
Computing and Informatics, Vol. 36, 2017, 765–792, doi: 10.4149/cai 2017 4 765

ENERGY-EFFICIENT CONCURRENCY CONTROL
FOR DYNAMIC-PRIORITY REAL-TIME TASKS
WITH ABORTABLE CRITICAL SECTIONS

Jun Wu

Department of Computer Science and Information Engineering
National Pingtung University
900 Pingtung, Taiwan, R.O.C.
e-mail: junwu@mail.nptu.edu.tw

Abstract. In this paper, we are interested in energy-efficient concurrency control
for real-time tasks on a non-ideal DVS processor. Based on well-known ceiling-
based concurrency control protocols (such as priority ceiling protocol (PCP) and
stack resource policy (SRP)), researchers have proposed energy-efficient approaches
to mange concurrent accesses to shared resources so that the energy consumption
can be reduced. However, ceiling-based protocols have a problem of ceiling blocking
which imposes a great impact on the performance of real-time systems. In order
to achieve sufficient performance, we propose a new protocol, called conditional
abortable stack resource policy (CA-SRP), to resolve the ceiling blocking problem
for dynamic-priority real-time tasks by incorporating a conditional abort rule into
SRP. Based on the schedulability analysis of CA-SRP, we also propose a method,
called dynamic speed assignment (DSA), to dynamically calculate and assign proper
processor speeds for task execution so that the energy consumption can be reduced
further. The capabilities of our proposed CA-SRP and DSA have been evaluated
by a series of experiments, for which we have encouraging results.

Keywords: Real-time systems, dynamic voltage scaling, energy efficiency, concur-
rency control, task scheduling

Mathematics Subject Classification 2010: 68-N25

This article is a revised and expanded version of a paper presented at 6th International C* Conference

on Computer Science and Software Engineering, Porto, Portugal, July 10–12, 2013.

766 J. Wu

1 INTRODUCTION

Reducing energy consumption is a challenge issue in the design of embedded real-
time systems, which has received more and more attention from researchers. A dy-
namic voltage scaling (DVS) processor can operate at different speeds by varying
its supply voltage. An effective way to reduce energy consumption is to slow down
the execution speed of tasks on a DVS processor. Unfortunately, it will decrease the
performance of the entire system because of the late completion of tasks. However,
it provides a strong driving force in energy-efficient scheduling of real-time tasks due
to the fact that the late completion is allowed as long as the real-time tasks meet
their timing constraints.

In the past decades, energy-efficient real-time task scheduling has been studied
extensively for minimizing the energy consumption without violating tasks’ tim-
ing constraints (comprehensive surveys can be found in [22, 3]). In the literature,
most energy-efficient scheduling algorithms were proposed for independent real-time
tasks (i.e., tasks share nothing but CPU), relatively little work has been done for
dependent real-time tasks. However, independent real-time tasks are rarely ob-
served in real-world applications. On the contrary, dependent real-time tasks are
most commonly found. Therefore, we are interested in energy-efficient schedul-
ing of dependent real-time tasks so that the meaningful research results can be
obtained for real-world applications. Real-time tasks are considered to be depen-
dent when they may make requests simultaneously for accessing the same set of
shared resources during their executions. To maintain data consistency, shared
resources do not allow concurrent accesses by competing tasks, but require their
mutual exclusion. Note that the code fragment of a task for accessing a shared
resource is called critical section. In this paper, we assume that a critical section
is guarded by a semaphore, and it has to be executed in a mutually exclusive man-
ner.

Based on well-known ceiling-based real-time concurrency control protocols (such
as priority ceiling protocol (PCP) [23] and stack resource policy (SRP) [1]), re-
searchers have proposed several approaches to reduce the energy consumption for
scheduling dependent real-time tasks [32, 33, 15, 7, 11, 13, 29, 30, 28, 27]. Unfor-
tunately, those ceiling-based energy-efficient approaches have a problem of ceiling
blocking which imposes a great impact on the performance of real-time systems.
Note that the ceiling blocking problem is the situation in which a task is blocked
by a lower-priority task even they do not require the same shared resource. This is
possible in ceiling-based concurrency control protocols when a lower-priority task is
accessing a shared resource which is also required for other higher-priority tasks. In
this case, the system ceiling will be equal to the highest priority of the higher-priority
tasks, thus, medium-priority tasks will be blocked.

In this paper, we consider tasks as periodic and preemptible (for both critical
sections and non-critical part of tasks), and they can access one or more multiunit

Energy-Efficient Concurrency Control for Tasks with Abortable Critical Sections 767

shared resources during their executions1. Note that each multiunit shared resource
has a fixed number of units in the system2. Different from the past work, we also
assume that the critical sections of tasks are abortable. Originally, making critical
sections abortable [9, 26, 24, 25, 14] is a strategy developed to resolve ceiling blocking
problem so that sufficient performance can be achieved. When critical sections
are abortable, a higher-priority task is allowed to abort another lower-priority task
if they are conflicting in the same shared resource. Note that the execution of
the aborted task has to be re-executed from the beginning of the aborted critical
section.

We will propose a new energy-efficient concurrency control protocol, called con-
ditional abortable stack resource policy (CA-SRP), to resolve the ceiling blocking
problem for dynamic-priority real-time tasks. Our proposed CA-SRP achieves suf-
ficient performance by incorporating a conditional abort rule into SRP. When tasks
are assumed to be executed on a non-ideal DVS processor, we also propose a method,
called dynamic speed assignment (DSA), to dynamically calculate proper processor
speeds for task executions so that the energy consumption can be reduced. Note that
the execution speeds of tasks are calculated dynamically based on the schedulability
condition of CA-SRP. As a result, the energy consumption can be reduced without
violating tasks’ timing constraints. The capabilities of our proposed CA-SRP and
DSA have been evaluated by a series of experiments, for which we have encouraging
results.

The rest of this paper is organized as follows: Section 2 summarizes the related
work. Section 3 presents the system and task models. Section 4 and Section 5 present
our proposed CA-SRP and DSA method, respectively. Section 6 is dedicated to the
properties of our proposed approach. Section 7 reports the experimental results.
Section 8 is the conclusion.

2 RELATED WORK

In the field of energy-efficient scheduling, Yao et al. [31] are considered the pioneers
where they have for the first time proposed an optimal offline scheduling algorithm
for aperiodic tasks on an ideal DVS processor3. Later energy-efficient scheduling has

1 A multiunit resource has more than one units (i.e. instances), and each of them
can provide the same services to tasks. Typical examples are input/output buffers and
communication channels.

2 When the number of units of shared resources are all set to one, all of the research
results presented in this work can be also applied to a system which only has single-unit
shared resources.

3 Two types of DVS processors have been considered in the literature: ideal and non-
ideal. An ideal DVS processor can operate at any speed in the range from the minimum to
the maximum available speed, while a non-ideal DVS processor has only discrete speeds.
Nowadays, most DVS processors are non-ideal while the ideal DVS processors are only for
theoretical analysis purpose.

768 J. Wu

been studied extensively for general periodic real-time tasks on an ideal or a non-
ideal DVS processor. In the literature, thousand of algorithms have been proposed
to minimize the energy consumption without violating tasks’ timing constraints
(comprehensive surveys can be found in [22, 3]). However, most of those scheduling
algorithms were proposed for independent real-time tasks, relatively little work has
been done for dependent real-time tasks in the presence of task synchronization with
shared resources.

In the recent decades, some energy-efficient approaches had been proposed for
scheduling of dependent real-time tasks under various assumptions on the system
and task models [32, 33, 15, 7, 11, 13, 29, 30, 28, 27]. Most of them use a simple
strategy, called two-speed strategy (TSS), to execute tasks at a low speed initially
and it switches to a high speed as soon as a blocking occurs. When critical sections
are considered to be non-preemptible, Zhang and Chanson [32, 33] first proposed
a TSS-based scheduling algorithm, called dual speed (DS), for dynamic-priority tasks
based on the earliest deadline first (EDF) algorithm [16] and the stack resource
policy (SRP) [1]. Since DS calculates the low speed and the high speed based on the
sufficient schedulability condition of EDF, the timing constraints of tasks can be met
while energy consumption is reduced. A time interval that the processor is operating
at the high speed is called high speed interval. Under DS, a high speed interval starts
from the beginning of a blocking and ends at the deadline of the blocking task. Lee
et al. [15] explored the same problem with a tighter schedulability analysis, and
proposed a multi-speed extension of DS, call multi-speed (MS) algorithm, to achieve
further energy savings. In particular, MS assigns different high speeds for each
task by considering different blocking scenarios of a task instance. MS reduces
more energy consumption than that of DS, and the schedulability of the tasks is
still guaranteed. Later Elewi et al. [8, 7] proposed two extensions of DS and MS,
called enhanced dual speed (EDS)[8] and improved multi-speed (IMS) algorithm [7].
Their proposed EDS and IMS obtain more energy saving by shortening the high
speed intervals, i.e., they end a high speed interval at the deadline of the blocked
tasks (instead of the deadline of the blocking task) or the earliest time that the
processor becomes idle. However, EDS and IMS cannot provide the schedulability
guarantee.

When critical sections are considered to be preemptible, Jejurikar and Gupta [11]
first proposed a TSS-based scheduling algorithm, called critical section maximum
speed (CSMS) algorithm, for fixed-priority real-time tasks which are scheduled and
synchronized by rate monotonic (RM) [16] and priority ceiling protocol (PCP) [23],
respectively. CSMS always executes tasks at a low speed and then it switches to the
maximum processor speed when tasks being executed in a critical section. Jejurikar
and Gupta also proposed another TSS-based algorithm, called dual mode (DM)
algorithm [12], to derive the operating speeds for fixed-priority real-time tasks in two
different modes: independent and synchronization modes. Under DM, the system
starts in the independent mode and tasks are executed at the low speed. Whenever
a lower-priority task blocks other higher-priority tasks in the independent mode, the
system enters the synchronization mode and tasks are executed at the high speed.

Energy-Efficient Concurrency Control for Tasks with Abortable Critical Sections 769

Note that the basic idea of DM is quite similar to that of DS. However, DM and
DS are different in the task model, i.e., DM and DS assume critical sections are
preemptible and non-preemptible, respectively.

Later Jejurikar and Gupta extended their work to dynamic-priority real-time
tasks. They proposed an algorithm, called uniform slowdown with frequency inher-
itance (USFI) algorithm [13]. Under USFI, each task is assigned to be executed at
a static speed which is calculated based on the schedulability condition of EDF with
the consideration of tasks’ worst-case blocking times. Whenever a task blocks other
tasks, it will inherit and be executed at the highest speed of the blocked tasks during
the blocking. They showed that the blocking time of tasks can be reduced without
violating tasks’ timing constraints under their proposed USFI algorithm. However,
the energy consumption under CSMS and USFI are much higher than that of DS
and MS. To achieve more energy saving, Wu [28] proposed a TSS-based algorithm,
called blocking-aware two-speed (BATS) algorithm, for both dynamic-priority and
fixed-priority real-time tasks. Different from DS and DM, BATS is more energy-
efficient because the processor has less chances to execute tasks at a high speed.
In particular, BATS starts a high speed interval from the beginning of a blocking
and ends at the deadline of the blocked task or the time when the processor be-
comes idle. In comparison with the existing work, the high speed calculated by
BATS is also lower than other approaches because of a tighter schedulability anal-
ysis. Hence, BATS is the most energy-efficient approach for dependent real-time
tasks.

Recently, some research results were obtained for tasks with abortable critical
sections. Originally, making critical section abortable is a strategy proposed to
reduce the number of priority inversions for tasks with higher priorities. When
critical sections are abortable, a higher-priority task is allowed to abort another
lower-priority task if they are conflicting in the same shared resource. Note that
the execution of the aborted task has to be re-executed from the beginning of the
aborted critical section. Huang et al. [9] first proposed an approach, called priority
abort scheme (PAS), in which a critical section can be aborted by any other task
whose priority is higher than that of the task currently accessing the critical section.
However, PAS may cause unnecessary aborts such that the schedulability of tasks is
degraded. Later Takada and Sakamura [25] have proposed the ceiling abort protocol
(CAP) to make critical sections abortable under PCP. In CAP, a critical section
might have an abortable section which is allowed to be aborted by higher-priority
tasks. However, CAP has a serious problem of uncontrollable aborts. In particular,
unbounded number of aborts may occur during the execution of a task such that
the performance of the entire system will be reduced seriously. To resolve such
a problem, Lam and Ng [14] proposed a PCP-based protocol, called conditional
abortable priority ceiling protocol (CA-PCP). Under CA-PCP, a condition is defined
to control the number of aborts with the attempt to reduce impact of aborting
a task on the schedulability, and at the same time, to reduce the number of ceiling
blockings.

770 J. Wu

In the literature, there are few results in providing energy-efficient scheduling
for tasks with abortable critical sections. To the best of our knowledge, the closest
related work was proposed by Wu and Ke [29]. When tasks are scheduled by RM
and PCP, they proposed an energy-efficient concurrency control protocol for fixed-
priority real-time tasks with abortable critical sections. However, in this paper, we
are interested in dynamic-priority scheduling because it allows a better usage of the
available processor power and significantly improves the performance [2]. In this
paper, we will explore the energy-efficient scheduling of dynamic-priority real-time
tasks with abortable critical sections so that the energy consumption can be reduced
further while providing sufficient performance.

3 SYSTEM MODEL AND PROBLEM DEFINITIONS

3.1 DVS Processor Models

We consider a non-ideal DVS processor which supports a set of K discrete speeds
S = {s1, s2, . . . , sK}, where s1 < s2 < · · · < sK . Note that the processor speed is
approximately proportional to the supply voltage. The supply voltage of a processor
speed si is denoted as Vi, for 1 ≤ i ≤ K. Let smin and smax denote the lowest
and highest speeds (i.e. smin = s1 and smax = sK), respectively. Without lose of
generality, we assume the smax is 1 and all other speeds are normalized with respect
to the maximum speed smax.

The power consumption function of a DVS processor can be defined as a function
PC(si) of the adopted processor speed si. It can be divided into two parts: dynamic
and static power [13, 32, 7]. The dynamic power consumption PCdynamic(si), due
to gate switching at processor speed si, can be modeled as a convex function of

the processor speed: PCdynamic(si) = CefV
2
ddsi, where si = κ (Vdd−Vi)2

Vdd
, and Cef ,

Vi, Vdd and κ denote the effective switch capacitance, the threshold voltage, the
supply voltage, and a hardware-design-specific constant, respectively. The static
power consumption PCstatic, due to leakage currents Ileak, can be represented as:
PCstatic = IleakVdd. Since the supply voltage Vdd is the dominant source of the
dynamic and the static power consumption. Lowering the supply voltage can reduce
energy consumption which is the power dissipated over time.

The amount of CPU cycles completed in a time interval (t1, t2] can be represented

as
∫ t2
t1
s(t) dt, where s(t) is the processor speed at time t. Hence, the energy consump-

tion EC(t1,t2] in a time interval (t1, t2] is
∫ t2
t1
PC(s(t)) dt. Note that, in this paper,

we ignore some overheads incurred for scheduling tasks, such as the time and en-
ergy consumption for speed-switching and context-switching (due to preemptions),
because the overheads are relatively low when compared with the cost of executing
tasks. For example, Rajan et al. [21] have shown that the speed-switching overhead
is about 1–2 % of the total energy consumption. However, when the overheads are
significant and cannot be ignored, researchers have proposed excellent approaches
for reducing or eliminating the speed-switching and/or the preemptions [17, 20, 18].

Energy-Efficient Concurrency Control for Tasks with Abortable Critical Sections 771

3.2 Task and Resource Models

We consider a real-time system which consists of a set of n periodic hard real-time
tasks T = {τ1, τ2, . . . , τn}. A task τi is a template of its instances and each instance
will be created for each request of the task. The requests of a task τi will arrive
regularly for every period Ti. The worst-case computation amount and the relative
deadline of a task τi are defined by Ci and Di, respectively. When a task τi is
executed at a processor speed sj, the worst-case execution time of τi is Ci

sj
. Note

that the worst-case execution time of the task could be Ci if the task is executed at
the maximum processor speed smax.

Let τi,j denote the jth instance of task τi. The execution of each task instance
τi,j must be completed no later than its deadline which is defined as its arrival
time plus the relative deadline Di. We consider well formed tasks which satisfy
0 ≤ Ci ≤ Di ≤ Ti, ∀τi ∈ T . We also assume that the relative deadline is equal to
the period, i.e. Di = Ti. The computation amount Ci can be divided into two parts:
cCi and nCi, where cCi is the total computation amount of its critical sections, i.e.
cCi =

∑
zi,j∈Zi |zi,j|, and nCi is the computation amount of its non-critical part, i.e.

nCi = Ci − cCi.
We assume that a set of m multiunit resources R = {r1, r2, . . . , rm} can be

accessed in the system [1]. For each multiunit resource rj there is a fixed number
of units in the system, denoted as Nrj . A task τi may make one or more requests
for accessing multiunit resources during its execution. Let µrj(τi) be the number
of units of resource rj requested by task τi, and µrj(τi) < Nrj for 1 < i < n. To
maintain data consistency, resources do not allow simultaneous accesses but require
mutual exclusion among competing tasks. We assume that resources are guarded
by semaphores, and the time interval during the accessing of a resource is called
a critical section.

Let Zi =< zi,1, zi,2, . . . , zi,ni > be the list of critical sections of a task τi, where
zi,j is the jth critical section of τi. Each critical section zi,j is a request which needs
µ(zi,j) units of the resource R(zi,j). We also use |zi,j| to denote the computation
amount of the critical section. If a critical section zi,j is executed at a processor

speed sk, then its execution time is
|zi,j |
sk

. Any task that needs to enter a critical
section must wait until there is a sufficient number of units of resources and the
access right has been granted. A task τi is said to be blocked by the critical section
of task τj if τj has a lower-priority than τi but τi has to wait for τj to exit its critical
section in order to resume its execution. Note that such a situation is also called
priority inversion.

3.3 Abortable Critical Sections

In this paper, we also assume that critical sections are abortable. Each critical
section consists of an abortable segment followed by an unabortable segment. Let zai,j
and zui,j be the abortable segment and the unabortable segment of the jth critical

772 J. Wu

section of τi, respectively. Note that the execution of a task can be aborted when it
is executed in the abortable segment of a critical section. Then the execution will
be restarted from the beginning of the abortable segment. On the contrary, once
a task enters the unabortable segment, the critical section cannot be aborted and it
will be executed to the end (the preemption is allowed). Figure 1 shows a task with
its two critical sections, each consists of an abortable segment and an unabortable
segment. Figure 2 shows another example with two nested critical sections. In
particular, task τi has two critical sections zi,1 and zi,2. Note that zi,2 is executed
fully inside the zi,1. In this case, only the first critical section, i.e. zi,1, is allowed to
have an abortable segment; while the inside one is not allowed to have an abortable
segment.

zi,1 zi,2

timeτ
i

zi,1
a zi,1

u zi,2
a zi,2

u

zi,1
a zi,1

u zi,2
a zi,2

u

Figure 1. An example of a task with two critical sections

zi,2
u

zi,1

zi,2

timeτ
i

zi,1
a zi,1

u zi,2
u

zi,1
a

zi,1
u

Figure 2. An example of a task with two nested critical sections

3.4 Problem Definitions

The research problem is given as follows:

Problem 1 (DVS Scheduling of Real-Time Tasks with Abortable Critical Sections).
Given a set of n periodic hard real-time tasks T which have abortable critical sec-
tions. The problem is to schedule T and to synchronize their accesses of a set
of m shared multiunit resources R on a non-ideal DVS processor which supports
a set of K discrete speeds S. During a given time interval (0, lcm], the objective

Energy-Efficient Concurrency Control for Tasks with Abortable Critical Sections 773

of this problem is to generate a schedule such that all tasks can meet their tim-
ing constraints (i.e. their deadlines) and the energy consumption

∫ lcm
0

PC(s(t)) dt is
minimized.

This problem is an optimization problem which is to generate a schedule for the
given task set with minimal energy consumption. Where lcm is the least common
multiple of all tasks’ periods (it is also called hyperperiod). We only need to examine
the time interval (0, lcm] for analyzing the performance and the schedulability of the
entire schedule because the given task set repeats an identical execution trace for
every hyperperiod [16]. The NP-hardness of the problem is given by the following
theorem.

Theorem 1. The Problem 1 is NP-hard.

Proof. The NP-hardness of Problem 1 can be proven by considering the following
special case. Assuming that the DVS processor only supports a single speed (i.e.
K = 1) so that all feasible schedules consume the same energy (it is because the
computation amount is fixed.). We also assume that the number of units of each
multiunit resource is 1 and the length of any abortable segment zai,j is 0. Such
a special case of Problem 1 is equivalent to the well-known uniprocessor real-time
scheduling and synchronization (URT-SS) problem[19] which is NP-hard. Problem 1
is NP-hard due to the fact that one of its special cases is NP-hard. �

4 CONDITIONAL ABORTABLE STACK RESOURCE POLICY

In this section, a new concurrency control protocol, called conditional abortable
stack resource policy (CA-SRP), is proposed for dynamic-priority real-time tasks
with abortable critical sections.

4.1 The CA-SRP

CA-SRP uses earliest deadline first (EDF) algorithm for task scheduling, where the
priorities of tasks are assigned dynamically according to their absolute deadlines.
In other words, tasks with earlier absolute deadlines will receive higher priorities.
It always executes the task with the highest priority (ties can be broken arbitrar-
ily).

When tasks might have concurrent access to shared resources, CA-SRP uses the
stack resource policy (SRP)[1] for task synchronization. Under SRP, each task τi is
required to have a preemption level πi. The values of tasks’ preemption levels are
assigned inversely proportional to their relative deadlines, i.e. πi > πj ⇔ Di < Dj.
In addition, each resource rj is required to have a current ceiling CLrj(nrj) which
represents the maximum preemption level of the tasks which may be blocked by
resource rj. The value of CLrj(nrj) can be calculated as CLrj(nrj) = maxτi∈T {{0}∪
{πi|nrj < µrj(τi)}}, where nrj is the number of units of rj that are currently available.
We also define the system ceiling πs as the maximum value of all current ceilings of

774 J. Wu

resources, i.e. πs = maxrj∈R{CLrj(nrj)}. The rules for concurrency control of CA-
SRP are the same as those of SRP: a task τi is permitted to preempt the current
task if its priority is the highest among all ready tasks, and its preemption level is
higher than the system ceiling (i.e. πi > πs).

Different from SRP, CA-SRP are designed for tasks with abortable critical sec-
tions. It can abort lower-priority tasks to improve the responsibility of tasks with
higher priority. A new rule, called conditional abort rule, is introduced: a task τi can
abort a lower-priority task τx if τx is executing in the abortable segment of a critical
section zx,y and πi > πx,ys , where πx,ys is the system ceiling when the critical section
zx,y is aborted. Where the value of πx,ys is calculated as follows:

πx,ys = max

{
max

rk∈R−R(zx,y)
{CLrk(nrk)} ,max

τk∈T

{
0, πk|(nR(zx,y) + µ(zx,y)) ≤ µR(zx,y)(τk)

}}
.

(1)
Our proposed CA-SRP is given in Algorithm 1.

Algorithm 1 Conditional Abortable Stack Resource Policy (CA-SRP)

Priority Assignment and Task Scheduling:
Tasks with earlier absolute deadlines will be assigned higher priorities. It always
executes the task with the highest priority (ties can be broken arbitrarily).

Concurrency Control and Conditional Abort:
When τi,j becomes the highest priority task among all ready tasks,
if πi > πs then

τi,j preempts the current task.
else

if ∃τx which is executing in zax,y and πi > πx,ys then
τi,j aborts τx’s critical section zx,y and starts its execution.

else
τi,j is blocked.

end if
end if

4.2 Worst-Case Blocking Time and Re-Execution Time

Since CA-SRP uses SRP for concurrency control, the following theorem follows
directly from the theories of SRP [1].

Theorem 2. [1] When a set of tasks is scheduled under CA-SRP, then

1. no task can be blocked after it starts,

2. a task can be blocked for at most the duration of one critical section.

Energy-Efficient Concurrency Control for Tasks with Abortable Critical Sections 775

Let Bi be the worst-case blocking time of a task τi. Based on Theorem 2, the
value of Bi can be calculated as follows[1]:

Bi = max
τj∈T ∧πj<πi

{0, |zj,k| | zj,k ∈ Zj, CLR(zj,k)(0) > πi}. (2)

When a task τx has been aborted, it has to be re-executed from the beginning
of the aborted critical section. Such a re-execution time is obviously no more than
the length of the aborted segment. Let Ai be the worst-case re-execution time of
the task aborted by τi. It can be calculated by the following equation:

Ai = max
τj∈T
∧πj<πi

{0, |zaj,k| | zj,k ∈ Zj, CLR(zj,k)(0) > πi}. (3)

4.3 Example

The following example shows the schedule and the corresponding energy consump-
tion of tasks scheduled by CA-SRP. Note that the schedule is given by assuming
that tasks are executed at the maximum processor speed smax.

r1

τ1
1

(2, r1)

1

τ2
1 1 0

.5

1

τ3

T1 =15

(3, r1) (3, r2)

T2 =25

(2, r1)

1 1.5

T3 =50

1.5

1 0
.5

0
.5

0

.5
 r2

abortable
segment

unabortable
segment

abortable
segment

unabortable
segment

Figure 3. Example task set

Example 1. Consider three tasks τ1, τ2 and τ3 as shown in Figure 3. The param-
eters of the tasks and shared resources are given in Table 1 a) and b). Note that
the abortable segment and the unabortable segment of r1 and r2 in Figures 3 to 6
are represented as and , respectively. Also note that the abortable segment
and the unabortable segment of r2 are represented as and , respectively. In
other words, those boxes are the critical sections of tasks. The label on the top of
the boxes represents the requirements for the resources, i.e., (a, rb) indicates that
the critical section requires a units of resource rb. Also note that the white boxes
represent the non-critical part of tasks. In Figure 3, the labels on the bottom of the
boxes represent their execution time.

776 J. Wu

πi Ci Di = Ti Bi Ai

τ1 3 3 15 3 1.5

τ2 2 5 25 3 1.5

τ3 1 4 50 0 0

a) Parameters of the task set

Nrj µrj (τ1) µrj (τ2) µrj (τ3)

r1 3 2 3 2

r2 3 0 3 0

b) Parameters of the shared resources

Table 1. Parameter settings of the example

When the three tasks are executed at the maximum processor speed, Figure 4
shows the schedule of the tasks scheduled by CA-SRP. Note that we only consider
the first instances of the three tasks, i.e., τ1,1, τ2,1 and τ3,1, and the value of the
system ceiling is indicated as the red bold-lines, as shown in the bottom of Fig-
ure 4.

At time 0, τ3,1 arrives and starts its execution immediately because it is the
only one ready task in the system. At time 1, τ3,1 requests 2 units of resource r1
successfully. Later, at time 2, τ2,1 arrives with an earlier deadline than τ3,1 for
which τ2,1 becomes the highest-priority task. According to CA-SRP’s conditional
abort rule, τ2,1 aborts the execution of τ3,1 and starts its execution. At time 3
and 5, τ2,1 requests 3 units of r1 and r2 successfully, respectively. Next, at time
6, τ1,1 arrives and preempts the current task (i.e. τ2,1) because τ1,1 has the ear-
liest deadline and π1 > πs. At time 9, τ1,1 completes its execution and τ2,1 re-
sumes. At time 10, τ2,1 completes and τ3,1 resumes its execution from the be-
ginning of its aborted critical section. Finally, τ3,1 completes its execution at
time 13.

Assume that tasks are executed on a non-ideal DVS processor which supports
10 discrete speeds S = {s1 = 0.1, s2 = 0.2, . . . , s10 = 1}. Let the power consumption
function of processor speeds be PC(si) = (0.08 + 1.52s3i) Watt ([4]). The energy
consumption of this schedule is 20.8 Watt.

5 DYNAMIC SPEED ASSIGNMENT METHOD

In this section, we shall analyze the schedulability of CA-SRP and derive a low-
est processor speed, called base processor speed, for task executions so that the
energy consumption can be reduced without violating tasks’ timing constraints.
Furthermore, we also propose a method, called dynamic speed assignment, to dy-
namically calculate lower execution speeds for task execution for saving more en-
ergy.

Energy-Efficient Concurrency Control for Tasks with Abortable Critical Sections 777

τ1

0

(3, r1) (3, r2)

(2, r1)

7.5

6

τ2

0 43

(2, r1)

τ3

0 1

2

50

27

system

ceiling
0

2

3

1

1

1

8

processor

speed

time

7

10

11.5

r1 r2

abortable
segment

unabortable
segment

abortable
segment

unabortable
segment

13

5.5

9 5

9

6

21

2 10

(2, r1)

Figure 4. Example CA-SRP schedule (when tasks are executed at smax)

5.1 Schedulability and Base Processor Speed

For independent tasks, Liu and Layland [16] have shown that a set of n tasks is
schedulable under EDF if

∑n
i=1Ci/Di ≤ 1. Such a condition has to be modi-

fied for CA-SRP because we assume that tasks might have a concurrent access to
shared resources. In particular, a task τi might be blocked by lower-priority tasks
or abort lower-priority tasks according to the concurrency control and conditional
abort rules of CA-SRP. The following theorem provides the sufficient schedulability
condition for CA-SRP when tasks are executed at the maximum processor speed
smax:

Theorem 3. When a set of n tasks (sorted in non-decreasing order of their pre-
emption levels) is executed at the maximum processor speed, it is schedulable under
CA-SRP if the following conditions are satisfied:

n∑
i=1

(Ci +Bi)/smax
Di

=
n∑
i=1

Ci +Bi

Di

≤ 1. (4)

Proof. According to the concurrency control and conditional abort rules of CA-
SRP, a task instance of task τi might be blocked by a lower-priority task or aborts
a lower-priority task’s critical section. Hence, the utilization of any task instance
of τi is no higher than (Ci+ max{Bi, Ai})/Di. Note that Ai is less than Bi for every

778 J. Wu

task τi according to Equations (2) and (3). Therefore, the utilization of τi never
exceeds (Ci + Bi)/Di, ∀τi ∈ T . Based on the schedulability condition of EDF and
smax = 1, this theorem is correct by considering the worse-case blocking time Bi as
a part of tasks’ computation. �

The following corollary shows that the tasks remain schedulable when they are
executed at the base processor speed sb. Note that the base processor speed is
the lowest processor speed for executing tasks without violating their timing con-
straints.

Corollary 1. If a set of n tasks (sorted in non-decreasing order of their preemption
levels) satisfies the sufficient schedulability condition of CA-SRP (i.e. Equation (4)
in Theorem 3), then the task set remains schedulable under CA-SRP by using the
base processor speed sb for task execution, where

sb = min
sj∈S

{
sj

∣∣∣∣∣
n∑
k=1

Ck +Bk

Dk

≤ sj

}
. (5)

Proof. This corollary is correct based on the Theorem 3 and the fact that sb ≤ smax.
�

The following example shows the schedule of the tasks given in Example 1 when
they are executed at the base processor speed.

Example 2. Consider the same tasks given in Example 1. When the tasks are
executed at the base processor speed sb, Figure 5 shows the schedule of the tasks
under CA-SRP. Note that the base processor speed is 0.8 which is calculated accord-
ing to Equation (5). In this schedule, τ2,1 aborts τ3,1 and τ1,1 aborts τ2,1 at time 2
and 6, respectively. This schedule completes at time 16 which is later than that
in Example 1 because those two abortings create additional re-execution time for
the schedule. However, the energy consumption of this schedule is less than that
in Example 1 because tasks are executed at a speed lower than the maximum pro-
cessor speed, i.e. sb ≤ smax. In particular, the energy consumption of this schedule
is 13.73184 Watt according to the same assumptions on the power consumptions in
Example 1. Compared with Example 1, the tasks remain schedulable and it saves
more than 33.98 % of energy.

5.2 Dynamic Speed Assignment (DSA) Method

As we mentioned previously, CA-SRP uses EDF and SRP for scheduling tasks and
synchronizing their accesses to shared resources. When a DVS processor is consid-
ered, one of the more important issues of CA-SRP is how to calculate and assign
proper processor speeds for task execution so that the energy consumption can be
reduced further. In the previous subsection, the base processor speed is derived for

Energy-Efficient Concurrency Control for Tasks with Abortable Critical Sections 779

τ1

0

(3, r1) (3, r2)

(2, r1)

6

τ2

0

4.5

3.25

(2, r1)

τ3

0

1.25

2

50

27

21

system

ceiling
0

2

3

0.8

0.8

0.8

11

8.5 9.75

12.25

processor

speed

time

7.25

10.375

r1 r2

abortable
segment

unabortable
segment

abortable
segment

unabortable
segment

2

6

5.75

9.75

7.875

12.25 14.125 16

Figure 5. Example CA-SRP schedule (when tasks are executed at sb)

guaranteeing the schedulability of tasks, which is calculated based on the consid-
eration of the worst cases (e.g., tasks are blocked with worst-case blocking time).
However, the worst-case blocking time and re-execution time are overestimated due
to the fact that the worst case of a task will not happen every time. We shall
propose a method, called dynamic speed assignment (DSA), to adjust the execu-
tion speeds of tasks dynamically so that the energy consumption can be reduced
further.

When tasks are scheduled by CA-SRP, the execution speeds of tasks are assigned
according to the DSA method which as follows:

• Any task τi’s critical sections (i.e. the cCi part) are assigned to be executed at
the base processor speed sb. It ensures that the actual blocking time and the
re-execution cost of any task τi does not exceed Bi/s

b and Ai/s
b, respectively.

Note that the sb is calculated offline according to Equation (5) with a O(Kn)
time complexity, where K and n are the number of available processor speeds
and the number of tasks, respectively. Furthermore, K can be considered as
a constant.

• The execution speed of every task instance τi,j’s non-critical part (i.e. nCi)
is assigned to a dynamic speed s∗i,j. Note that s∗i,j ≤ sb and it is calculated
dynamically whenever τi,j is permitted to start its execution.

780 J. Wu

We now describe the derivation of the dynamic speed for a task instance. The
following lemma provides the worst-case computation time of a task instance under
CA-SRP.

Lemma 1. If a set of n tasks is schedulable by CA-SRP, the worst-case computation
time of a task instance τi,j is never exceeded (nCi + cCi + Bi)/s

b when tasks are
executed at the base processor speed sb.

Proof. According to Corollary 1, a set of n tasks are schedulable if Equation (4)
is satisfied and all tasks are executed at the base processor speed sb. Because
Corollary 1 remains correct even if all task instances are the worst cases, it is implied
that the worst-case computation time of any task instance τi,j is never exceeded
(Ci +Bi)/s

b = (nCi + cCi +Bi)/s
b. �

Based on the concurrency control and conditional abort rules of CA-SRP, the
dynamic speed s∗i,j is calculated by considering the following two cases:

Case 1 (when πi > πs): In this case, τi,j is allowed to preempt the current task
immediately. Note that τi,j will not be blocked because πi > πs. According
to CA-SRP’s rules for execution speed assignment, the non-critical part and
the critical sections of τi,j are executed at s∗i,j and sb, respectively. Hence,

the computation time of τi,j can be calculated as nCi
s∗i,j

+ cCi
sb

. For guarantee-

ing the schedulability of tasks, τi,j’s computation time must be no longer than
its worst-case computation time (which can be obtained by Lemma 1), i.e.
nCi
s∗i,j

+ cCi
sb
≤ nCi+cCi+Bi

sb
. Hence, the dynamic speed s∗i,j can be calculated as

follows:

s∗i,j = min
sk∈S

{
sk

∣∣∣∣ sbnCi
nCi +Bi

≤ sk

}
. (6)

Case 2 (when πi ≤ πs): In this case, τi,j might abort a lower-priority task or be
blocked. If there exists a task τx which is executing in the abortable segment of
a critical section zx,y and πi > πx,ys , τi,j will abort zx,y. Because the re-execution
cost is considered as a part of τi,j’s computation, the computation time of τi,j

can be calculated as nCi
s∗i,j

+
cCi+|zax,y |

sb
. For guaranteeing the schedulability, τi,j’s

computation time must be no longer than its worst-case computation time, i.e.
nCi
s∗i,j

+
cCi+|zax,y |

sb
≤ nCi+cCi+Bi

sb
. Therefore, the dynamic speed s∗i,j can be calculated

as follows:

s∗i,j = min
sk∈S

{
sk

∣∣∣∣ sbnCi
nCi +Bi − |zax,y|

≤ sk

}
. (7)

Suppose that a task instance τi,j becomes the highest-priority task among all
ready tasks at time thi,j.

Energy-Efficient Concurrency Control for Tasks with Abortable Critical Sections 781

On the other hand, τi,j will be blocked if such a task τx does not exist. Let thi,j
be the time that τi,j becomes the highest-priority task among all ready tasks, and
tsi,j be the time that τi,j is permitted to start its execution. Similarly to the above,
τi,j’s computation time must be no longer than its worst-case computation time, i.e.
nCi
s∗i,j

+ cCi
sb

+ (tsi,j − thi,j) ≤ nCi+cCi+Bi
sb

, for guaranteeing the schedulability of tasks.

Note that (tsi,j − thi,j) is the actual blocking time of τi,j. The dynamic speed s∗i,j can
be calculated for this case by the following equation:

s∗i,j = min
sk∈S

{
sk

∣∣∣∣∣ sbnCi
nCi +Bi − sb(tsi,j − thi,j)

≤ sk

}
. (8)

We now formally define our proposed DSA method in Algorithm 2.

Algorithm 2 Dynamic Speed Assignment Method for CA-SRP

Task Execution Speed :
For all task instance τi,j of τi ∈ T , its critical sections and non-critical parts are
assigned to be executed at the base processor speed sb and a dynamic speed s∗i,j,
respectively, where

sb = min
sk∈S

{
sk

∣∣∣∣∣
n∑
l=1

Cl +Bl

Dl

≤ sk

}
.

Dynamic Speed Assignment:
When τi,j becomes the highest priority task among all ready tasks,
if πi > πs then

τi,j preempts the current task and s∗i,j = minsk∈S

{
sk

∣∣∣ sbnCi
nCi+Bi

≤ sk

}
else

if ∃τx which is executing in zax,y and πi > πx,ys then
τi,j aborts τx’s critical section zx,y and s∗i,j =

minsk∈S

{
sk

∣∣∣ sbnCi
nCi+Bi−|zax,y |

≤ sk

}
.

else
τi,j is blocked and s∗i,j = minsk∈S

{
sk

∣∣∣ sbnCi
nCi+Bi−sb(tsi,j−thi,j)

≤ sk

}
.

end if
end if

The following examples illustrate our proposed CA-SRP with DSA:

Example 3. Consider the same tasks and the DVS processor given in Example 1.
Figure 6 shows the schedule of the tasks when they are scheduled by CA-SRP with
DSA method. Under CA-SRP, all critical sections are executed at the base processor
speed which is calculated based on Equation (5) and the value is 0.8. The non-critical

782 J. Wu

part of a task instance τi,j is executed at s∗i,j which is calculated dynamically based
on the blocking time and the re-execution time.

At time 0, τ3,1 arrives and starts its execution immediately because it is the only
one ready task. The execution speed of τ3,1’s non-critical part is s∗3,1 = 0.8 which
is calculated according to Equation (6). Note that the computation time of a task
τi is Ci

sj
when it is executed at speed sj. It is because the original value of Ci is

given by assuming that the task is executed at the maximum processor speed. At
time 1.25, τ3,1 completes the execution of its non-critical part and it requests 2 units
of resource r1 successfully because π3 = 1 > πs = 0. Note that the system ceiling
πs = 3 after time 1.25.

At time 2, τ2,1 arrives (with an earlier deadline than τ3,1) and aborts the execu-
tion of τ3,1 because τ3,1 is executing in an abortable segment za3,1 and the value of
π2 > π3,1

s = 0 (π3,1
s is calculated by Equation (1)). The non-critical parts of τ2,1 are

executed at speed s∗2,1 = 0.5 which is calculated according to Equation (7). Since
τ3,1 has been aborted, the system ceiling πs becomes 0. At time 4, τ2,1 requests 3
units of r1 successfully and the system ceiling πs becomes 3. Note that every critical
section has to be executed at the base processor speed sb = 0.8.

At time 6, τ1,1 arrives with an earlier deadline than other two tasks. However,
τ1,1 is blocked because its preemption level is not higher than the system ceiling
(i.e. π1 = πs = 3) and there is no task currently executing in an abortable segment.
At time 6.5, τ2,1 completes the execution of its first critical section, i.e. z2,1, τ1,1
preempts τ2,1 and is executed at speed s∗1,1 = 0.4 which is calculated according to
Equation (8). At time 12.75, τ1,1 finishes its execution and τ2,1 resumes. At time 16,
τ2,1 finishes its execution and τ3,1 resumes. Note that the aborted critical section of
τ3,1 has to be re-executed from the beginning. Finally, τ3,1 finishes its execution at
time 19.75.

Based on the same power consumption function of Example 1, the energy con-
sumption is 11.6216 Watt. Compared with Example 1, the tasks remain schedulable
and it saves more than 44.12 % of energy.

6 PROPERTIES

The purpose of this section is to provide the properties of our proposed CA-SRP with
DSA method for dynamic-priority real-time tasks with abortable critical sections.

Lemma 2. For any task instance τi,j, the value of the dynamic speed s∗i,j is no more

than the value of the base processor speed sb.

Proof. This lemma is correct according to Equations (6), (7), and (8). �

Theorem 4. A set of n tasks (sorted in non-decreasing order of their preemption
levels) is schedulable under CA-SRP with DSA method, if the following conditions
are satisfied:

Energy-Efficient Concurrency Control for Tasks with Abortable Critical Sections 783

τ1

0

(3, r1) (3, r2)

(2, r1)

96

τ2

0 5.254

(2, r1)

τ3

0
1.25

2

50

27

21

system
ceiling

0

2
3

0.8

0.8

0.8

13.375
14

10.25 12.75

16
0.5

0.4

processor
speed

time

17.875

6.5

6.5

16 19.75

(2, r1)

12.75

2

r1 r2
abortable
segment

unabortable
segment

abortable
segment

unabortable
segment

9.625

Figure 6. Example CA-SRP schedule (with DSA method)

n∑
k=1

Ck +Bk

Dk

≤ 1.

Proof. According to Corollary 1, tasks are schedulable when they are executed at
the base processor speed sb. Note that the utilization of a task instance τi,j is no
more than (Ci+Bi

sb
)/Di when tasks are executed at sb.

Once the DSA method is adopted with CA-SRP, a task instance τi,j will be
executed at a lower processor speed s∗i,j ≤ sb for its non-critical part so that τi,j’s
execution time will be increased. In the worst case (i.e., the task instance is not
blocked), its utilization is as follows:

(nCi/s
∗
i,j) + (cCi/s

b)

Di

(9)

and the maximum value of s∗i,j (in Equations (6), (7), and (8)) is as follows:

s∗i,j =
sbnCi

Bi + nCi
. (10)

784 J. Wu

By combining Equations (9) and (10), we have(
nCi(Bi + nCi)

sbnCi
+
cCi
sb

)
/Di =

(
Ci +Bi

sb

)
/Di.

Hence, the utilization of any τi,j remains the same, and it completes the proof. �

Theorem 5. The CA-SRP prevents deadlocks.

Proof. Under CA-SRP, a task cannot be blocked after it has started. In other
words, a task cannot be blocked while holding a resource. It avoids the so called
hold-and-wait situation. Therefore, the deadlock is prevented. �

7 PERFORMANCE EVALUATION

The experiments described in this section are aimed to evaluate the capabilities of
CA-SRP with DSA method on a non-ideal DVS processor. We have implemented
a simulation of a DVS environment for scheduling different task workloads. The
performance of the following approaches were evaluated:

Conditional abortable stack resource policy (CA-SRP). This is our proposed
approach. When tasks are scheduled by CA-SRP, we also use DSA method to
dynamically calculate and assign tasks’ execution speeds.

Ceiling-based conditional abortable scheduling (CB-CAS). [29] To the best
of our knowledge, CB-CAS is the closest related work of this paper. The de-
sign of CB-CAS is similar to that of our proposed CA-SRP. CB-CAS is also
an energy-efficient scheduling approach for real-time tasks with abortable crit-
ical sections. However, the main difference between CB-CAS and CA-SRP is
the method of assigning priorities to tasks. Specifically, CB-CAS and CA-SRP
were designed for fixed-priority and dynamic-priority tasks, respectively. Un-
der CB-CAS, tasks are scheduled and synchronized by RM and PCP. When-
ever two tasks are conflicting for the same shared resource, CB-CAS allows
the higher-priority task to abort the lower-priority task only if it is more en-
ergy efficient. CB-CAS uses a dynamic speed adjustment method to calculate
and assign proper processor speeds for task executions so that the energy con-
sumption can be reduced. Also note that CB-CAS was designed for single-unit
resources. We modified CB-CAS to support multiunit resources according to
Chen and Lin’s work [6] for which its performance can be compared with our
work.

Uniform slowdown with frequency inheritance (USFI). [13] USFI calculates
a processor speed for each task’s execution. When a task blocks other higher-
priority tasks, it inherits the highest processor speed of the blocked tasks. We
implemented this approach by using EDF and dynamic priority ceiling proto-
col (DPCP) [5] as its scheduling policy and concurrency control protocol. Note

Energy-Efficient Concurrency Control for Tasks with Abortable Critical Sections 785

that USFI was not designed for tasks with abortable critical sections. We will
not abort any task even if the task is being executed in an abortable segment.
Also note that we made necessary modifications to USFI such that multiunit
resources are supported.

Maximum speed (MS). The MS is the baseline approach which schedules tasks
to be executed at the maximum processor speed under EDF and SRP.

In the rest of this section, we shall present the performance metrics, data sets,
and experimental results.

7.1 Performance Metrics and Data Sets

The primary performance metric of interest is the energy consumption of tasks,
referred to as EnergyConsum, which is the sum of the energy consumption of all
task instances executed during the simulation time. In our simulation, the processor
speeds and their power consumptions are chosen from Marvell XScale processor [10],
as shown in Table 2. The energy consumption EnergyConsum can be calculated by∫ simTime
0

PC(s(t)) dt, where PC(), s(t), and simTime are the power consumption
function, the processor speed at time t, and the simulation time. Note that the
value of the power consumption of a specified processor speed can be obtained from
Table 2.

Available speed (MHz) 150 400 600 800 1 000

Normalized speed 0.15 0.4 0.6 0.8 1

Power consumption (mW) 80 170 400 900 1 600

Table 2. Available speeds and power consumptions for Marvell XScale [10]

The parameter settings of the evaluated workloads are given in Table 3, which
is similar to the work in [32, 13]. Each generated task set consists of 20 to 100 tasks
by uniform distribution. The period of a task was selected randomly from one of the
three ranges: long period (2 000 ∼ 5 000 ms), middle period (500 ∼ 2 000 ms), and
short period (20 ∼ 200 ms). The worst-case computation amounts of the tasks in
the three period ranges were selected randomly from (10 ∼ 500 ms), (10 ∼ 100 ms),
and (5 ∼ 20 ms). Note that we assume that tasks’ relative deadlines are equal to
their periods, i.e., Di = Ti, for 1 ≤ i ≤ n.

The number of shared multiunit resources in the system was assigned randomly
from 5 to 10 and the number of units for each resource was assigned randomly
from 1 to 5. The number of shared resources required for a task (i.e. the number
of critical sections of a task) was set from 0 to 2 by uniformly distribution. Note
that the units of a task’s required resource was set from 1 to the maximum units of
the resources. The positions and the lengths of the critical sections within a task’s
execution were selected randomly. As a result, there will be sufficient number of
resource conflicts and the performance of evaluated approaches can be better un-
derstood.

786 J. Wu

Parameter Value

Utilization factor 0.4, 0.6

The number of tasks (20 ∼ 100)

long (2 000 ∼ 5 000 ms),
Period ranges middle (500 ∼ 2 000 ms),

short (20 ∼ 200 ms)

long (10 ∼ 500 ms),
Worst-case computation time middle (10 ∼ 100 ms),

short (5 ∼ 20 ms)

The number of resources (5, 10)

The number of units for each resource (1, 5)

The number of resources required for a task (0, 2)

Resource usage ratio rur (0 ∼ 0.3) step by 0.05

Abortable segment ratio asr (0 ∼ 0.5) step by 0.1

Simulation time 1 000 000 ms

Table 3. Parameters of workload

For generating feasible task sets, we set the utilization of a task set as 0.4
and 0.6. After a task set was generated, the worst-case computation amounts of
tasks will be scaled so that the utilization of the task set would not exceed the
desired value. The sum of the lengths of a task τi’s critical sections is no larger than
rur × Ci, where rur is the resource usage ratio and it varied between 0 to 0.3 with
an increment of 0.05. Note that tasks do not require any shared resource (i.e., tasks
are independent) when rur = 0. The range of rur was chosen based on the fact
that critical sections are usually short in practical applications. In addition, a larger
value of rur might lead to overloading such that the accuracy of the experimental
results will be affected. We also set the length of the abortable segment of any
critical section zi,j no larger than asr × |zi,j|, where asr is the abortable segment
ratio and is set from 0 to 0.5 with an increment of 0.1. The simulation time is
1 000 000 ms and over 100 task sets per utilization factor, resource usage ratio, and
abortable segment ratio were evaluated in the simulation and their results were
averaged.

7.2 Experimental Results

In the first part of our simulation, the effect of the lengths of critical sections on
energy consumption is evaluated. We varied the resource usage ratio from 0 to 0.3
(step by 0.05) and fixed the abortable segment ratio to 0.3. Figures 7 a) and b)
show the experimental results of evaluated approaches, where the utilization factors
are 0.4 and 0.6, respectively. Note that MS was used as the baseline and the energy
consumption EnergyConsum of the other approaches were normalized with the
baseline.

Energy-Efficient Concurrency Control for Tasks with Abortable Critical Sections 787

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.05 0.1 0.15 0.2 0.25 0.3

N
o

rm
a

liz
e

d
 E

n
g

e
rg

y
 C

o
n

s
u

m
p

ti
o

n

Resource Usage Ratio

MS
CB-CAS

USFI
CA-SRP w/DSA

a) Utilization = 0.4

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.05 0.1 0.15 0.2 0.25 0.3

N
o

rm
a

liz
e

d
 E

n
g

e
rg

y
 C

o
n

s
u

m
p

ti
o

n

Resource Usage Ratio

MS
CB-CAS

USFI
CA-SRP w/DSA

b) Utilization = 0.6

Figure 7. Normalized energy consumption with varying rur when asr is 0.3

The results show that the energy consumption of all evaluated approaches grew
with the utilization of tasks, as shown in Figures 7 a) and b). The performance
ranking is MS, USFI, CB-CAS, and CASRP (from the worst to the best). MS is
the worst one because it always executes tasks at the maximum processor speed
smax. Compared with MS, all other approaches consume less energy because their
tasks’ execution speeds are no higher than the maximum processor speed smax. In
particular, the execution speeds of USFI are calculated based on the schedulability
analysis so that the energy consumption can be reduced without violating tasks’
timing constraints. Similar with USFI, the execution speeds calculated by CB-CAS
and CA-SRP are also no higher than smax. However, CB-CAS and CA-SRP outper-
form USFI due to their dynamic speed adjustment/assignment methods. As a result,
the execution speed of a task can be slowdown at run-time so that the energy con-
sumption can be reduced further. Note that CB-CAS and CA-SRP are designed for
fixed-priority and dynamic-priority tasks, respectively. In particular, the execution
speed of CB-CAS and CA-SRP are calculated based on the schedulability conditions
of RM and EDF, respectively. It is obviously that the execution speeds of CB-CAS
is higher than that of CA-SRP because the schedulability of RM is less than that of
EDF. Furthermore, compared with CB-CAS, CA-SRP’s DSA method allows tasks to
be executed more times at lower processor speeds. Therefore, CA-SRP outperforms
CB-CAS in all the cases.

Because the resource usage ratio is highly related on the lengths of critical
sections, the probability of blocking and the blocking time of tasks will be increased
when rur become higher. The execution speeds of USFI, CB-CAS and CA-SRP
are calculated based on the utilization and the worst-case blocking time of tasks.
Since the utilization of evaluated task sets are fixed in Figures 7 a) and b), the
execution speeds are dominated by the worst-case blocking time which is varied
with the resource usage ratio. Therefore, the energy consumption of tasks grew
with the resource usage ratio, as shown in Figure 7. As mentioned above in this
section, tasks are independent when rur = 0. In this case, the execution speeds

788 J. Wu

of tasks only vary with the utilization of tasks. In Figures 7 a) and b), the energy
consumption of CB-CAS is higher than that of USFI and CA-SRP when rur = 0
(i.e., tasks are independent) because the execution speeds calculated by CB-CAS
are higher than those of USFI and CA-SRP.

In this second part of our simulation, the effect of the lengths of abortable
segments on energy consumption is evaluated for our proposed CA-SRP with DSA
method. The abortable segment ratio determines the lengths of abortable segments
of critical sections. Hence, the probability of aborting and the re-execution time will
be increased when asr becomes higher. We fixed the utilization to 0.4 and varied
the rur from 0 to 0.3. Figure 8 shows the experimental results of our proposed CA-
SRP with DSA method where asr is set as 0 to 0.5 (step by 0.1). As the lengths of
abortable segments are increased with asr, the energy consumption is getting higher
because the number of abortings is also increased. Note that the re-execution time
for aborted tasks are also increased with asr. When asr = 0, CA-SRP degrades
to have a blocking option only when a resource conflict occurs, thus there is no
re-execution cost.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.05 0.1 0.15 0.2 0.25 0.3

N
o
rm

a
liz

e
d
 E

n
g
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

Resource Usage Ratio

MS
CA-SRP(asr=0)

CA-SRP(asr=0.1)
CA-SRP(asr=0.2)
CA-SRP(asr=0.3)
CA-SRP(asr=0.4)
CA-SRP(asr=0.5)

Figure 8. Normalized energy consumption with varying rur with different settings of asr

8 CONCLUSION AND FURTHER WORK

In the recent years, researchers have proposed energy-efficient ceiling-based protocols
to manage concurrent accesses to shared resources for real-time systems. However,
ceiling-based protocols have a problem of ceiling blocking which imposes a great
impact on the performance of real-time systems. In this paper, we are interested in
energy-efficient scheduling of dynamic-priority, periodic, preemptible real-time tasks
with abortable critical sections on a non-ideal DVS platform. Based on EDF and
SRP, we propose the conditional abortable stack resource policy (CA-SRP) to resolve
the ceiling-blocking problem by incorporating a conditional abort rule into SRP. We
also propose a dynamic speed assignment (DSA) method to dynamically calculate
proper processor speeds for task execution so that the energy consumption can be

Energy-Efficient Concurrency Control for Tasks with Abortable Critical Sections 789

reduced further. The schedulability analysis and the properties of the CA-SRP
are given in this paper. The capability of our proposed approaches were evaluated
by a series of experiments, for which we have some encouraging results. By using
the CA-SRP to schedule tasks on a DVS platform, the performance can be more
predictable while the energy consumption can be reduced significantly compared
with other existing work.

Acknowledgements

This paper is supported in part by research grants from the Ministry of Science and
Technology (MOST) of Taiwan under the grant number MOST-105-2628-E-153-001-
MY2.

REFERENCES

[1] Baker, T. P.: A Stack-Based Resource Allocation Policy for Real-Time Processes.
Proceedings of the IEEE 11th Real-Time Systems Symposium (RTSS), Lake Buena
Vista, Florida, USA, December 4–7, 1990, pp. 191–200.

[2] Buttazzo, G.C.: Rate Monotonic vs. EDF: Judgment Day. Real-Time Systems,
Vol. 29, 2005, No. 1, pp. 5–25.

[3] Chen, J.-J.—Kuo, C.-F.: Energy-Efficient Scheduling for Real-Time Systems on
Dynamic Voltage Scheduling (DVS) Platforms. Proceedings of the 13th IEEE Confer-
ence on Embedded and Real-Time Computing Systems and Applications (RTCSA),
2007, doi: 10.1109/RTCSA.2007.37.

[4] Chen, J.-J.—Kuo, T.-W.: Procrastination Determination for Periodic Real-Time
Tasks in Leakage-Aware Dynamic Voltage Scaling Systems. Proceedings of the
IEEE/ACM International Conference on Computer Aided Design (ICCAD), San Jose,
CA, USA, 2007, pp. 284–294.

[5] Chen, M.-I.—Lin, K.-J.: Dynamic Priority Ceilings: A Concurrency Control
Protocol for Real-Time Systems. Real Time Systems Journal, Vol. 2, 1990, No. 1,
pp. 325–346, doi: 10.1007/BF01995676.

[6] Chen, M.-I.—Lin, K.-J.: A Priority Ceiling Protocol for Multiple-Instance Re-
sources. Proceedings of Twelfth Real-Time Systems Symposium, 1991, pp. 140–149,
doi: 10.1109/REAL.1991.160367.

[7] Elewi, A.M.—Awadalla, M.H.A.—Eladawy, M. I.: Energy-Efficient Multi-
Speed Algorithm for Scheduling Dependent Real-Time Tasks. Proceedings of the In-
ternational Conference on Computer Engineering and Systems (ICCES 2008), Cairo,
Egypt, November 2008, pp. 237–242, doi: 10.1109/ICCES.2008.4773003.

[8] Elewi, A.M.—Awadalla, M.H.A.—Eladawy, M. I.: Energy Efficient Real-
Time Scheduling of Dependent Tasks Sharing Resources. Proceedings of the 2008
High Performance Computing and Simulation Conference (HPCS), Nicosia, Cyprus,
June 3–6, 2008, pp. 107–116.

https://doi.org/10.1109/RTCSA.2007.37
https://doi.org/10.1007/BF01995676
https://doi.org/10.1109/REAL.1991.160367
https://doi.org/10.1109/ICCES.2008.4773003

790 J. Wu

[9] Huang, J.—Stankovic, J. A.—Ramamritham, K.—Towsley, D.: On
Using Priority Inheritance in Real-Time Databases. Proceedings of the 12th

Real-Time Systems Symposium (RTSS), December 1991, pp. 210–221, doi:
10.1109/REAL.1991.160376.

[10] Intel. Intel XScale Core Developer’s Manual, 2004.

[11] Jejurikar, R.—Gupta, R.: Energy Aware Task Scheduling with Task Synchro-
nization for Embedded Real Time Systems. Proceedings of the International Con-
ference on Compilers, Architecture and Synthesis for Embedded Systems (CASES),
2002, pp. 164–169, doi: 10.1145/581630.581655.

[12] Jejurikar, R.—Gupta, R.: Dual Mode Algorithm for Energy Aware Fixed Priority
Scheduling with Task Synchronization. Proceedings of the Workshop on Compilers
and Operating Systems for Low Power, 2003.

[13] Jejurikar, R.—Gupta, R.: Energy Aware Task Scheduling with Task Synchro-
nization for Embedded Real Time Systems. IEEE Transactions on Computer Aided
Design of Integrated Circuits and Systems, Vol. 25, 2006, No. 6, pp. 1024–1037, doi:
10.1109/TCAD.2005.855964.

[14] Lam, K.-Y.—Ng, J.K.-Y.: A Conditional Abortable Priority Ceiling Protocol for
Scheduling Mixed Real-Time Tasks. Journal of Systems Architecture, Vol. 46, 2000,
No. 7, pp. 573–585.

[15] Lee, J.—Koh, K.—Lee, C.-G.: Multi-Speed DVS Algorithms for Periodic Tasks
with Non-Preemptible Sections. Proceedings of the 13th IEEE Conference on Embed-
ded and Real-Time Computing Systems and Applications (RTCSA), 2007, pp. 459–
468, doi: 10.1109/RTCSA.2007.50.

[16] Liu, C. L.—Layland, J.W.: Scheduling Algorithms for Multiprogramming in
a Hard Real-Time Environment. Journal of the Association for Computing Machinery
(JACM), Vol. 20, 1973, No. 1, pp. 46–61.

[17] Mochocki, B.—Hu, X. S.—Quan, G.: Transition-Overhead-Aware Voltage
Scheduling for Fixed-Priority Real-Time Systems. ACM Transactions on Design Au-
tomation of Electronic Systems, Vol. 12, 2007, No. 11, doi: 10.1145/1230800.1230803.

[18] Mohan, A. L.—Pillai, A. S.: Dynamic Voltage Scaling with Reduced Frequency
Switching and Preemptions. International Journal of Electrical and Electronics En-
gineering, Vol. 1, 2011, No. 1, pp. 10–14.

[19] Mok, A.K.: Fundamental Design Problems for the Hard Real-Time Environment.
Ph.D. Thesis, MIT, Cambridge, MA, 1983.

[20] Muhammad, F.—Khurram, B.M.—Muller, F.—Belleudy, C.—
Auguin, M.: Precognitive DVFS: Minimizing Switching Points to Further
Reduce the Energy Consumption. Proceedings of the Work-in-Progress Session of
the Real-Time and Embedded Technology and Applications Symposium (RTAS),
2008, pp. 9–12.

[21] Rajan, D.—Zuck, R.—Poellabauer, C.: Workload-Aware Dual-Speed Dynamic
Voltage Scaling. Proceedings of 12th IEEE Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), Sydney, Australia, August 16–18,
2006, pp. 251–256.

https://doi.org/10.1109/REAL.1991.160376
https://doi.org/10.1145/581630.581655
https://doi.org/10.1109/TCAD.2005.855964
https://doi.org/10.1109/RTCSA.2007.50
https://doi.org/10.1145/1230800.1230803

Energy-Efficient Concurrency Control for Tasks with Abortable Critical Sections 791

[22] Zhuravlev, S.—Saez, J. C.—Blagodurov, S.—Fedorova, A.—Prieto, M.:
Survey of Energy-Cognizant Scheduling Techniques. IEEE Transactions on Parallel
and Distributed Systems, Vol. 24, 2013, No. 7, pp. 1–19, doi: 10.1109/TPDS.2012.20.

[23] Sha, L.—Rajkumar, R.—Lehoczky, J. P.: Priority Inheritance Protocols: An
Approach to Real-Time Synchronization. IEEE Transactions on Computers, Vol. 39,
1990, No. 9, pp. 1175–1185.

[24] Shu, L.-C.—Young, M.: A Mixed Locking/Abort Protocol for Hard Real-
Time Systems. Proceedings Real-Time Operating Systems and Software, May 1994,
pp. 102–106.

[25] Takada, H.—Sakamura, K.: Real-Time Synchronization Protocols with Abort-
able Critical Sections. Proceedings of 1st International Workshop on Real-Time Com-
puting Systems and Application, 1994, pp. 48–52.

[26] Tokuda, H.—Nakajima, T.: Evaluation of Real-Time Synchronization in Real-
Time Mach. Proceedings of the USENIX Mach Symposium, November 1991,
pp. 213–221.

[27] Wu, J.: Energy Efficient Dual Execution Mode Scheduling for Real-Time Tasks with
Shared Resources. International Journal of Computer Systems Science and Engineer-
ing (CSSE), Vol. 31, 2016, No. 3, pp. 239–253.

[28] Wu, J.: Energy-Efficient Scheduling of Real-Time Tasks with Shared Resources.
Future Generation Computer Systems (FGCS), Vol. 56, 2016, pp. 179–191, doi:
10.1016/j.future.2015.05.012.

[29] Wu, J.—Ke, K.-L.: Energy-Efficient Real-Time Scheduling of Tasks with Abortable
Critical Sections. Journal of Information Science and Engineering (JISE), Vol. 30,
2014, No. 3, pp. 765–786.

[30] Wu, J.—Wu, J.-X.: An SRP-Based Energy-Efficient Scheduling Algorithm for De-
pendent Real-Time Tasks. International Journal of Embedded Systems (IJES), Vol. 6,
2014, No. 4, pp. 335–350.

[31] Yao, F.—Demers, A.—Shenker, S.: A Scheduling Model for Reduced CPU En-
ergy. Proceedings of 36th IEEE Symposium on Foundations of Computer Science
(FOCS), Milwaukee, USA, October 23–25, 1995, pp. 374–382.

[32] Zhang, F.—Chanson, S. T.: Processor Voltage Scheduling for Real-Time Tasks
with Non-Preemptible Sections. Proceedings of the 23rd IEEE Real-Time Systems
Symposium (RTSS), 2002, pp. 235–245, doi: 10.1109/REAL.2002.1181578.

[33] Zhang, F.—Chanson, S. T.: Blocking-Aware Processor Voltage Scheduling for
Real-Time Tasks. ACM Transactions on Embedded Computing Systems, Vol. 3, 2004,
No. 2, pp. 307–335.

https://doi.org/10.1109/TPDS.2012.20
https://doi.org/10.1016/j.future.2015.05.012
https://doi.org/10.1109/REAL.2002.1181578

792 J. Wu

Jun Wu is Associate Professor in the Department of Computer
Science and Information Engineering at National Pingtung Uni-
versity, Pingtung, Taiwan. His research interests include real-
time embedded systems, energy-efficient design, and virtualiza-
tion technologies. He received Best Paper Award from the IEEE
International Conference on Embedded and Real-Time Comput-
ing Systems and Applications (RTCSA) in 2005. He received
his B.Sc. degree in computer science and information engineer-
ing from I-Shou University, Kaohsiung, Taiwan, in 1996. He
received his MBA degree in information management from Na-

tional Yunlin University of Science and Technology, Yunlin, Taiwan, in 1998. He received
his Ph.D. degree in computer science and information engineering from National Chung
Cheng University, Chiayi, Taiwan, in 2004. He is a member of the IEEE.

