance
of an FPGA solution with the speed of an algorithm that runs on the CPU.

It should be noted that the performance comparison was done with the Itanium2
1.5 GHz Intel processor. There are of course many more advanced CPUs available
at present. However, the CPU referred to was manufactured in the same 90 nm
technology as used and deployed in the Xilinx’s Virtex4 FPGA. As semiconductor
technology is developing very quickly, and new processors are available in a short
period of time, the only way to conduct trustworthy comparisons is to compare the
FPGAs and the CPUs of respective semiconductor technology. This was done to
maximize the accuracy of our experiment.

3 RECONFIGURABLE COMPUTING PLATFORM

The most important issue when the hardware acceleration platform is considered is
the fast and efficient data transfer between the system memory and the hardware
accelerator or the hardware accelerator cache memory (depends on architecture).

In a PC based reconfigurable computing systems the FPGA accelerators were
attached to the computer through peripheral bus like PCI or PCI-X bus for instance.
Such a solution has limitations which keep down good acceleration results. In such
a case, the processor disposes of a very fast local system bus with instant access

The Enhancement of a Computer System . . . 865

to the system memory, unlike the reconfigurable accelerator that has slow memory
access. Thus, hardware acceleration is not so attractive because the data transfer
time from the system memory must be added to the hardware processing time.
Even if the CPU itself performs slower than the FPGA it can be recognized as
a better solution because of the quick data transfer. In computationally intensive
applications the FPGA must be tightly integrated with the rest of the computing
system.

There is another approach implemented in the HPC systems where the FPGA is
treated as an integral rather than peripheral system component. It is linked directly
to a processor’s resources through high-speed connections and so overcomes the
biggest bottleneck of the FPGA co-processing. To provide maximum performance,
an FPGA co-processor has the same memory access capabilities as the CPU. For
example, in a Cray XD1 reconfigurable system, the FPGA is integrated with the
processor system bus. Respectively, the SGI Corp. proposed an adequate solution in
its Altix family systems. It has already proved its usability in HPC applications [16].
Altix is a family of SGI’s SMP (Symmetric Multi Processing) solutions. It is based
on the Itanium2 1.5 GHz processor. Its distinguishing feature is that each processor
has both fast access to its local memory and slower access to local memories of the
other processors. The Inter-processor data is achieved by a relatively fast bus –
NUMALink. The NUMALink interconnect is a hierarchical system bus. It allows
global addressing and scalability of the SMP system. The maximum NUMALink
data transfer is 6,4 GB/s. The integral component of the Altix system can be the
Reconfigurable Application Specific Computing (RASC) module. It enables users
to develop application specific hardware using reconfigurable logic elements. The
SGI RASC is tightly integrated with NUMALink. From the hardware perspective
the FPGA is no longer in the co-processor mode in this model. The NUMALink
allows the FPGA to access the global shared memory and there is no need to load
and unload data. The RASC is coupled with two Virtex4LX200 FPGA chips [17].
Each one offers 200 k of reconfigurable logic cells. Additionally there are two blocks
of 40 MB QDR RAM memory. This memory acts like a second level cache for the
FPGA. The first level cache is implemented inside the Virtex4LX200 structure and
is called BlockRAM. The bidirectional data interface implemented for the FPGA
has 128-bit width and is timed with a clock frequency of 200 MHz.

4 SORTER ARCHITECTURE

The term ‘architecture’ seems to be opposite to what was stated in the previous
section that the HLL was used to create the design. Typically, in a HLL design flow
a device is created according to a so called high level behavioral description. This
usually means that instead of a structural hardware description, i.e. ‘architecture’,
a behavioral source code is used. On the other hand, the intended hardware behavior
always has its corresponding hardware structure. If a programmer understands
the philosophy of the HLL tool used then s/he can predict what hardware will

866 P. Russek, K. Wiatr

be inferred as a result of certain HLL behavioral statements. This means that
programming of architecture using HLL is also possible. Additionally, we believe
that for better results, a designer should be aware of the final hardware structure.
This should be kept in mind during behavioral programming. It is different in
software programming. Even if the HLL languages and software languages have
similar or the same syntax. Unfortunately, software and hardware programming
have nothing in common. Despite the fact that the Mitrion-C leverages design
process by handling many design aspects it cannot create the hardware itself. First
the architecture should be devised and then it can be described using the Mitrion-C
syntax. Here we present the intended architecture that was programmed later in
the HLL. We will present diagrams of the architecture to make the description more
comprehensive. Contrary to the architecture block diagrams, the HLL’s source codes
are not provided in this paper. If it is required the reader can obtain them from the
web site [18].

4.1 A Sort Tree

The basic outline of the presented architecture is a binary tree, called the sort tree
in this paper. The tree is presented in Figure 1. It consists of storage and control
elements. The functionality of the control element is presented in Figure 2. It
is a kind of comparator/multiplexer device. It compares data on DATA.IN.LEFT
and DATA.IN.RIGHT input ports and feeds the smaller value to the DATA.OUT
output.

There are also LEFT.GT.RIGHT and NOT LEFT.GT.RIGHT control outputs.
They pass the results of the comparisons from the root of the tree to the leaves and
this activates the left or right path above the particular node. The DATA.OUT
is latched by an output storage element when ENABLE signal is active. At each
moment only one of the paths from the root to the top leaves is active. The stored
data records are shifted down the tree along a selected active path.

Fig. 1. The basic structure of the sort tree

The Enhancement of a Computer System . . . 867

Fig. 2. The control element of the sort tree

An example of the Sort-Merge system is presented on Figure 3. In addition to
the sort tree, two memory banks are necessary. The input memory bank stores lists
that are to be merged. In the case of an eight fold merging system the ‘list 0’ is
always loaded to R8, ‘list 1’ to R9 and so forth. The lists are emptied according to
the index of the storage element which is active at the moment. For example, if R8
is shifted the next data from ‘list 0’ is read from the main memory and fed into R7.
Data from R1 are stored in consecutive locations of the output memory. The last
element of each input list is INFINITE symbol to avoid a list underflow.

Fig. 3. The sort tree composed of eight elements

868 P. Russek, K. Wiatr

4.2 The Sort Tree Implementations

Two different versions of the sort tree were implemented. They differ in the type of
FPGA resources that were used to implement storage elements. In the first version of
implementation, flip-flop registers were used to store data. This directly implements
the introduced sort tree concept. In the second version, data records were stored
in the FPGA internal memory blocks called BRAMs (Block RAMs). The second
version requires some additional control logic as the generation of the RAM address
is necessary. Later in this paper the corresponding versions are called register (reg)
and BlockRAM (mem).

As the register version is a direct implementation of the sort tree, no additional
explanation of this architecture is necessary. Now, the BlockRAM version will be
examined closer. The concept of this architecture was to spare flip-flop resources
of the FPGA and utilize the BlockRAMs (BRAMs for short). The usage of the
BRAMs are recommended when the implementation of extended memory elements
are necessary in the FPGA. Although it is a little bit cumbersome to employ the
memory blocks in Mitrion-C, we were able to implement the BRAM version of our
architecture.

The architecture concept is presented in Figure 4. It is an eight-fold version of
Merge-Sorter. Sorted elements are kept in corresponding memory cells. The storage
elements that are located at the same level of the sorting tree share the same memory
block. There is also a distinction for left and right child storage elements. They
are separated in the different memory blocks. Consequently, it is possible to achieve
simultaneous access to both children for the particular tree node. The addresses of
the appropriate elements in each memory block (i.e. activation of the proper memory
elements on each level of the tree) are generated according to the comparison results
from the lower parts of the tree. This is similar to the register based version despite
the fact that the values must be read from the memory. From a single node point of
view, the elements of smaller value are read from the memory of the higher level and
then it is written to the memory of the lower level. The highest level memory blocks
are endowed by lists’ elements stored in the RASC main memory. This top/down
transfer is performed at each algorithm step.

The advantage of the BRAM based architecture is that it consumes signifi-
cantly less of the FPGA resources. This usually enhances better performance of the
solution e.g. increasing the number of parallel modules. On the other hand, the ad-
ditional control logic is more complicated which can be a performance degradation
factor.

As an HLL was used, the design process was not very time consuming. The
design time is a very important factor when a practical solution is considered. In
our case by employing the Mitrion-C it was possible to achieve a very short design
time. It took approximately 32 hours of designer’s time to code and simulate the
architecture in an HLL. In addition, approximately 6 hours of computer work was
necessary to synthesize and place & route automatically each single implementation.
The reported design time refers to the first architecture of the particular version. The

The Enhancement of a Computer System . . . 869

Fig. 4. The Block RAM version of the sorting tree

next implementations that differ only in generic parameters were gained instantly
after additional synthesis and the place & route process.

The sorted lists consist of elements treated as records. The single record has
a KEY field and a DATA field. Records are sorted according to the KEY field
values. Because of the data width of the external memory offered by the RASC, the
implemented record size is 128 bits. The size of the KEY and DATA varies, but the
total size of the KEY and the DATA must be 128 bits.

The main generic parameters of the design that are used in the Mitrion-C source
code are as follows:

NUM.OF.STR parameter which determines number of lists to be sorted,

SEGMENT.LEN parameter that determines the number of records in a list,

ELEM.TOTAL is a total number of all elements,

TYPE.KEY parameter that defines the bit size of the KEY part of a record,

TYPE.DATA parameter which defines the bit size of the DATA part of a record.

870 P. Russek, K. Wiatr

5 SOFTWARE APPLICATION

To compare performances of hardware and software solutions, two applications were
written. The first took advantage of the sort tree hardware. The second was a pure
software solution. In both cases the goal was to sort records stored in the form
of lists in the dynamically allocated memory. The total size of the data set was
16 MBytes. The result was written to another dynamically allocated memory.

In the case of the hardware based solution, the allocated memory data was sent
to the input memory bank of the RASC platform. Then, the hardware algorithm
was launched. After the algorithm completion, the results were read from the output
memory of the RASC.

For the purpose of performance comparison, the Merge-Sort application was
developed. A pseudo code for the executed algorithm is presented in listing 1.

Algorithm 1 Sort NUM.OF.STR lists (L) using Merge-Sort algorithm. Store
result into M . M ←MergeSort(L[NUM-OF-STR])

Lists⇐ L
Nbr ⇐ NBR.OF.STR
Len← SEGMENT.LEN
Total← ELEM.TOTAL
{Allocate memory for data structures}
Allocate Heap[N] {for heap}
Allocate Index[N] {for heap’s index}
Allocate Result[Total] {for sorted data}
{Create new list from the first elements of the lists. Create index}
for i = 1 to Nbr do
Heap[i]← L[N][0]

end for
Heap← Build-Heap(Heap)
Index← CreateIndexForHeap(First,Heap)
{Iterate all elements in the lists}
for t = 1 to Total do
Result[t]← Heap[0];
index = Index[0]
Heap[0]←next element from L[index]
Heap← Heapify(Heap)) {Restore heap property in Heap}
Heap← UpdateIndex(Index) {Update Index}

end for
M ← Result

The software algorithm starts with data structures allocation. The memory for
Heap, Index and Result is reserved. Then, the Heap of the first elements of the lists
is created along with the Index to identify the lists that correspond to the particular
Heap element. The Heap is created according to the Build-Heap algorithm described

The Enhancement of a Computer System . . . 871

in [19]. Iteration starts when the top element in the heap is picked up as the smallest
one and stored in the Result memory at the next available position. From the list
that corresponds to the just picked up element the consecutive element is read and
stored as the heap top. To allow the next iteration, heap property of the Heap
must be restored. This is done according Heapify algorithm presented in [19]. After
NBR OF STR× SEGMENT LEN iterations all elements in the lists are fetched.

6 THE EXPERIMENT AND RESULTS

To perform the Megre-Sort experiment, sorted lists were generated. The lists con-
sisted of 128 bits records. Each record was split into two fields: KEY field and
DATA field. The sorting was performed according to the KEY field. The DATA
field did not affect the result sequence. The size of the KEY and the DATA fields
was different for the register based Merge-Sorter and for the memory based one. Be-
cause of better memory availability, 64 bits KEY and 64 bits DATA could be used
for the memory based Merge-Sorter. In contrast to the register based Merge-Sorter,
only the 32-bit key and the 96-bit data were implemented. The implementation of
the 64-bit key was not feasible for the register based architecture because in this
case the routing tool did not meet the timing requirements. That was due to too
high resource utilization.

The presented algorithms differ in NBR.OF.LISTS and the tree type. The type
of the merge tree can be memory (mem) or register (reg) based. For all algorithms
the total number of records is 1 million (16M Bytes of data). That size corresponds
to the size of the input memory block of the reconfigurable computing module. All
algorithms names and types are listed in Table 1. The sort procedure was performed
for the same set of records both in software and hardware. The performance results
are given in Table 2. The table also includes the FPGA utilization data which is
measured in the number of used slices. The slice is a basic logic element of the Xilinx
FPGA matrix. It consists of Look-Up tables (LUT) and flip-flops (FF). In Table 3
detailed hardware utilization is reported in terms of the number of occupied LUTs
and FFs. The number of used Block RAMs is also included. The clock frequency
for the Mitrion-C based hardware project is always fixed at 100 MHz.

Alg. name Alg. type Nbr. of list Lists len. Key size Data size

reg8 reg 8 0x20000 32 96

reg16 reg 16 0x10000 32 96

reg32 reg 32 0x8000 32 96

mem8 mem 8 0x20000 64 64

mem16 mem 16 0x10000 64 64

mem32 mem 32 0x8000 64 64

mem64 mem 64 0x4000 64 64

Table 1. Parameters of the implemented algorithms

872 P. Russek, K. Wiatr

Alg. name FPGA time CPU time Speed up Slices Slices [%]

reg8 237 ms 287 ms 1.2 26 009 22 %

reg16 237 ms 342 ms 1.4 29 878 33 %

reg32 236 ms 380 ms 1.6 44 355 49 %

mem8 239 ms 319 ms 1.3 18 012 20 %

mem16 236 ms 340 ms 1.4 20 376 22 %

mem32 237 ms 378 ms 1.6 24 696 27 %

mem64 239 ms 480 ms 2.0 34 545 38 %

Table 2. Performance and resource utilisation of the Merge-Sort implementation

Alg. name LUTs LUT [%] FFs FF [%] BRAMs BRAM [%]

reg8 26 009 12 % 26 009 14 % 44 13 %

reg16 35 004 19 % 36 402 20 % 76 22 %

reg32 52 086 29 % 54 070 30 % 140 41 %

mem8 16 668 9 % 22 767 12 % 35 10 %

mem16 19 288 10 % 25 060 14 % 44 13 %

mem32 24 762 13 % 28 517 16 % 52 15 %

mem64 35 656 19 % 38 491 21 % 60 17 %

Table 3. Detailed resources utilisation of the Merge-Sort implementation

For the sake of energy consumption comparison we employed the Xilinx’s power
estimator (XPE) to judge the energy consumed by a Virtex4 chip. The power
consumption for the FPGAs strongly depends on the particular implementation.
It differs for various configurations. We assessed the energy of the architecture of
the best performance and parameters, i.e. ‘mem64’. For the used resources and the
clock frequency it consumes 1.3 W of quiescent and 1.8 W of dynamic energy. The
total power is 3.1 W only! We could not measure the exact energy consumption
for the Itanium2 chip due to the lack of proper equipment. As we compare chip
to chip energy consumption we would have to measure energy directly on the CPU
socket. Energy consumption of the CPU depends on the executed code so we can not
report it in any strict way here. What we can cite, is the maximum thermal power
dissipation (TPD) for the Itanium2 reported by Intel. It is 104 W. It is obvious that
difference between the FPGA and the CPU in power consumption is different by an
order of magnitude.

7 CONCLUSIONS AND FUTURE WORK

The conducted experiment revealed that the performance of the CPU and the FPGA
for the Merge-Sort algorithm are almost similar in practice, when an HLL descrip-
tion is used. There is a slight advantage of the FPGA system. The speed up is
more substantial for larger problems, e.g. a speed up of 2.0 was gained when 64 lists
are merged simultaneously. The execution time on the FPGA is the same for every
problem size. This is because the number of processing elements is proportional to

The Enhancement of a Computer System . . . 873

the size of problem. Thus, better FPGA performance over the CPU for bigger prob-
lems could be expected. For the bigger sort tree, the maximum resource utilization
was not higher than 49 % for register solution and 39 % for memory solution. There
is still some overhead in the FPGA resources which could be utilized to increase the
size of the implementation (to 128 lists version for example). However, for k-times
larger problems, there is only lg(k) times increase in the calculation complexity. So,
there is not much improvement in speed up when the problems are bigger.

As it could be predicted, the FPGA resources utilization is higher for the register
architecture. This is due to the utilization of the BRAMs in the memory version of
the architecture. In fact, there is no substantial difference in the performance of both
the architectures. It could be expected that the memory based architecture might
be slower because of higher complexity of the address of the memory generation
unit. However, in the HLL implementation the difference between both architectures
diminished.

Another important issue worth analyzing is the pipeline latency of our architec-
ture. Let us analyze the problem below.

The elements from the list memory are read ELEM.TOTAL times. We call that
process the main algorithm loop. During each loop cycle a necessary comparison
and replace operations must be performed. According to the FPGA performance
results, it can be estimated that each loop cycle takes approximately 20 clock cycles
(≈ clock frequency × FPGA time ÷ ELEM.TOTAL). It is quite a lot if we look
at the proposed architectures. According to the authors’ experience in Hardware
Description Languages (HDL) programming, it can be expected that for careful
low level implementation it would be possible to use not more than two clock’s
periods per one loop cycle for the register version and five clocks per cycle for the
BlokRAM version. The BRAMs based architecture uses the FPGA’s resources in
a more efficient way but it is more complicated in the implementation and as a result
slower if compared to the register based version. As a consequence of the above, the
HDL description would guarantee additional speed-up of 4.0 times and 10 times for
each type of architecture.

Although the achieved advantages of the FPGA over the CPU are promising
this can offer practical consequences in real computer systems under several circum-
stances. First of all a single FPGA chip can not compete with the multi node CPU
systems. One FPGA chip corresponds to one CPU chip; so to get a substantial
advantage for the HTC the number of FPGAs must be comparable to the number
of CPUs. However, at present, the price of an FPGA device is prohibitive. The
price of reconfigurable systems cause the existing installations to have a status of
research platforms rather than production solutions. Dissemination of the FPGAs
in computing installations would reduce the costs, but at the moment this technol-
ogy is recognized as difficult in programming. The tools are still in the early stages
of development and they still require further development. So, unfortunately, the
practical aspect of our proposal has a very long-term prospect.

It can be concluded that the FPGA could be a useful technology if the speed
up of sorting operations is necessary. In terms of power consumption the FPGA is

874 P. Russek, K. Wiatr

unbeatable compared to the CPUs. The FPGA with a 100 MHz clock frequency can
be seen as a green computing solution in contrast to the 1.5 GHz Itanium2. For the
performance purpose, however, it would be necessary to enhance the implementation
and rewrite the proposed architectures using some HDL, e.g. VHDL or Verilog.

Acknowledgements

Scholarly work financed through research funds by The National Center for Research
and Development (NCBiR) as a SYNAT research project in 2011.

REFERENCES

[1] Leake, J.—Woods, R.: Revealed: The Environmental Impact of Google Searches.
The Sunday Times, January 11, 2009.

[2] Afghahi, M.: A 512 16-b Bit-Serial Sorter Chip. IEEE Journal of Solid-State Cir-
cuits, Vol. 26, 1991, No. 10, pp. 1452–1457.

[3] Colavita, A.A.—Cicuttin, A.—Fratnik, F.—Capello, G.: SORTCHIP:
A LSI Implementation of a Hardware Algorithm for Continuous

[4] Data Sorting. IEEE Journal of Solid-State Circuits, Vol. 38, 2003, No. 6,
pp. 1076–1079.

[5] Zhang, Y.—Zheng, S. J.: A Simple and Efficient VLSI Sorting Architecture. Pro-
ceedings of the 37th Midwest Symposium on, Circuits and Systems 1994, Vol. 1,
pp. 70–73.

[6] Huang, C.-Y.—Yu, G.-J.—Liu, B.-D.: A Hardware Design Approach for Merge-
Sorting Network. ISCAS, Vol. 4, 2001, pp. 534–537.

[7] Martinez, J.—Cumplido, R.—Feregrino, C.: An FPGA Parallel Sorting Ar-
chitecture for the Burrows Wheeler Transform. Proceedings of the 2005 International
Conference on Reconfigurable Computing and FPGAs (ReConFig ’05), p. 17.

[8] Marcelino, R.—Neto, H.—Cardoso, J.M.P.: Sorting Units for FPGA-Based
Embedded Systems. DISPES, 2008, pp. 11–22.

[9] Ratnayake, K.—Amer, A.: An FPGA Architecture of Stable-Sorting on a Large
Data Volume: Application to Video Signals. 41st Annual Conference on Information
Sciences and Systems 2007 (CISS ’07), pp. 431–436.

[10] Bednara, M.—Beyer, O.—Teich, J.—Wanka, R.: Trade-Off Analysis and
Architecture Design of a Hybrid Hardware/Software Sorter. In: Procweedings of
Int. Conf. on Application-Specific Systems, Architectures, and Processors (ASAP00)
2000, pp. 299–308.

[11] Parhami, B.—Kwai, D.M.: Data-Driven Control Scheme for Linear Arrays: Ap-
plication to a Stable Insertion Sorter. IEEE Transactions on Parallel and Distributed
Systems, Vol. 10, 1999, No. 1, pp. 23–28.

[12] Krol, D.—Funika, W.—Slota, R.—Kitowski, J.: SLA-Oriented SemiAuto-
matic Management of Data Storage and Applications in Distributed Environment.
Computer Science, 2011, pp. 37–50.

The Enhancement of a Computer System . . . 875

[13] Bandi, N.—Sun, C.—Agrawal, D.—El Abbadi, A.: Hardware Acceleration
in Commercial Databases: A Case Study of Spatial Operations. Proceedings of 30th

International Conference on Very Large Data Bases (VLDB ’04) 2004, pp. 1021–1032.

[14] Nyberg, C.—Shah, M.: Sort Benchmark Homepage. Availaible on: http://

sortbenchmark.org/.

[15] Mitrionics AB: Mitrion Users’ Guide. Availaible on: http://www.mitrion.com/.

[16] SGI, Corp.: SGI RASC RC100 Blade. Availaible on: http://www.sgi.com/pdfs/

3920.pdf.

[17] Wielgosz, M.—Mazur, G.—Makowski, M.—Jamro, E.—Russek, P.—
Wiatr, K.: Analysis of the Basic Implementation Aspects of Hardware-Accelerated
Density Functional Theory Calculations. Computing and Informatics, Vol. 29, 2010,
No. 6, pp. 989–1000.

[18] Xilinx, Corp.: Virtex-4 User Guide. Availaible on: http://www.xilinx.com/.

[19] Russek, P.: Merge-Sorting Source Codes in Mitrion-C. Availaible on: http://www.
fpga.agh.edu.pl/russek/sorting.rar.

[20] Cormen, T.H.—Leiserson, C. E.—Rivest, R. L.: Introduction to Algorithms.
The MIT Press and McGraw-Hill Book Company 1989.

Pawe l Russek received M. Sc. degree in Electronics from AGH
University of Science and Technology in 1995 and the Ph. D.
degree from the same university, in 2003, with research on cus-
tomized architecture for image compression algorithm in FPGA.
He works as an Assistant Professor in the Department of Elec-
tronics, AGH UST and as a research fellow in the Academic
Computing Center ‘Cyfronet’ AGH. His research interests focus
on hardware acceleration in FPGA. He is particularly interested
in high performance reconfigurable computing, embedded sys-
tems and the digital systems design based on high level synthesis

languages. He is an author and a co-author of many publications in the field.

876 P. Russek, K. Wiatr

Kazimierz Wiatr received the M. Sc. and Ph. D. degrees in
electrical engineering from the AGH University of Science and
Technology, Krakow, Poland, in 1980 and 1987, respectively, and
the D. Hab. degree in electronics from the University of Technol-
ogy of Lódź in 1999. He received the Professor degree in 2001.
His research interests include design and performance of dedi-
cated hardware structures and reconfigurable processors employ-
ing FPGAs for acceleration computing. He received 9 research
grants from the Polish Committee of Science Research. These
works resulted in above 200 publications, including 8 books, the

most recent one being Acceleration Computing in Video Processing Systems. He is also
the author of 5 patents and 35 industrial implementations. He was the reviewer of: IEEE
Expert Letters, International Journal Eng. App. of Artificial Intelligence, IEEE Trans-
actions on Neural Networks, Journal Machine Graphics and Vision, Eurasip Journal on
Applied Signal Processing. He currently is the Director of Academic Computing Centre
CYFORNET AGH, and ithe Head of PIONIER council-Polish Optical Internet.

